JPH0926515A - Optical waveguide circuit and its production - Google Patents

Optical waveguide circuit and its production

Info

Publication number
JPH0926515A
JPH0926515A JP17571395A JP17571395A JPH0926515A JP H0926515 A JPH0926515 A JP H0926515A JP 17571395 A JP17571395 A JP 17571395A JP 17571395 A JP17571395 A JP 17571395A JP H0926515 A JPH0926515 A JP H0926515A
Authority
JP
Japan
Prior art keywords
core
optical waveguide
clad
groove
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17571395A
Other languages
Japanese (ja)
Other versions
JP3147327B2 (en
Inventor
Hiroshi Terui
博 照井
Yasubumi Yamada
泰文 山田
Shigeki Ishibashi
重喜 石橋
Yoshinori Nakasuga
好典 中須賀
Toshikazu Hashimoto
俊和 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17571395A priority Critical patent/JP3147327B2/en
Publication of JPH0926515A publication Critical patent/JPH0926515A/en
Application granted granted Critical
Publication of JP3147327B2 publication Critical patent/JP3147327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a more multifunctional optical waveguide circuit and a process for producing the circuit by providing a structure to allow the packaging of a surface type PD in the arbitrary position in an optical circuit without affecting other circuits. SOLUTION: This optical waveguide circuit consists of a core 12 and a clad 13 formed on a substrate 11. The circuit has an optical waveguide 14 consisting of the clad 13 which encloses the core 12 and has the refractive index lower than the refractive index of the core 12, a waveguide end 15 which is a perpendicular first end face intersecting nearly orthogonally to the optical axis direction of the core 12 of the optical waveguide 14 and a counter clad end face 16 which is a second end face facing the waveguide end 15. The circuit consists of a groove 18 of a rectangular section deeper than the core 12, a reflection material supporting layer 19 which is disposed at the counter clad end face 16 of the groove 18 facing the waveguide end 15 and has an angle of nearly 45 deg. to the optical axis direction at the height of the center of the core 12 and a reflection layer 20 which is disposed on the surface of the reflection material supporting layer 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信や光情報処
理の分野で用いられる光導波回路及び光導波回路の製造
方法に関し、特に面型ホトダイオードの光導波回路への
実装構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide circuit used in the fields of optical communication and optical information processing, and a method for manufacturing the optical waveguide circuit, and more particularly to a mounting structure of a planar photodiode on the optical waveguide circuit. .

【0002】[0002]

【従来の技術】従来の光導波回路への面型ホトダイオー
ドの実装構造の概略を図5に示す。同図に示すように、
基板1上に形成されたコア2とクラッド3とから成る光
導波回路の所望の部位には、光反射用の45度に傾斜し
た斜め溝4が設けられている。そして、導波光は上記斜
め溝4で全反射して導波回路面に直交するよう上方に出
射し、この部位に面型ホトダイオード(以下「PD」と
いう。)5を受光面を下に向けて設置して受光してい
る。
2. Description of the Related Art FIG. 5 schematically shows a conventional mounting structure of a surface photodiode in an optical waveguide circuit. As shown in the figure,
An oblique groove 4 inclined at 45 degrees for reflecting light is provided at a desired portion of an optical waveguide circuit including a core 2 and a clad 3 formed on a substrate 1. Then, the guided light is totally reflected by the oblique groove 4 and emitted upward so as to be orthogonal to the waveguide circuit surface, and a surface photodiode (hereinafter referred to as "PD") 5 is directed to this portion with the light receiving surface facing downward. It is installed and receiving light.

【0003】[0003]

【発明が解決しようとする課題】ところで、図5に示す
ような構造においては、上記斜め溝4の形成法が問題と
なっている。すなわち、上記斜め溝4は、現状では機械
加工による方法が最も精度よく形成できるものとされお
り、例えば回転丸刃を45度に傾けて試料をスライドさ
せて切るようにしているわけであるが、その際、導波回
路面全面に亙って溝4が形成されることになる。
By the way, in the structure shown in FIG. 5, the method of forming the oblique groove 4 is a problem. That is, at present, the oblique groove 4 can be formed most accurately by a machining method. For example, the rotary round blade is inclined at 45 degrees to slide and cut the sample. At that time, the groove 4 is formed over the entire surface of the waveguide circuit.

【0004】従って、上記PD5を設置しようとする部
位の近傍に、例えば他の導波路があるような場合には、
この導波路をも切ってしまうことになり、PD5の設置
部位はおのずから限られてしまうことになる。
Therefore, for example, when there is another waveguide near the portion where the PD 5 is to be installed,
Since this waveguide is also cut, the installation site of the PD 5 is naturally limited.

【0005】以上述べたように、従来の光導波回路で
は、反射用の斜め溝が他の導波回路を横切らない部位、
すなわち回路の端にしか面型PDを実装できないという
問題点があった。
As described above, in the conventional optical waveguide circuit, the portion where the oblique groove for reflection does not cross other waveguide circuits,
That is, there is a problem that the surface-type PD can be mounted only at the end of the circuit.

