JPH09266115A - Static magnetic wave device - Google Patents

Static magnetic wave device

Info

Publication number
JPH09266115A
JPH09266115A JP9006705A JP670597A JPH09266115A JP H09266115 A JPH09266115 A JP H09266115A JP 9006705 A JP9006705 A JP 9006705A JP 670597 A JP670597 A JP 670597A JP H09266115 A JPH09266115 A JP H09266115A
Authority
JP
Japan
Prior art keywords
single crystal
crystal film
wave device
lattice constant
magnetostatic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9006705A
Other languages
Japanese (ja)
Other versions
JP3387341B2 (en
Inventor
Masato Kumatoriya
誠人 熊取谷
Takashi Fujii
高志 藤井
Hiroshi Takagi
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP00670597A priority Critical patent/JP3387341B2/en
Publication of JPH09266115A publication Critical patent/JPH09266115A/en
Application granted granted Critical
Publication of JP3387341B2 publication Critical patent/JP3387341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provided a static magnetic wave device whose insertion loss is small, whose ripple is also small and which exhibits excellent characteristics. SOLUTION: A static magnetic wave device is a single crystal film 2 expressed by a general formula Y3-x Mx Fe5-y Ny O12 (M is at least one of La, Bi, Lu and Gd. N is at least one of Ga, Al, In and Sc. 0<x<=1.0, 0<y<=1.5). and which is formed on a Gd3 Ga5 O12 single crystal substrate 1 by liquid phase epitaxial method. The lattice constant of the single crystal film 2 is larger than that of the single crystal substrate 1 and the difference Δ a between these constants is within the range: 0.0004nm<=Δa<=0.001nm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁性ガーネット単
結晶膜を用いた静磁波デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetostatic wave device using a magnetic garnet single crystal film.

【0002】[0002]

【従来の技術】従来、液相エピタキシャル法によりガー
ネット単結晶基板上に成長させた磁性ガーネット単結晶
膜は、バブルメモリー用や光アイソレーター用の磁性材
料として利用されている。
2. Description of the Related Art Conventionally, a magnetic garnet single crystal film grown on a garnet single crystal substrate by a liquid phase epitaxial method has been used as a magnetic material for bubble memories and optical isolators.

【0003】静磁波デバイス用の磁性ガーネットには、
従来、フラックス法や浮遊帯域溶融法などで得られた磁
性ガーネット単結晶のバルクを球状に加工し、高い精度
で研磨処理されたものが用いられていた。ところが、こ
のような球面加工する方法では量産性の高い製造が容易
でなかった。
Magnetic garnets for magnetostatic wave devices include:
Conventionally, a bulk of magnetic garnet single crystal obtained by a flux method, a floating zone melting method, or the like is processed into a spherical shape, and is polished with high accuracy. However, such a spherical surface processing method is not easy to mass-produce.

【0004】そこで、最近では、静磁波デバイスとし
て、液相エピタキシャル法により磁性ガーネット単結晶
膜をガーネット単結晶基板上に成長させたものを用いる
ようになってきた。これは、この方法によれば磁性ガー
ネット単結晶膜の品質が良好であること、球状の磁性ガ
ーネット単結晶のバルクのように球状加工や高精度の研
磨処理が不要なこと、さらにこの結果、デバイスの構成
が単純になるなどの利点があることによる。
Therefore, recently, as a magnetostatic wave device, a device in which a magnetic garnet single crystal film is grown on a garnet single crystal substrate by a liquid phase epitaxial method has been used. According to this method, the quality of the magnetic garnet single crystal film is good, spherical processing and high-precision polishing treatment like the bulk of spherical magnetic garnet single crystal are unnecessary, and as a result, the device This is because there are advantages such as the simple configuration of.