【0006】本発明は、上記問題点に鑑みて、光回路中
の任意の位置に他の回路に影響を及ぼすことなく面型P
Dを実装できる構造を提供し、より多機能な光導波回路
及びその製造方法を実現することを目的とする。
In view of the above-mentioned problems, the present invention provides a surface type P without affecting other circuits at an arbitrary position in an optical circuit.
It is an object of the present invention to provide a structure in which D can be mounted, and to realize a more multifunctional optical waveguide circuit and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明に係る光導波回路の構成は、基板上に形成されたコア
及びクラッドとから成る光導波回路であって、上記コア
を囲み該コアより屈折率の低いクラッドよりなる光導波
路と、該光導波路のコアの光軸方向にほぼ直交する垂直
な第1の端面と該第1の端面と対向する第2の端面とを
有すると共に、上記コアよりも深い矩形断面の溝と、該
溝の上記第1の端面に対向する第2の端面に設けられ、
上記コアの中心の高さで光軸方向に対してほぼ45°の
角度をなす反射材支持層と、該反射材支持層の表面に設
けられた反射材とからなることを特徴とする。
The structure of an optical waveguide circuit according to the present invention for achieving the above object is an optical waveguide circuit comprising a core and a clad formed on a substrate, and the core is surrounded by the core. The optical waveguide includes a clad having a lower refractive index, a vertical first end surface substantially orthogonal to the optical axis direction of the core of the optical waveguide, and a second end surface facing the first end surface. A groove having a rectangular cross section deeper than the core, and a second end surface of the groove facing the first end surface,
It is characterized in that it comprises a reflecting material support layer forming an angle of about 45 ° with respect to the optical axis direction at the height of the center of the core, and a reflecting material provided on the surface of the reflecting material support layer.

【0008】上記光導波回路において、上記第1の端面
と対向する第2の端面を有する導波路が、該コアよりも
深い溝により囲まれて独立した島状クラッドよりなると
共に、該島状クラッドの上面に液だめを形成してなり、
該液だめと上記溝とを連通する開口部が上記第1の端面
と対向しない箇所に設けられてなることを特徴とする。
In the above-mentioned optical waveguide circuit, the waveguide having the second end face opposed to the first end face is composed of an independent island clad surrounded by a groove deeper than the core, and the island clad. Form a liquid reservoir on the upper surface of
It is characterized in that an opening communicating with the liquid reservoir and the groove is provided at a position not facing the first end face.

【0009】上記光導波回路において、上記光導波路の
コアを囲んだクラッドに設けられた溝部の光軸方向のク
ラッドの長さ、光軸方向と直交する方向のクラッドの深
さ、コアの厚み及び開口数の関係が下記(1),(2)
式の関係を充足することを特徴とする。
In the above optical waveguide circuit, the length of the clad in the optical axis direction of the groove provided in the clad surrounding the core of the optical waveguide, the depth of the clad in the direction orthogonal to the optical axis direction, the thickness of the core, and The relationship of numerical aperture is as follows (1), (2)
It is characterized by satisfying the relation of expressions.

【0010】[0010]

【数2】 L<(A/θm) (1) D>2Lθm+B (2) ここで、上記式において、Lは溝部の光軸方向の長さ、
Aは導波路の上部クラッドの厚み、θmは光導波路の開
口数、Dは凹部のクラッド表面からの深さ、Bはコアの
厚みとする。
L <(A / θm) (1) D> 2Lθm + B (2) where L is the length of the groove in the optical axis direction,
A is the thickness of the upper cladding of the waveguide, θm is the numerical aperture of the optical waveguide, D is the depth of the recess from the cladding surface, and B is the thickness of the core.

【0011】上記光導波回路において、溝の底面が基板
まで達するものであることを特徴とする。
In the above optical waveguide circuit, the bottom surface of the groove reaches the substrate.

【0012】また、本発明の光導波回路の製造方法は、
平坦な基板上に形成されたクラッドとコアとから成る光
導波回路の製造方法において、該回路面内の所望の部位
に、該光導波路のコアの光軸方向にほぼ直交する垂直な
第1の端面と該第1の端面と対向する第2の端面とを有
すると共に、上記クラッド表面からコアまでより深い深
い矩形断面の溝を形成する工程と、次いで、上記第2の
端面のコーナー部に液状硬化物質を充填し、しかる後に
該液状硬化物質を硬化させて斜面を形成する工程と、そ
の後、該斜面上に反射増加膜を付着して光導波路を形成
する工程とからなることを特徴とする。
The method of manufacturing an optical waveguide circuit according to the present invention is
In a method of manufacturing an optical waveguide circuit composed of a clad and a core formed on a flat substrate, a vertical first first portion substantially orthogonal to the optical axis direction of the core of the optical waveguide is provided at a desired portion in the circuit surface. A step of forming a groove having a deep rectangular cross section, which has an end face and a second end face facing the first end face, and which is deeper from the clad surface to the core; and then, a liquid at a corner portion of the second end face. The method is characterized by comprising a step of filling a curable substance and then curing the liquid curable substance to form a slope, and thereafter, forming an optical waveguide by attaching a reflection increasing film on the slope. .

【0013】[0013]

【発明の実施の形態】以下、本発明を実施する実施の形
態の内容について図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The contents of the embodiments for carrying out the present invention will be described below with reference to the drawings.

【0014】(第1の実施の形態)先ず、本発明の第1
の実施の形態について述べる。図1は本発明の第1の構
成に係る断面概略図である。図1に示すように、本発明
の導波回路10の構成は、基板11上に形成されたコア
12及びクラッド13とから成る光導波回路であって、
上記コア12を囲み該コア12より屈折率の低いクラッ
ド12よりなる光導波路14と、該光導波路14のコア
12の光軸方向にほぼ直交する垂直な第1の端面である
導波路端15と、該導波路端15と対向する第2の端面
である対向クラッド端面16とを有すると共に、上記コ
ア12よりも深い矩形断面の溝18と、該溝の上記導波
路端15に対向する対向クラッド端面16に設けられ、
上記コア12の中心の高さで光軸方向に対してほぼ45
℃の角度をなす反射材支持層19と、該反射材支持層の
表面に設けられた反射層20とからなることを特徴とす
る。
(First Embodiment) First, the first embodiment of the present invention
An embodiment will be described. FIG. 1 is a schematic sectional view according to the first configuration of the present invention. As shown in FIG. 1, the structure of the waveguide circuit 10 of the present invention is an optical waveguide circuit including a core 12 and a clad 13 formed on a substrate 11.
An optical waveguide 14 that surrounds the core 12 and includes a clad 12 having a lower refractive index than the core 12, and a waveguide end 15 that is a vertical first end face that is substantially orthogonal to the optical axis direction of the core 12 of the optical waveguide 14. A groove 18 having a rectangular cross section deeper than the core 12 and having an opposed cladding end surface 16 which is a second end surface opposed to the waveguide end 15 and an opposed cladding opposed to the waveguide end 15 of the groove. Provided on the end face 16,
The height of the center of the core 12 is about 45 with respect to the optical axis direction.
It is characterized by comprising a reflective material support layer 19 forming an angle of ° C and a reflective layer 20 provided on the surface of the reflective material support layer.

【0015】すなわち、図1に示すように、本発明にお
いては、面型PD21を装着しようとする所定の部位の
導波回路構成物をエッチング法で除去して光軸方向にほ
ぼ直交する垂直な第1の端面である導波路端15と、該
導波路端15と対向する第2の端面である対向クラッド
端面16とを有する矩形断面の溝18を形成する。次い
で、該溝18の導波路端15に対向するクラッド壁面1
6において、溝18の底面と対向クラッド端面16とで
形成されたコーナー部に液状物質を充填し次いで硬化さ
せることにより、上記液状物質の表面張力によって上記
コア12の中心の高さで光軸方向に対してほぼ45℃の
角度をなす反射材支持層19を形成し、その後、上記反
射材支持層19の硬化斜面上に高反射物質を付着せしめ
て反射層20を付着し、光導波回路を構成してなるもの
である。これによって導波路端15から出射した導波光
を上記反射層20を介して導波回路面に直交する垂直方
向に取り出すようにして、面型PD21に導波光を導く
ようにしている。
That is, as shown in FIG. 1, in the present invention, the waveguide circuit component at a predetermined portion to which the planar PD 21 is to be mounted is removed by an etching method so as to be perpendicular to the optical axis direction. A groove 18 having a rectangular cross section having a waveguide end 15 that is a first end face and an opposing cladding end face 16 that is a second end face that opposes the waveguide end 15 is formed. Next, the cladding wall surface 1 facing the waveguide end 15 of the groove 18
6, the corner portion formed by the bottom surface of the groove 18 and the end surface 16 of the opposite cladding is filled with a liquid substance and then cured, so that the surface tension of the liquid substance causes the surface height of the core 12 at the height of the center of the core 12 in the optical axis direction. A reflective material support layer 19 having an angle of about 45 ° with respect to the reflective material support layer 19 is formed, and then a highly reflective substance is adhered onto the cured slope of the reflective material support layer 19 to adhere the reflective layer 20 to form an optical waveguide circuit. It is composed. As a result, the guided light emitted from the waveguide end 15 is extracted through the reflection layer 20 in the vertical direction orthogonal to the waveguide circuit surface, and the guided light is guided to the planar PD 21.

【0016】ここで、本実施の形態を更に詳述すると、
図1に示すように、基板11上には上部クラッド13a
及び下部クラッド13bとからなるクラッド13と、こ
のクラッド13に取り囲まれたコア12とから光導波回
路が形成されており、その途中の所望の部位だけ導波路
材がエッチングによって取り去られ、矩形断面の溝18
を形成している。この溝18の一方の壁面は導波路14
の導波路端15となっており、それに対向するクラッド
端面16のコーナ部には、該コーナ部に沿って充填材が
付着せしめられている。上記充填材は、液体状態で付着
せしめ、しかる後に硬化するものである。この結果、充
填材はクラッド端面16と溝18底面とで成るコーナー
部に沿うようにして埋め、その表面形状は表面張力によ
って上記コア12の中心の高さで光軸方向に対してほぼ
45℃の角度をなす反射材支持層19を形成した平滑な
斜面となる。この斜面上に、例えば金等は蒸着法等によ
って高反射物質を付着して反射材20を形成するように
している。このような斜面に入射した出射導波光は、斜
面で反射して導波回路に垂直に出射する。
Now, the present embodiment will be described in more detail.
As shown in FIG. 1, the upper clad 13a is formed on the substrate 11.
An optical waveguide circuit is formed from a clad 13 composed of a lower clad 13b and a lower clad 13b, and a core 12 surrounded by the clad 13. The waveguide material is removed by etching at a desired portion in the middle of the optical waveguide circuit. Groove 18
Is formed. One wall surface of the groove 18 is formed on the waveguide 14
Of the waveguide end 15, and a filling material is adhered to the corner portion of the cladding end surface 16 facing the waveguide end 15 along the corner portion. The filler is applied in a liquid state and then cured. As a result, the filling material is filled along the corner portion formed by the clad end surface 16 and the bottom surface of the groove 18, and the surface shape is about 45 ° C. in the optical axis direction at the center height of the core 12 due to the surface tension. The surface is a smooth slope on which the reflecting material support layer 19 having an angle of is formed. On this slope, a highly reflective substance such as gold is attached by a vapor deposition method or the like to form the reflective material 20. The outgoing guided light that has entered such a slope is reflected by the slope and is emitted perpendicularly to the waveguide circuit.