【0005】ところで、磁性ガーネット単結晶膜の磁気
特性の1つである飽和磁化(Is)は、静磁波デバイス
の動作周波数に係わるため、動作周波数を下げる場合に
は、飽和磁化を下げる手法が一般的にとられる。このた
めに、一般的には、代表的磁性ガーネットであるY3
5 12中のFe3+の一部をGa3+又はAl3+などの非
磁性イオンで置換することにより対応されている。又、
それぞれのイオン半径が異なるため、この置換の結果、
ガーネット単結晶基板と磁性ガーネット単結晶膜との格
子定数のミスマッチ量が大きくなる。このため、結晶学
的な品質を損なわないよう、一般的に、組成式Y3 Fe
5 12中Y3+の一部をLa3+、Bi3+など、又はFe3+
をSc3+などで置換することにより対応されている。
By the way, the saturation magnetization (Is), which is one of the magnetic characteristics of the magnetic garnet single crystal film, is related to the operating frequency of the magnetostatic wave device. Therefore, when lowering the operating frequency, a method of lowering the saturation magnetization is generally used. To be taken. For this reason, Y 3 F which is a typical magnetic garnet is generally used.
This is achieved by substituting a part of Fe 3+ in e 5 O 12 with a nonmagnetic ion such as Ga 3+ or Al 3+ . or,
Since each ionic radius is different, the result of this substitution is
The amount of mismatch in lattice constant between the garnet single crystal substrate and the magnetic garnet single crystal film becomes large. For this reason, the composition formula Y 3 Fe is generally used so as not to impair the crystallographic quality.
5 O 12 contains a part of Y 3+ as La 3+ , Bi 3+ , or Fe 3+
Is replaced by Sc 3+ or the like.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来
の、液相エピタキシャル法による磁性ガーネット単結晶
膜を用いた静磁波デバイスにおいては、挿入損失が大き
くなったり、リップルが現れるなどして、良好な特性を
得ることができないという問題点を有していた。
However, in the conventional magnetostatic wave device using the magnetic garnet single crystal film by the liquid phase epitaxial method, the insertion loss becomes large and ripples appear, so that the good characteristics are obtained. It had a problem that it was not possible to obtain.

【0007】そこで、本発明の目的は、挿入損失が小さ
くリップルが小さい、良好な特性を有する静磁波デバイ
スを提供することにある。
Therefore, an object of the present invention is to provide a magnetostatic wave device having good characteristics with a small insertion loss and a small ripple.

【0008】[0008]

【課題を解決するための手段】磁性ガーネット単結晶膜
をGd3 Ga5 12などのガーネット単結晶基板上にエ
ピタキシャル成長させる場合において特性上問題となる
点は、ガーネット単結晶基板と磁性ガーネット単結晶膜
との格子定数のミスマッチ量である。
[Problems to be Solved by the Invention] When epitaxially growing a magnetic garnet single crystal film on a garnet single crystal substrate such as Gd 3 Ga 5 O 12 , a characteristic problem is that the garnet single crystal substrate and magnetic garnet single crystal It is the amount of mismatch of the lattice constant with the film.

【0009】従来より、バブルメモリーや、光アイソレ
ーター用材料として、ガーネット単結晶基板上にエピタ
キシャル成長させた磁性ガーネット単結晶膜が用いられ
てきた。そして、この場合の格子定数のミスマッチ量に
ついては、磁気的な特性を制御するために、わざと大き
くして歪みによる応力誘導異方性磁界を発生させたり、
逆に、この磁界が発生しないようにより0に近づけたり
する工夫がなされてきた。
Conventionally, a magnetic garnet single crystal film epitaxially grown on a garnet single crystal substrate has been used as a material for bubble memories and optical isolators. In this case, the lattice constant mismatch amount is intentionally increased in order to control the magnetic characteristics to generate a stress-induced anisotropic magnetic field due to strain,
On the contrary, measures have been taken to bring the magnetic field closer to 0 so that this magnetic field is not generated.

【0010】当初、本発明者は、静磁波デバイス用の磁
性ガーネット単結晶膜においては、一般に強磁性共鳴半
値幅(ΔH)のより小さい磁性ガーネット単結晶膜が望
ましいとされているため、これを達成するためには格子
定数のミスマッチ量をほぼ0とした材料が最適と判断し
てきた。
Initially, the inventor of the present invention considered that a magnetic garnet single crystal film having a smaller ferromagnetic resonance half-value width (ΔH) was desirable as a magnetic garnet single crystal film for a magnetostatic wave device. In order to achieve this, it has been judged that a material having a lattice constant mismatch amount of almost 0 is optimal.