【0017】なお、斜面形状は凹状であるため、従来例
に比較すると出射光の広がりは大きいが、上記光導波回
路の上面に配設されるPD21の受光面を導波路表面直
近まで近づければ、出射導波光は全て受光面内に入射す
ることとなる。また、斜面の凹状の程度も、後の実施例
に示すように、充填材24のヌレ性を、溝18の底面に
対してよりもクラッド端面16に対してよいように選択
すれば、直線状に限りなく近づけることが可能である。
Since the slope shape is concave, the spread of the emitted light is larger than that of the conventional example. However, if the light receiving surface of the PD 21 provided on the upper surface of the optical waveguide circuit is brought close to the surface of the waveguide. The emitted guided light is all incident on the light receiving surface. Further, the degree of depression of the slope is also linear if the wetting property of the filling material 24 is selected so as to be better for the cladding end face 16 than for the bottom face of the groove 18, as shown in a later example. It is possible to get as close as possible to.

【0018】ここで、本発明で上記反射材支持層19を
形成する充填材としては、例えばエポキシ、ポリイミド
等の樹脂や、より高温に耐える材料として低融点封着用
ガラス(融点400〜500℃)を挙げることができる
が、同様な作用を呈するものであれば本発明はこれに限
定されるものではない。
Here, in the present invention, as a filler for forming the above-mentioned reflecting material support layer 19, for example, a resin such as epoxy or polyimide, or a low melting point sealing glass (melting point 400 to 500 ° C.) as a material which can withstand higher temperatures. However, the present invention is not limited to this as long as the same action is exhibited.

【0019】次に導波路パラメータと矩形状の溝部のサ
イズとの関係について図2を参照して説明する。図2に
示すように、上記導波路端15からの出射光が全て上部
に反射されるためには、以下の二つの条件が満たされれ
ばよい。
Next, the relationship between the waveguide parameter and the size of the rectangular groove will be described with reference to FIG. As shown in FIG. 2, in order for all the light emitted from the waveguide end 15 to be reflected upward, the following two conditions may be satisfied.

【0020】光導波路14の開口数をθm,溝18の光
軸方向の長さをL、導波路14の上部クラッド13aの
厚みをAとすると、対向クラッド壁面16での出射導波
光の上方への広がりはLθmである。また、上方広がり
分を全て反射するためには、上部クラッド13aの厚み
はこれよりも大きくなければならないことから、溝の光
軸方向の長さLに対して、
Assuming that the numerical aperture of the optical waveguide 14 is θm, the length of the groove 18 in the optical axis direction is L, and the thickness of the upper cladding 13a of the waveguide 14 is A, the outgoing guided light on the opposing cladding wall surface 16 is directed upward. Is Lθm. Further, since the thickness of the upper clad 13a must be larger than this in order to reflect all the upward spread, the length L of the groove in the optical axis direction is

【0021】[0021]

【数3】 L<(A/θm) (1) という条件が定められる。また、出射導波光の下方への
広がりを考慮すると、溝18の上部クラッド13a表面
から下部クラッド13bまでの深さDは、コア12の厚
みをBとして
## EQU00003 ## The condition L <(A / .theta.m) (1) is defined. Further, considering the downward spread of the emitted guided light, the depth D from the surface of the upper clad 13a to the lower clad 13b of the groove 18 is set such that the thickness of the core 12 is B.

【0022】[0022]

【数4】 D>2Lθm+B (2) とする必要がある。## EQU00004 ## It is necessary to set D> 2L.theta.m + B (2).

【0023】(第2の実施の形態)次に第2の発明の実
施の形態について述べる。図3及び第4は本発明の第2
の構成に係る断面概略図である。同図中、符号12はコ
ア、21は面型PD、15は導波路端、16は対向クラ
ッド壁面、19は反射材支持層、20は反射層、21は
面型PD、22は島状クラッド、23は液だめ、24は
充填剤、25は接着剤ディスペンサー、26はPD用電
極及び27はPD固定用パッドを各々図示する。
(Second Embodiment) Next, an embodiment of the second invention will be described. 3 and 4 are the second of the present invention.
3 is a schematic cross-sectional view related to the configuration of FIG. In the figure, reference numeral 12 is a core, 21 is a planar PD, 15 is a waveguide end, 16 is a wall surface of an opposing cladding, 19 is a reflecting material support layer, 20 is a reflective layer, 21 is a planar PD, and 22 is an island cladding. , 23 is a reservoir, 24 is a filler, 25 is an adhesive dispenser, 26 is a PD electrode, and 27 is a PD fixing pad.

【0024】前述した実施の形態では、図1に示すよう
に、コア12及びクラッド13からなる導波路層14の
導波路端15を含む壁面と斜め反射部を形成しようとす
る対向クラッド壁面16とがトポロジー的に同一面に含
まれる場合、充填材を対向クラッド壁面16の近傍のコ
ーナ部に滴下した場合に対向する導波路端面15側にも
回り込んで導波路端15にまで及んでしまうことが危惧
される。
In the above-described embodiment, as shown in FIG. 1, the wall surface including the waveguide end 15 of the waveguide layer 14 including the core 12 and the clad 13 and the opposite clad wall surface 16 for forming the oblique reflection portion. Are included in the same plane topologically, when the filler is dropped on the corner portion near the facing clad wall surface 16, the filler also wraps around to the facing waveguide end face 15 side and reaches the waveguide end 15. Is afraid.

【0025】これを防止するための構成を図3及び図4
に示す。すなわち、これらの図面に示す構成では、液状
物質である充填剤24の充填を容易にするために、対向
クラッド壁面16を含む壁面はトポロジー的に導波路端
15を含む壁面と一致しないように、対向クラッド壁面
16を含む壁面は島状クラッド22を構成し、且つその
島状クラッド22には、液状物質充填用の液だめ23を
備えてなるものである。この島状クラッド23に設けら
れた液だめ11には、充填材24が液だめ23の体積分
を滴下するようにしておけばよい。このようにすれば、
充填材24が導波路端15に回り込むことがなくなり、
導波路端15にまで及んでしまうことが防止される。
A structure for preventing this is shown in FIG. 3 and FIG.
Shown in That is, in the configurations shown in these drawings, in order to facilitate the filling of the filler 24 which is a liquid substance, the wall surface including the facing cladding wall surface 16 is topologically not coincident with the wall surface including the waveguide end 15, The wall surface including the opposed clad wall surface 16 constitutes an island clad 22, and the island clad 22 is provided with a liquid reservoir 23 for filling a liquid substance. The filling material 24 may be added to the liquid reservoir 11 provided in the island-shaped clad 23 so that the volume of the liquid reservoir 23 is dropped. If you do this,
The filling material 24 does not wrap around the waveguide end 15,
It is prevented that the waveguide end 15 is reached.

【0026】ここで、上記実施の形態においては、溝の
形状等は上述したように、「数3」及び「数4」に示す
ような条件とすればよい。
Here, in the above embodiment, the shape of the groove and the like may be set to the conditions shown in "Equation 3" and "Equation 4" as described above.

【0027】さらに、図1及び図3,4に示すもので
は、充填剤の液だれ等を防止するには、溝を形成する際
に下部クラッド層13bの下面の基板11まで達するよ
うにエッチングするようにすればよい。これは、充填材
に対するクラッドと基板とのヌレ性の差により、上記基
板(シリコン基板)においてはコーナ部のみに留まり、
対向クラッド壁面16のコーナ部にのみ上記充填材が充
填され、その後硬化することで反射材支持層19を形成
することとなる。
Further, in the structure shown in FIGS. 1 and 3 and 4, in order to prevent the dripping of the filler, etching is performed so as to reach the substrate 11 on the lower surface of the lower cladding layer 13b when forming the groove. You can do it like this. This is due to the difference in wetting property between the clad and the substrate with respect to the filler, so that the substrate (silicon substrate) remains only at the corners.
The filling material is filled only in the corner portion of the facing clad wall surface 16 and then cured to form the reflecting material support layer 19.

【0028】[0028]

【実施例】次に、本発明の好適な一実施例として以下の
光導波回路に適用した例について説明するが、本発明は
これに限定されるものではない。
Next, an example of application to the following optical waveguide circuit will be described as a preferred embodiment of the present invention, but the present invention is not limited to this.