【0011】しかしながら、格子定数のミスマッチ量
と、挿入損失やリップルなどの静磁波デバイスとしたと
きの特性について詳細な検討を行なった結果、これら静
磁波デバイスの特性は、ガーネット単結晶基板と磁性ガ
ーネット単結晶膜との格子定数のミスマッチ量を0に近
づけるのではなく、ある特定範囲のミスマッチ量を確保
すると改善できることを見出だした。
However, as a result of a detailed examination of the lattice constant mismatch amount and the characteristics of the magnetostatic wave device such as insertion loss and ripple, the characteristics of these magnetostatic wave devices are as follows: It has been found that improvement can be achieved by ensuring the mismatch amount of the lattice constant with the single crystal film to a value within a certain specific range, rather than bringing the mismatch amount closer to zero.

【0012】即ち、上記目的を達成するため、本発明の
静磁波デバイスは、Gd3 Ga5 12単結晶基板上に液
相エピタキシャル法で形成された、一般式Y3-x x
5-y y 12(但し、MはLa、Bi、Lu、Gdの
うち少なくとも1つ、NはGa、Al、In、Scのう
ち少なくとも1つ、0<x≦1.0、0<y≦1.5)
で示される単結晶膜であって、該単結晶膜の格子定数は
前記単結晶基板の格子定数より大きく、かつ該格子定数
の差Δaが0.0004nm≦Δa≦0.001nmの
範囲内にある単結晶膜が用いられていることを特徴とす
る。
In other words, in order to achieve the above object, the magnetostatic wave device of the present invention has a general formula Y 3-x M x F formed on a Gd 3 Ga 5 O 12 single crystal substrate by a liquid phase epitaxial method.
e 5-y N y O 12 (M is at least one of La, Bi, Lu, and Gd, N is at least one of Ga, Al, In, and Sc, and 0 <x ≦ 1.0, 0 <Y ≦ 1.5)
And the lattice constant of the single crystal film is larger than the lattice constant of the single crystal substrate, and the difference Δa of the lattice constants is in the range of 0.0004 nm ≦ Δa ≦ 0.001 nm. It is characterized in that a single crystal film is used.

【0013】そして、このような構成により、挿入損失
が小さくリップルが小さい、良好な特性を有する静磁波
デバイスを得ることができる。
With such a structure, it is possible to obtain a magnetostatic wave device having good characteristics with a small insertion loss and a small ripple.

【0014】これは、以下の理由によるものと考えられ
る。即ち、上記格子定数の差Δa(即ち、ミスマッチ
量)を有する、磁性ガーネット単結晶膜はGd3 Ga5
12単結晶基板よりも大きな格子定数を有することにな
るので、単結晶基板に対して圧縮応力を加えることにな
る。このとき単結晶膜内に歪みが生じるが、これは単結
晶膜の結晶格子を単結晶膜面に対して水平に引き延ばす
形となる。この効果により、例えば表面静磁波のように
単結晶膜に対して水平に直流磁界を印加する場合におい
ては、電子スピンの磁化の方向が直流磁界の方向に回転
することを容易とし、この結果、単結晶膜内の内部磁界
をより均一にする作用があると考えられる。
This is considered to be due to the following reasons. That is, the magnetic garnet single crystal film having the above-mentioned lattice constant difference Δa (that is, the amount of mismatch) is Gd 3 Ga 5
Since it has a larger lattice constant than the O 12 single crystal substrate, compressive stress is applied to the single crystal substrate. At this time, distortion occurs in the single crystal film, which is in a form in which the crystal lattice of the single crystal film is stretched horizontally with respect to the single crystal film surface. By this effect, for example, when a DC magnetic field is applied horizontally to the single crystal film like a surface magnetostatic wave, it is easy to rotate the magnetization direction of the electron spins in the direction of the DC magnetic field, and as a result, It is considered to have the effect of making the internal magnetic field in the single crystal film more uniform.