【0029】(1) 先ず、図1に示すものと同様に、
基板11としてSi基板を用い、これにSiO2 を主成
分とするガラスから成る石英系光導波回路を火炎直接堆
積法、及びドライエッチング法にてコア12を取り囲ん
だクラッド13層からなる導波路14を作製した。ここ
で、コア12及びクラッド13間の比屈折率差は、0.
75%、下部クラッド13bの厚みは15μm、コア1
2は6μm角、上部クラッド13aの厚みは15μmで
ある。 (2) この導波回路の面内の所定の箇所をドライエッ
チングによってSi基板に達するまで堀り込み、図3
(a)に示すような、断面形状が凹状の溝を形成した。
上記導波路14の導波路端15と対向クラッド壁面16
間に、距離Lおよびエッチング深さDは、前記「数3」
及び「数4」に記載した不等式(1)及び不等式(2)
を満たすようにそれぞれL=80μm、D=36.5μ
mとした。対向クラッド壁面7は前記したように、島状
クラッド22の一壁面をなすようにし、面積1平方mm
の液だめ23を設けた。 (3) 次に、充填材24としてここではエポテック3
53ND(商品名:理経社製)を選択し、これを十分脱
泡した後、図3(b)に示すように液だめ23に接着剤
をディスペンサー25を用いて30μcc滴下した。し
かる後に、上記充填材24を100℃にて硬化させた。
さて、ここで本実施例の場合、形成した溝の底面はS
i、壁面は酸化物ガラスとなっている。上記用いた充填
材(エポテック353ND:商品名)24は、Siに対
してはヌレ性が悪く、液状の充填材24の接触角は30
度と大きい。一方、酸化物ガラスに対してはヌレ性がよ
く、接触角は5度程度と小さい。従って、上記充填材2
4は容易に対向クラッド壁面16を濡らすが、溝底面へ
は広がりにくく、再現性よく40〜50度の傾斜角の斜
面を得ることができた。なお、上記充填材24の硬化
は、Siの酸化を防止するため、窒素雰囲気中でおこな
った。これは、該充填材24の硬化工程中において、S
iが酸化されると該充填材24は溝底面に広がってしま
うからである。 (4) さらに、後のPD装着工程での加熱に備えるた
め、300度に加熱して充填材24のガス出しを行っ
た。 (5) 次に、この上部に図4(a)に示すように、T
i1000オングストロームの厚み、金を2000オン
グストロームの厚みに蒸着し、高反射物質20、PD用
電極26およびPD固定用パッド27を形成した。パタ
ーン化はリフトオフ法を用いた。 (6) 最後に、図4(d)に示すように、錫鉛半田バ
ンプを備えた受光系80μmのInGaAsPD(0.
3mm角)22を、200度で加熱冷却して固定した。
(1) First, similar to the one shown in FIG.
A Si substrate is used as the substrate 11, and a silica-based optical waveguide circuit made of glass containing SiO 2 as a main component is applied to the waveguide by a flame direct deposition method and a dry etching method. Was produced. Here, the relative refractive index difference between the core 12 and the clad 13 is 0.
75%, thickness of lower clad 13b is 15 μm, core 1
2 is a 6 μm square, and the thickness of the upper clad 13a is 15 μm. (2) A predetermined portion on the surface of this waveguide circuit is dug by dry etching until it reaches the Si substrate.
A groove having a concave sectional shape as shown in (a) was formed.
The waveguide end 15 of the waveguide 14 and the facing cladding wall surface 16
In the meantime, the distance L and the etching depth D are the same as those in the above-mentioned
And inequality (1) and inequality (2) described in "Equation 4"
So that L = 80 μm and D = 36.5 μ
m. As described above, the facing clad wall surface 7 forms one wall surface of the island-shaped clad 22, and has an area of 1 square mm.
A liquid sump 23 was provided. (3) Next, as the filler 24, here, Epotek 3
After selecting 53ND (trade name: manufactured by Rikei Co., Ltd.) and thoroughly defoaming it, 30 μcc of the adhesive was dropped on the liquid reservoir 23 using the dispenser 25 as shown in FIG. 3B. Then, the filler 24 was cured at 100 ° C.
Now, in the case of the present embodiment, the bottom surface of the formed groove is S
i, the wall surface is made of oxide glass. The filler (Epotek 353ND: trade name) 24 used above has poor wettability with respect to Si, and the contact angle of the liquid filler 24 is 30.
It ’s big. On the other hand, the oxide glass has good wettability and the contact angle is as small as about 5 degrees. Therefore, the filler 2
Although No. 4 easily wets the wall surface 16 of the opposite cladding, it was difficult to spread to the bottom surface of the groove, and a slope having an inclination angle of 40 to 50 degrees could be obtained with good reproducibility. The filling material 24 was hardened in a nitrogen atmosphere in order to prevent the oxidation of Si. This is due to the fact that S
This is because when i is oxidized, the filling material 24 spreads to the bottom surface of the groove. (4) Further, in order to prepare for heating in the PD mounting step to be performed later, the filler 24 was degassed by heating at 300 degrees. (5) Next, as shown in FIG.
Gold was evaporated to a thickness of i 1000 angstroms and gold to a thickness of 2000 angstroms to form the highly reflective substance 20, the PD electrode 26 and the PD fixing pad 27. The lift-off method was used for patterning. (6) Finally, as shown in FIG. 4D, a 80 μm light-receiving InGaAsPD (0.
3 mm square) 22 was heated and cooled at 200 degrees and fixed.

【0030】このようにして装着したPD22の光導波
路との結合効率を波長1.3μmにて評価した。その結
果、結合効率は、導波路端に直接受光面を平行にして装
着した場合の95%と高い値が得られた。
The coupling efficiency of the PD 22 thus mounted with the optical waveguide was evaluated at a wavelength of 1.3 μm. As a result, the coupling efficiency was as high as 95% of that when the light receiving surface was directly parallel to the end of the waveguide.

【0031】[0031]

【発明の効果】以上のべたように、本発明によれば、他
の導波路に影響を与えず、光導波回路の任意の位置にP
Dを実装することが可能となる。例えば光周回回路や光
反射回路の内側にPDを設置できるため、光回路内のデ
ッドスペースを少なくできるとともに光導波回路自体の
機能も増える。
As described above, according to the present invention, P is placed at an arbitrary position in the optical waveguide circuit without affecting other waveguides.
It becomes possible to implement D. For example, since the PD can be installed inside the optical circulation circuit or the light reflection circuit, the dead space in the optical circuit can be reduced and the function of the optical waveguide circuit itself can be increased.

【0032】さらに、PD装着部の周囲は、段差の無い
平坦な上部クラッドで囲まれるため、キャッピング封止
も可能となるなど、本発明は、光デバイスの多機能化、
低価格化に資するところ大である。
Further, since the periphery of the PD mounting portion is surrounded by a flat upper clad having no step, capping sealing is also possible. The present invention provides a multifunctional optical device,
It is a great contribution to lower prices.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の構成の断面図である。FIG. 1 is a cross-sectional view of the first configuration of the present invention.

【図2】凹部サイズの条件の説明図である。FIG. 2 is an explanatory diagram of a condition of a recess size.

【図3】本発明の第二の構成の斜視図である。FIG. 3 is a perspective view of the second configuration of the present invention.

【図4】本発明の第二の構成の斜視図である。FIG. 4 is a perspective view of the second configuration of the present invention.

【図5】従来の光導波回路への面型ホトダイオードの実
装構造の概略図である。
FIG. 5 is a schematic view of a conventional mounting structure of a planar photodiode on an optical waveguide circuit.