【0015】なお、格子定数の差Δaを0. 0004n
m≦Δa≦0. 001nmの範囲内に限定する理由は、
以下の通りである。
The difference Δa in lattice constant is 0.0004n.
The reason for limiting to the range of m ≦ Δa ≦ 0.001 nm is as follows.
It is as follows.

【0016】即ち、格子定数の差Δaが0.001nm
を超えると、単結晶膜内の歪みによる異方性磁界の単結
晶膜内不均一が生じ、静磁波デバイスとしての特性の再
現が得られなくなり好ましくない。又、単結晶膜内の歪
による誘導磁気異方性が大きくなり、より低周波での動
作が困難となる。さらに、格子定数の差Δaが大きくな
ると、単結晶膜にクラックが生じるようになり好ましく
ない。
That is, the difference Δa in lattice constant is 0.001 nm.
If it exceeds, non-uniformity of the anisotropic magnetic field in the single crystal film due to strain in the single crystal film occurs, and reproduction of characteristics as a magnetostatic wave device cannot be obtained, which is not preferable. Further, the induced magnetic anisotropy due to the strain in the single crystal film becomes large, and it becomes difficult to operate at a lower frequency. Further, if the difference Δa in lattice constant becomes large, cracks will occur in the single crystal film, which is not preferable.

【0017】一方、格子定数の差Δaが0.0004n
m未満になると、静磁波デバイスとしたときの、挿入損
失を小さくリップルを抑えるという効果が得られ難くな
るため好ましくない。又、ウエハー面内からチップを切
り出して静磁波デバイスを作製したときの、挿入損失や
リップルなどの特性上のばらつきが大きい。これらは、
上述のような、単結晶膜と単結晶基板との相互作用が小
さくなるためと考えられる。
On the other hand, the lattice constant difference Δa is 0.0004n.
If it is less than m, it is difficult to obtain the effect of reducing the insertion loss and suppressing the ripple when the magnetostatic wave device is used, which is not preferable. Further, when a magnetostatic wave device is manufactured by cutting a chip out of the wafer surface, there are large variations in characteristics such as insertion loss and ripples. They are,
It is considered that the interaction between the single crystal film and the single crystal substrate as described above is reduced.

【0018】[0018]

【発明の実施の形態】以下、本発明の静磁波デバイスに
ついて、その実施の形態を実施例にもとづいて説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The magnetostatic wave device of the present invention will be described below based on its embodiments.

【0019】(実施例1)まず、加熱炉内に設置された
白金製の坩堝に、磁性ガーネットを構成する元素の酸化
物であるY2 3 を0.39モル%、Fe2 3 を9.
17モル%、La2 3 を0.07モル%、Ga2 3
を0.37モル%と、溶剤としてのPbOを84.00
モル%、B2 3 を6.00モル%の比率で充填し、約
1200℃に加熱溶融して均質化した。その後、この融
液を880〜900℃に降温保持して磁性ガーネット構
成溶液を過飽和とした。
(Example 1) First, a platinum crucible installed in a heating furnace was charged with 0.39 mol% of Y 2 O 3 , which is an oxide of an element constituting magnetic garnet, and Fe 2 O 3 . 9.
17 mol%, La 2 O 3 0.07 mol%, Ga 2 O 3
Of 0.37 mol% and PbO as a solvent of 84.00
Mol% and B 2 O 3 were filled in a ratio of 6.00 mol%, and the mixture was heated and melted to about 1200 ° C. to be homogenized. Then, the melt was maintained at a temperature of 880 to 900 ° C. to make the magnetic garnet-constituting solution supersaturated.

【0020】その後、この融液に下地基板として(11
1)面方位のGd3 Ga5 12単結晶基板を浸漬し、厚
み20μmであって狙い組成式Y2.95La0.05Fe4.55
Ga0.4512の磁性ガーネット単結晶膜を作製した。
Then, the melt was used as a base substrate (11
1) Dip a Gd 3 Ga 5 O 12 single crystal substrate having a plane orientation, and have a target composition formula Y 2.95 La 0.05 Fe 4.55 with a thickness of 20 μm.
A magnetic garnet single crystal film of Ga 0.45 O 12 was prepared.

【0021】得られた単結晶膜の飽和磁化(Is)は
0.125Wb/m2 、強磁性共鳴半値幅(ΔH)は5
3.5A/mであった。又、単結晶膜と単結晶基板の格
子定数の差{Δa=(単結晶膜の格子定数)−(単結晶
基板の格子定数)}、即ちミスマッチ量を2結晶法によ
るX線ロッキングカーブ法を用いて測定した結果は0.
0005nmであった。
The obtained single crystal film had a saturation magnetization (Is) of 0.125 Wb / m 2 and a ferromagnetic resonance half-value width (ΔH) of 5
It was 3.5 A / m. In addition, the difference between the lattice constants of the single crystal film and the single crystal substrate {Δa = (lattice constant of the single crystal film) − (lattice constant of the single crystal substrate)}, that is, the amount of mismatch is determined by the X-ray rocking curve method by the two-crystal method. The result of measurement using is 0.
It was 0005 nm.

【0022】次に、図1に示すように、4×4mm角の
チップ状に切断した単結晶基板1の磁性ガーネット単結
晶膜2の上に、Al蒸着により線幅50μmのトランス
デューサ3、4を2mmの間隔で形成して表面静磁波デ
バイスを作製した。そして、4475A/mの直流磁界
(Hex)を膜面に平行かつトランスデューサに平行に印
加し、フィルタ特性を測定した。その結果を図2に示
す。
Next, as shown in FIG. 1, on the magnetic garnet single crystal film 2 of the single crystal substrate 1 cut into 4 × 4 mm square chips, transducers 3 and 4 having a line width of 50 μm are formed by Al vapor deposition. Surface magnetostatic wave devices were produced by forming them at intervals of 2 mm. Then, a DC magnetic field (H ex ) of 4475 A / m was applied parallel to the film surface and parallel to the transducer, and the filter characteristics were measured. The result is shown in FIG.

【0023】なお、図1において、5、6は静磁波の吸
収体、Iinはマイクロ波の入力方向、Wは表面波(MS
SW)の伝播方向、Iout はマイクロ波の出力方向であ
る。 (実施例2)まず、加熱炉内に設置された白金製の坩堝
に、磁性ガーネットを構成する元素の酸化物であるY2
3 を0.38モル%、Fe2 3 を9.17モル%、
La2 3 を0.08モル%、Ga2 3 を0.37モ
ル%と、溶剤としてのPbOを84.00モル%、B2
3 を6.00モル%の比率で充填し、約1200℃に
加熱溶融して均質化した。その後、この融液を880〜
900℃に降温保持して磁性ガーネット構成溶液を過飽
和とした。
In FIG. 1, 5 and 6 are magnetostatic wave absorbers, I in is the microwave input direction, and W is the surface wave (MS
SW) propagation direction, I out is the microwave output direction. (Example 2) First, in a platinum crucible installed in a heating furnace, Y 2 which is an oxide of an element forming a magnetic garnet is used.
O 3 is 0.38 mol%, Fe 2 O 3 is 9.17 mol%,
La 2 O 3 0.08 mol%, Ga 2 O 3 0.37 mol%, PbO as a solvent 84.00 mol%, B 2
O 3 was charged at a ratio of 6.00 mol%, and was heated and melted to about 1200 ° C. to homogenize. Then, melt this solution 880-
The temperature was maintained at 900 ° C. to keep the magnetic garnet-constituting solution supersaturated.

【0024】その後、実施例1と同様に、この融液に下
地基板として(111)面方位のGd3 Ga5 12単結
晶基板を浸漬し、厚み20μmであって狙い組成式Y
2.95La0.05Fe4.55Ga0.4512の磁性ガーネット単
結晶膜を作製した。
Then, in the same manner as in Example 1, a Gd 3 Ga 5 O 12 single crystal substrate having a (111) plane orientation was immersed as a base substrate in this melt, and the target composition formula Y was 20 μm.
A magnetic garnet single crystal film of 2.95 La 0.05 Fe 4.55 Ga 0.45 O 12 was prepared.