【符号の説明】[Explanation of symbols]

11 基板 12 コア 13 クラッド 14 斜め溝 15 面型PD 16 導波路端 17 対向クラッド壁面 18 充填材 19 高反射物 22 島状クラッド 23 液だめ 24 充填材 25 接着剤ディスペンサー 26 PD用電極 27 PD固定用パッド 11 Substrate 12 Core 13 Cladding 14 Oblique Groove 15 Planar PD 16 Waveguide Edge 17 Opposing Cladding Wall Surface 18 Filling Material 19 High Reflective Material 22 Island Cladding 23 Liquid Reservoir 24 Filling Material 25 Adhesive Dispenser 26 PD Electrode 27 for PD Fixing pad

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中須賀 好典 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 (72)発明者 橋本 俊和 東京都千代田区内幸町一丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshinori Nakasuka 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation (72) Toshikazu Hashimoto 1-6, Uchisaiwaicho, Chiyoda-ku, Tokyo No. Japan Telegraph and Telephone Corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されたコア及びクラッドと
から成る光導波回路であって、 上記コアを囲み該コアより屈折率の低いクラッドよりな
る光導波路と、 該光導波路のコアの光軸方向にほぼ直交する垂直な第1
の端面と該第1の端面と対向する第2の端面とを有する
と共に、上記コアよりも深い矩形断面の溝と、 該溝の上記第1の端面に対向する第2の端面に設けら
れ、上記コアの中心の高さで光軸方向に対してほぼ45
°の角度をなす反射材支持層と、 該反射材支持層の表面に設けられた反射材とからなるこ
とを特徴とする光導波回路。
1. An optical waveguide circuit comprising a core and a clad formed on a substrate, the optical waveguide comprising a clad surrounding the core and having a refractive index lower than that of the core, and an optical axis of the core of the optical waveguide. Vertical first, almost orthogonal to the direction
A groove having a rectangular cross section deeper than the core and having a second end surface opposed to the first end surface, and a second end surface facing the first end surface, and a second end surface facing the first end surface of the groove, The height of the center of the core is about 45 with respect to the optical axis direction.
An optical waveguide circuit comprising a reflecting material support layer forming an angle of ° and a reflecting material provided on the surface of the reflecting material support layer.
【請求項2】 請求項1記載の光導波回路において、 上記第1の端面と対向する第2の端面を有する導波路
が、該コアよりも深い溝により囲まれて独立した島状ク
ラッドよりなると共に、該島状クラッドの上面に液だめ
を形成してなり、該液だめと上記溝とを連通する開口部
が上記第1の端面と対向しない箇所に設けられてなるこ
とを特徴とする光導波回路。
2. The optical waveguide circuit according to claim 1, wherein the waveguide having a second end face opposite to the first end face is an island-shaped clad surrounded by a groove deeper than the core. At the same time, a liquid reservoir is formed on the upper surface of the island-shaped clad, and an opening communicating the liquid reservoir with the groove is provided at a position not facing the first end face. Wave circuit.
【請求項3】 請求項1又は2記載の光導波回路におい
て、 上記光導波路のコアを囲んだクラッドに設けられた溝部
の光軸方向のクラッドの長さ、光軸方向と直交する方向
のクラッドの深さ、コアの厚み及び開口数の関係が下記
(1),(2)式の関係を充足することを特徴とする光
導波回路。 【数1】 L<(A/θm) (1) D>2Lθm+B (2) ここで、上記式において、Lは溝部の光軸方向の長さ、
Aは導波路の上部クラッドの厚み、θmは光導波路の開
口数、Dは凹部のクラッド表面からの深さ、Bはコアの
厚みとする。
3. The optical waveguide circuit according to claim 1 or 2, wherein the length of the clad in the optical axis direction of the groove provided in the clad surrounding the core of the optical waveguide, and the clad in the direction orthogonal to the optical axis direction. The optical waveguide circuit characterized in that the relationship among the depth, the core thickness, and the numerical aperture satisfies the following expressions (1) and (2). ## EQU1 ## L <(A / θm) (1) D> 2Lθm + B (2) where L is the length of the groove in the optical axis direction,
A is the thickness of the upper cladding of the waveguide, θm is the numerical aperture of the optical waveguide, D is the depth of the recess from the cladding surface, and B is the thickness of the core.
【請求項4】 請求項1乃至3記載の光導波回路におい
て、溝の底面が基板まで達するものであることを特徴と
する光導波回路。
4. The optical waveguide circuit according to claim 1, wherein the bottom surface of the groove reaches the substrate.
【請求項5】 平坦な基板上に形成されたクラッドとコ
アとから成る光導波回路の製造方法において、 該回路面内の所望の部位に、該光導波路のコアの光軸方
向にほぼ直交する垂直な第1の端面と該第1の端面と対
向する第2の端面とを有すると共に、上記クラッド表面
からコアまでより深い深い矩形断面の溝を形成する工程
と、 次いで、上記第2の端面のコーナー部に液状硬化物質を
充填し、しかる後に該液状硬化物質を硬化させて斜面を
形成する工程と、 その後、該斜面上に反射増加膜を付着して光導波路を形
成する工程とからなることを特徴とする光導波回路の製
造方法。
5. A method of manufacturing an optical waveguide circuit comprising a clad and a core formed on a flat substrate, wherein a desired portion in the circuit plane is substantially orthogonal to the optical axis direction of the core of the optical waveguide. Forming a groove having a deeper rectangular cross section from the cladding surface to the core, the groove having a vertical first end face and a second end face facing the first end face, and then the second end face A step of filling a liquid curable substance into the corners of the substrate and then curing the liquid curable substance to form an inclined surface, and thereafter forming an optical waveguide by attaching a reflection increasing film on the inclined surface. A method for manufacturing an optical waveguide circuit, comprising:
JP17571395A 1995-07-12 1995-07-12 Optical waveguide circuit and manufacturing method thereof Expired - Lifetime JP3147327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17571395A JP3147327B2 (en) 1995-07-12 1995-07-12 Optical waveguide circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17571395A JP3147327B2 (en) 1995-07-12 1995-07-12 Optical waveguide circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0926515A true JPH0926515A (en) 1997-01-28
JP3147327B2 JP3147327B2 (en) 2001-03-19

Family

ID=16000944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17571395A Expired - Lifetime JP3147327B2 (en) 1995-07-12 1995-07-12 Optical waveguide circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3147327B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085913A (en) * 2002-08-27 2004-03-18 Nippon Sheet Glass Co Ltd Optical connector
JP2007240781A (en) * 2006-03-07 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> Planar optical waveguide circuit and manufacturing method thereof
JP2008026484A (en) * 2006-07-19 2008-02-07 Nippon Telegr & Teleph Corp <Ntt> Mirror structure, planar optical waveguide circuit, and its manufacturing method
JP2009103757A (en) * 2007-10-19 2009-05-14 Nippon Telegr & Teleph Corp <Ntt> Optical-path conversion mirror and manufacturing method therefor
JP2009265275A (en) * 2008-04-23 2009-11-12 Nippon Telegr & Teleph Corp <Ntt> Optical path transformation mirror, and manufacturing method therefor
JP2010204209A (en) * 2009-02-27 2010-09-16 Omron Corp Optical transmission module, electronic device, and manufacturing method of the optical transmission module
JP5857960B2 (en) * 2010-07-26 2016-02-10 コニカミノルタ株式会社 Optical element manufacturing method
TWI723697B (en) * 2019-03-15 2021-04-01 日商京瓷股份有限公司 Optical circuit substrate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085913A (en) * 2002-08-27 2004-03-18 Nippon Sheet Glass Co Ltd Optical connector
JP2007240781A (en) * 2006-03-07 2007-09-20 Nippon Telegr & Teleph Corp <Ntt> Planar optical waveguide circuit and manufacturing method thereof
JP4574572B2 (en) * 2006-03-07 2010-11-04 日本電信電話株式会社 Fabrication method of planar optical waveguide circuit
JP2008026484A (en) * 2006-07-19 2008-02-07 Nippon Telegr & Teleph Corp <Ntt> Mirror structure, planar optical waveguide circuit, and its manufacturing method
JP4480699B2 (en) * 2006-07-19 2010-06-16 日本電信電話株式会社 Mirror structure, planar optical waveguide circuit and manufacturing method thereof
JP2009103757A (en) * 2007-10-19 2009-05-14 Nippon Telegr & Teleph Corp <Ntt> Optical-path conversion mirror and manufacturing method therefor
JP4542127B2 (en) * 2007-10-19 2010-09-08 日本電信電話株式会社 Optical path conversion mirror and manufacturing method thereof
JP2009265275A (en) * 2008-04-23 2009-11-12 Nippon Telegr & Teleph Corp <Ntt> Optical path transformation mirror, and manufacturing method therefor
JP2010204209A (en) * 2009-02-27 2010-09-16 Omron Corp Optical transmission module, electronic device, and manufacturing method of the optical transmission module
JP5857960B2 (en) * 2010-07-26 2016-02-10 コニカミノルタ株式会社 Optical element manufacturing method
TWI723697B (en) * 2019-03-15 2021-04-01 日商京瓷股份有限公司 Optical circuit substrate

Also Published As

Publication number Publication date
JP3147327B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
EP0171615B1 (en) Hybrid optical integrated circuit and fabrication method thereof
JP3484543B2 (en) Method of manufacturing optical coupling member and optical device
CA2245974C (en) Metal coated optical fiber array module
US6112002A (en) Optical coupler optically coupling a light beam of a semiconductor laser source with a single mode optical waveguide or fiber
US5390271A (en) Optical interface for hybrid circuit
CN101846777B (en) Optical device
US6332719B1 (en) Optical transmitter/receiver apparatus, method for fabricating the same and optical semiconductor module
US5321786A (en) Process for the hybridization and positioning of an optoelectronic component relative to an integrated optical guide
JPH1082930A (en) Optical module and its production
JP2000089054A (en) Manufacture of substrate for hybrid optical integrated circuit utilizing soi optical waveguide
JP2002107561A (en) Optical wiring substrate and its manufacturing method
JP3731754B2 (en) Method and apparatus for coupling a waveguide to a component
US6862388B2 (en) High density fibre coupling
JPH0926515A (en) Optical waveguide circuit and its production
KR20120048258A (en) Optical waveguide structure equipped with angled mirror and lens
JPH07159658A (en) Structure for coupling optical waveguide with optical element and its production
JP2000009968A (en) Photodetecting module
JP2002202425A (en) Optical module and its manufacturing method
US20210026080A1 (en) Optical receptacle and optical transceiver
JP2930178B2 (en) Light receiving structure of waveguide type optical device
JP3405065B2 (en) Optical waveguide circuit and manufacturing method thereof
Terui et al. Novel micromirror for vertical optical path conversion formed in silica-based PLC using wettability control of resin
JP2007183467A (en) Optical waveguide with mirror and its manufacturing method
US6243524B1 (en) Optical waveguide, method for fabricating same, and coupling structure of optical waveguide to light-receiving device
CN112558333A (en) Electro-optical device and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130112

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term