【0025】得られた単結晶膜の飽和磁化(Is)は
0.125Wb/m2 、強磁性共鳴半値幅(ΔH)は6
2.0A/mであった。又、単結晶膜について、実施例
1と同様に、格子定数のミスマッチ量を測定した結果は
0.0009nmであった。
The obtained single crystal film has a saturation magnetization (Is) of 0.125 Wb / m 2 and a ferromagnetic resonance half-value width (ΔH) of 6
It was 2.0 A / m. Further, with respect to the single crystal film, the result of measuring the lattice constant mismatch amount was 0.0009 nm as in Example 1.

【0026】次に、実施例1と同様にして、表面静磁波
デバイスを作製し、そのフィルタ特性を測定した。その
結果を図3に示す。
Then, in the same manner as in Example 1, a surface magnetostatic wave device was prepared and its filter characteristics were measured. The result is shown in FIG.

【0027】(比較例)まず、加熱炉内に設置された白
金製の坩堝に、磁性ガーネットを構成する元素の酸化物
であるY2 3 を0.41モル%、Fe2 3 を9.1
7モル%、La2 3 を0.05モル%、Ga2 3
0.37モル%と、溶剤としてのPbOを84.00モ
ル%、B2 3 を6.00モル%の比率で充填し、約1
200℃に加熱溶融して均質化した。その後、この融液
を880〜900℃に降温保持して磁性ガーネット構成
溶液を過飽和とした。
(Comparative Example) First, in a platinum crucible installed in a heating furnace, 0.41 mol% of Y 2 O 3 which is an oxide of an element constituting magnetic garnet and 9% of Fe 2 O 3 were added. .1
7 mol%, La 2 O 3 0.05 mol%, Ga 2 O 3 0.37 mol%, PbO as a solvent 84.00 mol%, B 2 O 3 6.00 mol% Fill with, about 1
The mixture was heated to 200 ° C., melted and homogenized. Then, the melt was maintained at a temperature of 880 to 900 ° C. to make the magnetic garnet-constituting solution supersaturated.

【0028】その後、実施例1と同様に、この融液に下
地基板として(111)面方位のGd3 Ga5 12単結
晶基板を浸漬し、厚み20μmであって狙い組成式Y
2.95La0.05Fe4.55Ga0.4512の磁性ガーネット単
結晶膜を作製した。
Then, as in Example 1, a Gd 3 Ga 5 O 12 single crystal substrate having a (111) plane orientation was immersed as a base substrate in this melt, and the target composition formula Y was 20 μm.
A magnetic garnet single crystal film of 2.95 La 0.05 Fe 4.55 Ga 0.45 O 12 was prepared.

【0029】得られた単結晶膜の飽和磁化(Is)は
0.123Wb/m2 、強磁性共鳴半値幅(ΔH)は8
7.5A/mであった。又、単結晶膜について、実施例
1と同様に、格子定数のミスマッチ量を測定した結果は
−0.0003nmであった。
The obtained single crystal film had a saturation magnetization (Is) of 0.123 Wb / m 2 and a ferromagnetic resonance half-value width (ΔH) of 8
It was 7.5 A / m. Further, with respect to the single crystal film, the result of measuring the mismatch amount of the lattice constant as in Example 1 was -0.0003 nm.

【0030】次に、実施例1と同様にして、表面静磁波
デバイスを作製し、そのフィルタ特性を測定した。その
結果を図4に示す。
Then, in the same manner as in Example 1, a surface magnetostatic wave device was prepared and its filter characteristics were measured. FIG. 4 shows the results.

【0031】以上、実施例1、2及び比較例の結果を対
比すると、図2、3に示す本発明の静磁波デバイスの場
合は、図4に示す比較例と比べて、挿入損失及びリップ
ルが小さいフィルタ特性が得られている。
Comparing the results of Examples 1 and 2 and the comparative example as described above, in the case of the magnetostatic wave device of the present invention shown in FIGS. 2 and 3, as compared with the comparative example shown in FIG. A small filter characteristic is obtained.

【0032】なお、上記実施例においては、組成式Y
2.95La0.05Fe4.55Ga0.4512で表される磁性ガー
ネット単結晶膜の場合について説明したが、本発明はこ
れのみに限定されるものではない。即ち、Gd3 Ga5
12単結晶基板上に液相エピタキシャル法で形成され
た、例えばY2.78La0.02Bi0.20Fe4.50Ga0.50
12、Y2.85Bi0.15Fe4.30Sc0.10Ga0.6012など
の一般式Y3-x x Fe5-y y 12(但し、MはL
a、Bi、Lu、Gdのうち少なくとも1つ、NはG
a、Al、In、Scのうち少なくとも1つ)で表され
る単結晶膜であって、単結晶膜の格子定数が単結晶基板
の格子定数より大きく、かつこの格子定数の差Δaが
0. 0004nm≦Δa≦0. 001nmの範囲内の単
結晶膜を用いた静磁波デバイスについても、同様のフィ
ルタ特性の効果を得ることができる。
In the above embodiment, the composition formula Y
The case of the magnetic garnet single crystal film represented by 2.95 La 0.05 Fe 4.55 Ga 0.45 O 12 has been described, but the present invention is not limited to this. That is, Gd 3 Ga 5
For example, Y 2.78 La 0.02 Bi 0.20 Fe 4.50 Ga 0.50 O formed by a liquid phase epitaxial method on an O 12 single crystal substrate.
12 , Y 2.85 Bi 0.15 Fe 4.30 Sc 0.10 Ga 0.60 O 12 and other general formulas Y 3-x M x Fe 5-y N y O 12 (where M is L
at least one of a, Bi, Lu, and Gd, and N is G
a, Al, In, and Sc), the lattice constant of the single crystal film is larger than the lattice constant of the single crystal substrate, and the difference Δa of the lattice constant is 0. The same effect of the filter characteristics can be obtained also in the magnetostatic wave device using the single crystal film in the range of 0004 nm ≦ Δa ≦ 0.001 nm.

【0033】[0033]

【発明の効果】以上の説明で明らかなように、Gd3
5 12単結晶基板とその上に形成された磁性ガーネッ
ト単結晶膜との格子定数の差Δa{(単結晶膜の格子定
数)−(単結晶基板の格子定数)}が0. 0004nm
≦Δa≦0. 001nmの範囲の単結晶膜を用いること
により、挿入損失が小さくリップルが小さい、良好な特
性を有する静磁波デバイスを得ることができる。
As is clear from the above description, Gd 3 G
The difference Δa {(lattice constant of single crystal film) − (lattice constant of single crystal substrate)} in the lattice constant between the a 5 O 12 single crystal substrate and the magnetic garnet single crystal film formed thereon is 0.0004 nm.
By using the single crystal film in the range of ≦ Δa ≦ 0.001 nm, it is possible to obtain a magnetostatic wave device having good characteristics with a small insertion loss and a small ripple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の静磁波デバイスの一例を示す斜視図で
ある。
FIG. 1 is a perspective view showing an example of a magnetostatic wave device of the present invention.

【図2】本発明の一実施例の静磁波デバイスのフィルタ
特性を示す図である。
FIG. 2 is a diagram showing filter characteristics of a magnetostatic wave device according to an embodiment of the present invention.

【図3】本発明の他の実施例の静磁波デバイスのフィル
タ特性を示す図である。
FIG. 3 is a diagram showing filter characteristics of a magnetostatic wave device according to another embodiment of the present invention.

【図4】比較例の静磁波デバイスのフィルタ特性を示す
図である。
FIG. 4 is a diagram showing filter characteristics of a magnetostatic wave device of a comparative example.

【符号の説明】[Explanation of symbols]

1 単結晶基板 2 磁性ガーネット単結晶膜 3、4 トランスデューサー 5、6 吸収体 Hex 外部磁界 Iin マイクロ波の入力方向 W 表面波の伝播方向 Iout マイクロ波の出力方向1 Single crystal substrate 2 Magnetic garnet single crystal film 3, 4 Transducer 5, 6 Absorber H ex External magnetic field I in Microwave input direction W Surface wave propagation direction I out Microwave output direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Gd3 Ga5 12単結晶基板上に液相エ
ピタキシャル法で形成された、一般式Y3-x x Fe
5-y y 12(但し、MはLa、Bi、Lu、Gdのう
ち少なくとも1つ、NはGa、Al、In、Scのうち
少なくとも1つ、0<x≦1.0、0<y≦1.5)で
示される単結晶膜であって、該単結晶膜の格子定数は前
記単結晶基板の格子定数より大きく、かつ該格子定数の
差Δaが0.0004nm≦Δa≦0.001nmの範
囲内にある単結晶膜が用いられていることを特徴とする
静磁波デバイス。
1. A general formula Y 3-x M x Fe formed on a Gd 3 Ga 5 O 12 single crystal substrate by a liquid phase epitaxial method.
5-y N y O 12 (where M is at least one of La, Bi, Lu and Gd, N is at least one of Ga, Al, In and Sc, 0 <x ≦ 1.0, 0 < y ≦ 1.5), the lattice constant of the single crystal film is larger than the lattice constant of the single crystal substrate, and the difference Δa in the lattice constant is 0.0004 nm ≦ Δa ≦ 0. A magnetostatic wave device characterized in that a single crystal film within a range of 001 nm is used.
JP00670597A 1996-01-22 1997-01-17 Surface magnetostatic wave device Expired - Fee Related JP3387341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00670597A JP3387341B2 (en) 1996-01-22 1997-01-17 Surface magnetostatic wave device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-8662 1996-01-22
JP866296 1996-01-22
JP00670597A JP3387341B2 (en) 1996-01-22 1997-01-17 Surface magnetostatic wave device

Publications (2)

Publication Number Publication Date
JPH09266115A true JPH09266115A (en) 1997-10-07
JP3387341B2 JP3387341B2 (en) 2003-03-17

Family

ID=26340898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00670597A Expired - Fee Related JP3387341B2 (en) 1996-01-22 1997-01-17 Surface magnetostatic wave device

Country Status (1)

Country Link
JP (1) JP3387341B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041556A (en) * 2015-08-20 2017-02-23 国立大学法人 筑波大学 Magnetic composite and high frequency device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017041556A (en) * 2015-08-20 2017-02-23 国立大学法人 筑波大学 Magnetic composite and high frequency device

Also Published As

Publication number Publication date
JP3387341B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
US4263374A (en) Temperature-stabilized low-loss ferrite films
US5871856A (en) Magnetostatic wave device
US4269651A (en) Process for preparing temperature-stabilized low-loss ferrite films
JPH09266115A (en) Static magnetic wave device
JP2904668B2 (en) Garnet magnetic oxide single crystal for magnetostatic wave device, method for producing the same, and magnetostatic wave device
JPH06318517A (en) Material for static magnetic wave element
JPH0570290B2 (en)
JPS59170248A (en) Heat treatment of amorphous alloy
JPH0750215A (en) Magnetostatic wave element
JP3547089B2 (en) Microwave device material
JPS62101012A (en) Magnetostatic-wave microwave element
JPH101398A (en) Faraday element and its production
JPH09208393A (en) Production of microwave element material
JPH06260322A (en) Material for static magnetic wave element
JPH08306531A (en) Magnetostatic wave device
JPH07130539A (en) Surface magnetostatic wave device
JP3389671B2 (en) Method for producing magnetic garnet single crystal film
JP3917859B2 (en) Faraday rotator
US4273610A (en) Method for controlling the resonance frequency of yttrium iron garnet films
JP3089742B2 (en) Materials for magnetostatic wave devices
JP2756273B2 (en) Oxide garnet single crystal and method for producing the same
JPH03223199A (en) Magnetized garnet single crystal and microwave element material
JPH06120710A (en) Magnetostatic wave element
JP2000264789A (en) Magnetic garnet material and faraday rotor using same
JPH10284322A (en) Magnetostatic wave device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees