JPH09263934A - Film formation method and device thereof - Google Patents

Film formation method and device thereof

Info

Publication number
JPH09263934A
JPH09263934A JP7564396A JP7564396A JPH09263934A JP H09263934 A JPH09263934 A JP H09263934A JP 7564396 A JP7564396 A JP 7564396A JP 7564396 A JP7564396 A JP 7564396A JP H09263934 A JPH09263934 A JP H09263934A
Authority
JP
Japan
Prior art keywords
film
base material
forming
film thickness
thickness measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7564396A
Other languages
Japanese (ja)
Inventor
Kazutoshi Kiyokawa
和利 清川
Haruo Uyama
晴夫 宇山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP7564396A priority Critical patent/JPH09263934A/en
Publication of JPH09263934A publication Critical patent/JPH09263934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide film formation method to be capable of measuring precise film thickness simultaneously with the film formation and a device thereof, relating to the film formation method forming the film on a base material by the physical vapor deposition method and the device thereof. SOLUTION: At the time of film formation on the film forming base material 14 by the physical vapor deposition, a film thickness measuring method comprises the step that continuous sending motion to the same direction is carried out, arranging a film thickness measuring, base material different from the film forming base material under the same atmosphere with the film formation on the film formation base material 14, and the step that the thickness measurement is carried out in the film formed on the thickness measuring base material by a film thickness measuring device A. The film thickness measuring device A consists of a film forming base material-feeding mechanism, guiding mechanism guiding to film formation region, film forming base material feeding/recovery means having a recovery mechanism recovering after film formation, the film formation device body B having a film material feed source D to feed feeding film material 13 onto the film formation base material led to a prescribed region to be capable of film formation and to form the film onto the film forming base material surface, and film thickness measuring means arranged within a moving region of film material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、基材に蒸着法、イ
オンプレーティング法、スパッタリング法、イオンビー
ム蒸着法等の物理的又は化学的蒸着法により膜形成する
膜形成方法及びその装置に関するものであり、膜形成と
同時に正確な膜厚測定を可能とする膜の形成方法及びそ
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film forming method for forming a film on a substrate by a physical or chemical vapor deposition method such as a vapor deposition method, an ion plating method, a sputtering method and an ion beam vapor deposition method, and an apparatus therefor. In addition, the present invention relates to a film forming method and a film forming apparatus that enable accurate film thickness measurement simultaneously with film formation.

【0002】[0002]

【従来の技術】膜形成基材に膜を形成する成膜工程にお
いて、成膜の状況は刻々と変化する。それ故、形成され
た膜の特性の情報を観測し、かつその観測したデータを
もとに成膜条件が最適になるよう制御(以下モニタリン
グという)しながら所望の膜を形成することが要求され
ている。
2. Description of the Related Art In a film forming process for forming a film on a film forming substrate, the state of film formation changes from moment to moment. Therefore, it is required to observe the information on the characteristics of the formed film and to form the desired film while controlling the film forming conditions to be optimal (hereinafter referred to as monitoring) based on the observed data. ing.

【0003】ところで、膜形成基材に形成された、或い
は形成されつつある膜の膜厚をモニタリングする様々な
方法が検討されている。特に、真空成膜の分野において
は、 膜を形成すべき基材の他に、成膜室にモニタリング用
の水晶振動子を設置し、表面に膜が付着したことによる
振動数変化から、目的の基材上に形成された膜の膜厚を
推定する方法、 部分的に成膜できる穴をあけた遮蔽板を設けたモニタ
ー板を膜を形成すべき基材とは別に設置する方法(特開
平7−63671号)、 連続的に基材を供給する巻取成膜方式などでは、高分
子フィルムなどを基材に用いた場合に、該基材の光学特
性の変化から、膜厚を特定する方法、 等が考えられている。
By the way, various methods for monitoring the film thickness of a film formed on a film-forming substrate or being formed are being studied. Especially in the field of vacuum film formation, in addition to the substrate on which the film is to be formed, a quartz crystal oscillator for monitoring is installed in the film formation chamber, and the frequency change due to the film being attached to the surface A method of estimating the film thickness of a film formed on a base material, and a method of installing a monitor plate provided with a shield plate with holes for partial film formation separately from the base material on which the film is to be formed (Patent Document 1) 7-63671), in a roll-up film forming method in which a base material is continuously supplied, when a polymer film or the like is used as the base material, the film thickness is specified from the change in the optical characteristics of the base material. Methods, etc. are considered.

【0004】しかし、前項の手段は、連続的に成膜を
していく場合には、水晶振動子に極めて厚い膜厚の膜が
形成されることになり、連続的な測定時間の限界が短か
過ぎるという重大な欠点がある。
However, in the means of the preceding paragraph, when films are continuously formed, a film having an extremely thick film thickness is formed on the crystal unit, and the limit of continuous measurement time is short. It has the serious drawback of being overkill.

【0005】前項記載の手段は、の手段と同様に、
連続的に成膜をしていく場合には、測定時間の限界が短
すぎるという重大な欠点がある。また、モニター板の面
積が大きいため、スペース的に大きな問題がある。
The means described in the preceding paragraph is similar to the means of
In the case of continuous film formation, there is a serious drawback that the measurement time limit is too short. Further, since the area of the monitor board is large, there is a big problem in terms of space.

【0006】前項の手段は、膜を形成すべき基材を直
接モニタリングするものである。光学特性によるモニタ
リングは、予め測定装置に形成された膜及び基材の屈折
率、それに基材の厚さをデータとして入力し、その後膜
に測定のための光りを入射させ、膜及び基材を透過或い
は反射した透過光或いは反射光を測定し、これと基材の
みに光りを入射させた場合の透過光或いは反射光との位
相差を求め、これにより膜厚を測定している。従って、
略近い膜厚の値の測定が可能となる。しかし、多層の膜
厚を測定しようとすると、異なる屈折率を有する層を複
雑に屈折、反射を繰替えしてきた光りの透過光又は反射
光を測定することになり、実際の膜厚と、予め測定装置
に層に対応する屈折率を入力して測定した膜厚の値とに
誤差が生じる。これを繰り返すうちに、すなわち層数を
多くする度に誤差が積み重なって増幅され、実際の膜厚
と測定値との差は大きいものとなり、測定値の信頼性は
低下する。
The means of the preceding paragraph is to directly monitor the substrate on which the film is to be formed. For monitoring by optical characteristics, the refractive index of the film and the base material formed in advance in the measuring device, and the thickness of the base material are input as data, and then light for measurement is incident on the film to measure the film and the base material. The transmitted or reflected light transmitted or reflected is measured, and the phase difference between this and the transmitted or reflected light when light is incident only on the substrate is obtained, and the film thickness is measured by this. Therefore,
It is possible to measure the film thickness values that are almost similar. However, when trying to measure the film thickness of multiple layers, layers having different refractive indices are complicatedly refracted, and transmitted light or reflected light of light that repeats reflection is measured, and the actual film thickness and the An error occurs in the value of the film thickness measured by inputting the refractive index corresponding to the layer into the measuring device. While repeating this, that is, each time the number of layers is increased, errors accumulate and are amplified, the difference between the actual film thickness and the measured value becomes large, and the reliability of the measured value decreases.

【0007】さらに、単層膜の場合でも、基材の厚さに
比べて非常に薄く、屈折率が基材と略同じ値の膜の時に
は、膜から基材へ進入する光りは略直進し、光りが膜か
ら基材へ進入する際の屈折による特性を測定することが
難しくなり、光学特性の測定によるモニタリングは極め
て困難である。導電性を有する基材上に導電性の膜を形
成し電気特性をモニタリングしたい場合も、モニタリン
グは非常に困難である。また、直接基材上の膜を測定す
るので、膜に影響を及ぼしてしまうことがあり得るとい
う問題点がある。
Further, even in the case of a single layer film, when the film is very thin as compared with the thickness of the substrate and has a refractive index substantially the same as that of the substrate, the light entering the substrate from the film is substantially straight. However, it becomes difficult to measure the characteristics due to refraction when light enters the substrate from the film, and it is extremely difficult to monitor by measuring the optical characteristics. Monitoring is also very difficult when a conductive film is formed on a conductive base material and the electrical characteristics are to be monitored. Further, since the film on the substrate is directly measured, there is a problem that the film may be affected.

【0008】[0008]

【発明が解決しようとする課題】本発明は、以上のよう
な問題点に着目してなされたもので、形成しようとする
膜にモニタリングによる悪影響を与えず、また長時間の
連続的な成膜工程の膜厚測定もでき、しかも多層膜を形
成する場合にもモニタリングする情報の誤差が増幅せず
に、各層を最適化し得る情報をモニタリングでき、さら
にはモニタリング用に基材を適当に選択することによ
り、基材と形成しようとする膜の屈折率がほぼ同じ様な
場合であっても光学特性でのモニタリングができ、また
同様に導電性を有する基材上に導電性の膜を形成した場
合でも電気特性でモニタリングができる、充分考慮され
た構成を持つ真空成膜法における膜厚測定方法を提供す
ることを課題とする。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above problems, and does not adversely affect the film to be formed by monitoring and continuously forms a film for a long time. It is possible to measure the film thickness of the process, and even when forming a multilayer film, the information that can optimize each layer can be monitored without amplifying the error in the information to be monitored. Furthermore, the base material is appropriately selected for monitoring. As a result, even if the refractive index of the film to be formed is almost the same as that of the film to be formed, the optical characteristics can be monitored, and a conductive film is similarly formed on the conductive substrate. An object of the present invention is to provide a film thickness measuring method in a vacuum film forming method, which has a sufficiently considered configuration and can be monitored by electric characteristics even in the case.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、第一の発明の膜形成方法は、物理的又は化学的蒸着
法により膜が形成される膜形成基材を膜形成可能な所定
位置に導き、該膜形成基材に膜形成すると同時に、該膜
形成基材に膜形成可能な所定位置に該膜形成基材に形成
される膜の材料を供給する膜材料が移動して来る膜材料
移動領域内に、膜厚測定用基材を、連続的かつ同一方向
に送りながら通過させ、該膜厚測定用基材に膜形成後、
該膜厚測定用基材に形成された膜の厚さを膜厚測定手段
により測定することを特徴とする。
In order to solve the above-mentioned problems, the film forming method of the first invention is a predetermined film forming substrate capable of forming a film by a physical or chemical vapor deposition method. At the same time as guiding the film to form a film on the film-forming substrate, the film material for supplying the film material to be formed on the film-forming substrate moves to a predetermined position where the film can be formed on the film-forming substrate. In the film material moving region, the film thickness measurement base material is passed continuously and in the same direction, and after film formation on the film thickness measurement base material,
It is characterized in that the thickness of the film formed on the film thickness measuring substrate is measured by a film thickness measuring means.

【0010】また、第二の発明の膜形成方法は、第一の
発明の膜形成方法において、膜形成基材に多層膜を形成
する場合、膜厚測定用基材には各層の膜を別の領域に単
層で形成し、各層の膜厚を別々に測定し、その合計を算
出することにより膜厚を測定することを特徴とする。
The film forming method of the second invention is the same as the film forming method of the first invention, but when a multi-layer film is formed on the film forming substrate, the film of each layer is separately formed on the film thickness measuring substrate. It is characterized in that the film thickness is measured by forming a single layer in the region (1), measuring the film thickness of each layer separately, and calculating the total.

【0011】さらに、第三の発明の膜形成装置は、膜形
成基材を供給する膜形成基材供給機構、該膜形成基材を
膜が形成される領域に誘導する誘導機構、該膜形成基材
に膜形成後回収する膜形成基材回収機構を有する膜形成
基材供給・回収手段、膜形成可能な所定の領域に導かれ
た膜形成基材に物理的又は化学的蒸着法により膜形成す
るために膜材料を供給する膜材料供給源が、前記膜形成
基材供給・回収手段に離設されている膜形成装置本体
と、膜厚測定用基材を供給する膜厚測定用基材供給機
構、前記膜厚測定用基材に膜を形成するために、該膜厚
測定用基材を前記膜形成基材供給・回収手段の前記誘導
機構と膜材料供給源との間の膜材料移動領域内に誘導す
る膜厚測定用基材誘導機構、該膜厚測定用基材に膜形成
後、膜厚測定する膜厚測定手段を具備し、該膜厚測定用
基材を連続的にかつ同一方向に送りながら膜厚測定を行
う膜厚測定装置とから成ることを特徴とする。
Further, the film forming apparatus of the third invention comprises a film forming base material supplying mechanism for supplying a film forming base material, a guiding mechanism for guiding the film forming base material to a region where a film is formed, and the film forming base material. Membrane-forming substrate supply / collection means having a film-forming substrate collecting mechanism for collecting after formation of a film on the substrate, and a film formed on the film-forming substrate guided to a predetermined region capable of forming a film by a physical or chemical vapor deposition method. A film material supply source for supplying a film material for forming is a film forming apparatus main body separated from the film forming base material supplying / recovering means, and a film thickness measuring substrate for supplying a film thickness measuring base material. Material supply mechanism, in order to form a film on the film thickness measuring base material, the film thickness measuring base material is a film between the guiding mechanism of the film forming base material supplying / recovering means and the film material supply source. Film thickness measuring base material guiding mechanism for guiding into the material movement region, film thickness for measuring the film thickness after forming a film on the film thickness measuring base material Comprising a constant section, characterized in that it consists of a film thickness measuring apparatus for performing thickness measurement while feeding the film thickness measurement substrate continuously and in the same direction.

【0012】以下、本発明を図面を参照して詳述する。
図1、図2は、本発明の膜形成方法により膜形成を可能
とする装置の例を示す概略図で、図1は真空蒸着法によ
り膜形成をし、図2はスパッタリング法により膜形成を
する装置である。また、図3、図4、図5、図6は、膜
厚を測定するそれぞれの手段を示す概略図である。ここ
で膜形成方法とは、スパッタリング法、イオンプレーテ
ィング法、真空蒸着法、イオンビーム蒸着法等に代表さ
れる物理的蒸着法又はCVD等の化学的蒸着法に適して
いる。また、連続的な成膜方式であっても、バッチ成膜
方式であっても良い。
The present invention will be described in detail below with reference to the drawings.
1 and 2 are schematic views showing an example of an apparatus capable of forming a film by the film forming method of the present invention. FIG. 1 shows film forming by a vacuum deposition method, and FIG. 2 shows film forming by a sputtering method. It is a device that does. Further, FIGS. 3, 4, 5, and 6 are schematic views showing respective means for measuring the film thickness. Here, the film forming method is suitable for a physical vapor deposition method represented by a sputtering method, an ion plating method, a vacuum vapor deposition method, an ion beam vapor deposition method, or a chemical vapor deposition method such as CVD. Further, either a continuous film forming method or a batch film forming method may be used.

【0013】膜形成基材14は、ポリエチレンテレフタ
レート、ポリカーボネート、ポリアリレート、ポリエー
テルスルホン、トリアセチルセルロース等の高分子フィ
ルム基材やガラス基材が好適であるが、それ以外の材質
であっても構わない。また、厚さは10μm〜200μ
mの範囲のものが良く、特に50μm〜100μmの範
囲のものが好適である。
The film forming base material 14 is preferably a polymer film base material such as polyethylene terephthalate, polycarbonate, polyarylate, polyether sulfone or triacetyl cellulose, or a glass base material, but may be made of other materials. I do not care. The thickness is 10 μm to 200 μm.
The range of m is preferable, and the range of 50 μm to 100 μm is particularly preferable.

【0014】膜材料移動領域11は、膜材料供給源13
により、膜材料を膜形成基材14に飛散させて膜形成す
る際、飛散した膜材料が膜形成基材14まで移動する領
域である。この領域は、真空の空間である方が、膜材料
の移動が効率良くかつ均一になり好ましいが、膜形成方
法によっては槽内に不活性ガス等を満たすことが必須の
場合があり、従って真空に限定するわけではない。但
し、仮に真空ではないにしても、空気密度はかなり低い
空間であることが必要である。
The film material moving region 11 is a film material supply source 13.
Thus, when the film material is scattered on the film forming base material 14 to form a film, the scattered film material is an area where the film material moves to the film forming base material 14. It is preferable that this region is a vacuum space because the movement of the film material will be efficient and uniform, but it may be essential to fill the tank with an inert gas depending on the film forming method. It is not limited to. However, even if it is not a vacuum, it is necessary that the space has a fairly low air density.

【0015】また、膜厚測定用基材4は、膜形成基材1
4に形成された膜の厚さを測定するために、膜形成基材
14に形成された膜と同じ膜を、同じ条件のもとで形成
し、この膜厚を測定することにより膜形成基材14に形
成された膜厚を測定する。膜厚測定用基材4の材質は、
光学特性を用いて膜厚測定する場合等を考慮すると、ポ
リエチレンテレフタレート、ポリカーボネート、ポリア
リレート、ポリエーテルスルホン、トリアセチルセルロ
ース等の高分子フィルムが適している。但し、光学特性
による測定の場合、膜材料と屈折率が同じ材質を膜厚測
定用基材4として選ぶと測定が不可能になるため、屈折
率の異なる材質のものを選ぶ必要がある。また、電気特
性による測定の場合も、膜厚測定用基材4に導電性の材
質を選ぶと測定が不可能になる。従って、この場合も非
導電性の材質を選ぶ必要がある。
The film thickness measuring substrate 4 is the film forming substrate 1.
In order to measure the thickness of the film formed on No. 4, the same film as the film formed on the film forming base material 14 is formed under the same conditions, and the film forming substrate is measured by measuring this film thickness. The film thickness formed on the material 14 is measured. The material of the film thickness measuring substrate 4 is
Considering the case where the film thickness is measured using the optical characteristics, a polymer film of polyethylene terephthalate, polycarbonate, polyarylate, polyether sulfone, triacetyl cellulose or the like is suitable. However, in the case of measurement based on optical characteristics, if a material having the same refractive index as the film material is selected as the film thickness measuring base material 4, the measurement becomes impossible. Therefore, it is necessary to select materials having different refractive indexes. Further, also in the case of measurement by electric characteristics, if a conductive material is selected for the film thickness measurement base material 4, the measurement becomes impossible. Therefore, also in this case, it is necessary to select a non-conductive material.

【0016】膜厚測定方法は、膜材料移動領域11内で
膜厚測定用基材4を連続的かつ同じ方向に送り、該膜厚
測定用基材4に単層の膜を形成し、この膜厚を、光透過
型、抵抗値測定型、光反射型、或いはこのうち光透過型
と抵抗値測定型の併用、又は光反射型と抵抗値測定型の
併用等の方法により測定する。このうち、光透過型は、
透明な膜の膜厚測定に適し、抵抗値測定型は、導電性の
膜の膜厚測定に適し、併用型は、透明導電性の膜の膜厚
測定に適している。多層膜の膜厚を測定する場合は、単
層で測定した膜厚を加え合わせることにより測定する。
この方法により測定する膜が常に単層となるため、正確
な膜厚測定が可能となる。
In the film thickness measuring method, the film thickness measuring base material 4 is continuously fed in the same direction in the film material moving region 11 to form a single layer film on the film thickness measuring base material 4. The film thickness is measured by a method such as a light transmission type, a resistance measurement type, a light reflection type, or a combination of the light transmission type and the resistance value measurement type, or a combination of the light reflection type and the resistance value measurement type. Of these, the light transmission type is
It is suitable for measuring the film thickness of a transparent film, the resistance measurement type is suitable for measuring the film thickness of a conductive film, and the combined type is suitable for measuring the film thickness of a transparent conductive film. When measuring the film thickness of the multilayer film, the film thicknesses measured in the single layer are added together.
Since the film measured by this method is always a single layer, accurate film thickness measurement is possible.

【0017】本発明の膜厚測定方法は、膜形成用基材1
4に膜形成されるのと同じ条件のもとで膜厚測定用基材
4に単層膜を形成し、この膜厚を任意の測定手段により
測定する。膜厚測定用基材4に形成する膜の厚さは、膜
形成用基材14上の膜の厚さに等しくする必要はなく、
膜形成用基材14に形成される膜に応じて、即ち膜形成
用基材14上に形成される膜が厚すぎ、薄すぎにより、
膜厚を測定する上で支障を来す時は、膜厚測定の条件が
最適になるよう適宜変更して良い。その時の膜厚の変更
は、膜厚測定用基材4の送り速度を変更することにより
可能である。
The film thickness measuring method of the present invention is the film forming substrate 1
A single layer film is formed on the film thickness measurement base material 4 under the same conditions as the film formation on the film No. 4, and the film thickness is measured by an arbitrary measuring means. The thickness of the film formed on the film thickness measuring base material 4 need not be equal to the thickness of the film on the film forming base material 14,
Depending on the film formed on the film-forming substrate 14, that is, the film formed on the film-forming substrate 14 is too thick or too thin,
When there is a problem in measuring the film thickness, the conditions for film thickness measurement may be appropriately changed. The film thickness at that time can be changed by changing the feed rate of the film thickness measuring base material 4.

【0018】本発明の膜形成方法を可能とする膜形成装
置について、以下図1、図2を参照して説明する。本発
明の膜形成方法を可能とする膜形成装置は、膜形成基材
14を供給する機構、膜形成する領域に導く誘導機構、
かつ膜形成後回収する機構を有する膜形成基材供給・回
収手段C、膜形成可能な所定の領域に導かれた膜形成基
材14に膜材料を供給し、該膜形成基材14表面に膜形
成する膜材料供給源Dを有する膜形成装置本体Bと、前
記誘導機構と膜材料を供給する膜材料供給源13との間
の膜材料移動領域11内に配置した膜厚測定手段Aとか
ら成る。
A film forming apparatus which enables the film forming method of the present invention will be described below with reference to FIGS. 1 and 2. A film forming apparatus that enables the film forming method of the present invention includes a mechanism for supplying a film forming base material 14, a guiding mechanism for guiding a film forming region,
Further, the film forming base material supplying / recovering means C having a mechanism for recovering after the film formation, supplies the film material to the film forming base material 14 guided to a predetermined area where the film can be formed, and supplies the film material to the surface of the film forming base material 14. A film forming apparatus main body B having a film material supply source D for forming a film, and a film thickness measuring means A arranged in a film material moving region 11 between the guiding mechanism and the film material supply source 13 for supplying the film material. Consists of.

【0019】膜形成装置本体Bは、膜形成基材供給・回
収手段Cと膜材料供給源Dとから成る。膜形成基材供給
・回収手段Cは、膜形成基材14を供給する膜形成基材
供給機構として巻き出しロール8、膜形成基材14を膜
形成する領域に導く膜形成基材誘導機構としてメインロ
ール10、膜形成された膜形成基材14を巻き取る膜形
成基材回収機構として巻き取りロール9を具備し、前記
巻き出しロール8から膜形成基材14を巻き出し、その
後前記メインロール10を回動し、最後に巻き取りロー
ル9に巻き取られる。
The film forming apparatus main body B comprises a film forming substrate supply / recovery means C and a film material supply source D. The film forming base material supplying / recovering means C serves as a film forming base material supplying mechanism for supplying the film forming base material 14, and serves as a film forming base material guiding mechanism for guiding the unwinding roll 8 and the film forming base material 14 to a film forming region. A main roll 10 and a take-up roll 9 as a film-forming base material collecting mechanism for taking up the film-formed base material 14 are provided, and the film-forming base material 14 is unwound from the unwinding roll 8 and then the main roll. 10 is rotated, and finally it is wound up by the winding roll 9.

【0020】ここで、巻き出しロール8は、膜形成基材
14を供給するロールであり、膜形成基材14が巻回さ
れており、膜形成基材14への膜形成開始と共に回動す
る。また、メインロール10は、巻き出しロール9の略
下方に位置し、膜形成基材14を膜形成する領域に導
き、かつ安定した膜形成をさせるためのロールである。
ロール径は、前記巻き出しロール8、後述する巻き取り
ロール9よりも大きい事が好ましく、それにより安定し
た膜形成が可能となる。巻き取りロール9は、成膜され
た膜形成基材14を巻き取るロールである。膜材料供給
源Dは、物理的蒸着法により、膜形成基材14に膜材料
を飛散させて膜形成する際の膜材料を供給するための装
置である。膜形成装置Bは、装置全体が真空容器15で
覆われている。
Here, the unwinding roll 8 is a roll for supplying the film forming base material 14, the film forming base material 14 is wound, and is rotated at the start of film formation on the film forming base material 14. . Further, the main roll 10 is located substantially below the unwinding roll 9, guides the film forming base material 14 to a region where a film is formed, and is a roll for forming a stable film.
The roll diameter is preferably larger than that of the unwinding roll 8 and the winding roll 9 to be described later, which enables stable film formation. The winding roll 9 is a roll that winds up the film-forming base material 14 on which the film has been formed. The film material supply source D is a device for supplying a film material when forming a film by scattering the film material on the film forming base material 14 by a physical vapor deposition method. The film forming apparatus B is entirely covered with a vacuum container 15.

【0021】膜厚測定手段Aは、図3、図4、図5、図
6に示す様に、送りロール1、メインロール3、巻き取
りロール2から成り、送りロール1より送り出された膜
厚測定用基材4は、メインロール3を介して巻き取りロ
ール2に巻き取られる。ここで、メインロール3は、膜
厚測定用基材14を膜材料移動領域11内に導くロール
であり、膜厚測定用基材14がメインロール3を回動し
ている間或いはその前後において、膜厚測定用の膜が形
成される。メインロール3と巻き取りロール2との間に
は、光透過型5(図3)、抵抗値測定型6(図4)、光
反射型7(図5)、光透過型5と抵抗値測定型6との併
用(図6)等の膜厚測定機5、6、7が設けられてお
り、これにより形成された膜の膜厚を測定する。膜厚測
定手段Aは、膜形成基材14に比べ充分小さく、膜形成
基材14表面への膜形成に影響を及ぼさない。さらに、
膜厚測定用基材4が成膜によって熱的に影響を受ける場
合は、必要に応じて膜厚測定用基材4の成膜部分に冷却
機構を設けても良い。
As shown in FIGS. 3, 4, 5 and 6, the film thickness measuring means A comprises a feed roll 1, a main roll 3 and a winding roll 2, and the film thickness sent out from the feed roll 1. The measurement base material 4 is wound around the winding roll 2 via the main roll 3. Here, the main roll 3 is a roll that guides the film thickness measuring base material 14 into the film material moving region 11, and while the film thickness measuring base material 14 is rotating the main roll 3 or before or after the main roll 3. A film for film thickness measurement is formed. Between the main roll 3 and the take-up roll 2, a light transmission type 5 (FIG. 3), a resistance value measurement type 6 (FIG. 4), a light reflection type 7 (FIG. 5), a light transmission type 5 and a resistance value measurement. Film thickness measuring machines 5, 6, 7 such as combined use with the mold 6 (FIG. 6) are provided, and the film thickness of the film formed by this is measured. The film thickness measuring means A is sufficiently smaller than the film forming base material 14 and does not affect the film formation on the surface of the film forming base material 14. further,
When the film thickness measurement base material 4 is thermally affected by film formation, a cooling mechanism may be provided in the film formation portion of the film thickness measurement base material 4 as necessary.

【0022】膜材料供給源Dは、膜形成基材14及び膜
厚測定用基材4表面に膜を形成する材料を該膜形成基材
14表面に付着する様飛散させる装置である。真空蒸着
では膜材料を加熱蒸発により飛散させ、イオンプレーテ
ィング法では加熱蒸発した膜材料の蒸発原子をグロー放
電中でイオン化し、これを負に印加した膜形成基材に飛
散させ、またスパッタリング法ではアルゴン等の不活性
ガスおよび必要に応じて酸素等の反応ガス微量を槽内に
流し、これに数百ボルトの電圧をかけてグロー放電を起
こし、不活性ガスイオンを負に印加した膜材料に衝突さ
せ、これにより、膜材料が膜形成基材表面に向かって飛
散する。
The film material supply source D is a device that scatters the material for forming a film on the surface of the film forming base material 14 and the film thickness measuring base material 4 so as to adhere to the surface of the film forming base material 14. In vacuum deposition, the film material is scattered by heating and evaporation.In the ion plating method, the evaporated atoms of the film material heated and evaporated are ionized in the glow discharge, and these are scattered to the negatively applied film forming substrate, and the sputtering method. Is a film material in which a small amount of an inert gas such as argon and, if necessary, a reactive gas such as oxygen is flown into the tank, a voltage of several hundred volts is applied to cause a glow discharge, and the inert gas ions are negatively applied. To cause the film material to fly toward the surface of the film-forming substrate.

【0023】膜形成基材14に形成された膜の膜厚をよ
り最適(目標値に近づける)にするには、膜厚測定装置
Aから得られたデータを、常に膜形成装置Bにフィード
バックする必要が有る。そのために、得られたデータを
もとに、人が膜形成装置Bの膜形成基材14の送り速度
や、膜材料の供給量を調節する。或いは、膜厚測定装置
Aと膜形成装置Bとを電気的に接続し、ここにフィード
バック制御回路を組み込んで調節する等により、膜形成
基材14の膜厚をより最適にする。
In order to make the film thickness of the film formed on the film forming substrate 14 more optimal (closer to the target value), the data obtained from the film thickness measuring device A is always fed back to the film forming device B. There is a need. Therefore, based on the obtained data, a person adjusts the feeding speed of the film forming substrate 14 of the film forming apparatus B and the supply amount of the film material. Alternatively, the film-thickness of the film-forming substrate 14 is further optimized by electrically connecting the film-thickness measuring device A and the film-forming device B and incorporating a feedback control circuit therein for adjustment.

【0024】上記構成により、膜厚測定手段Aの少なく
ともメインロール3が前記膜材料移動領域11に位置
し、膜厚測定用基材4を連続的にかつ同じ方向に送るこ
とにより、膜厚測定用基材4に膜を形成する。そうすれ
ば、膜形成基材14に形成された膜と同じ条件のもとで
成膜された膜が、膜厚測定用基材4表面にも得られる。
従って、この膜を測定することにより、膜形成基材14
に形成された膜の膜厚測定が可能となる。
With the above structure, at least the main roll 3 of the film thickness measuring means A is located in the film material moving region 11 and the film thickness measuring substrate 4 is continuously and fed in the same direction to measure the film thickness. A film is formed on the substrate 4 for use. Then, a film formed under the same conditions as the film formed on the film forming base material 14 can be obtained on the surface of the film thickness measuring base material 4.
Therefore, by measuring this film, the film-forming substrate 14
It is possible to measure the film thickness of the film formed on the substrate.

【0025】上記膜厚測定装置の動作について図7に示
すフローチャートをもとにして説明する。まず、モニタ
リング装置Aの巻き出しロール1の送りをスタートさ
せ、膜厚測定用基材4の送りを開始する。膜厚測定用基
材4は、メインロール3を介して巻き取りロール8に巻
き取られる。その後、成膜装置の巻き出しロール9、メ
インロール10、巻き取りロール8を駆動させ、膜形成
基材14の送りを開始する。同時に膜形成材料12の送
りも開始し、メインロール10下方において、膜形成基
材14に膜を形成させる。また、膜形成材料12には、
膜厚測定用基材4にもメインロール3下方にて付着す
る。メインロール3を通過した膜厚測定用基材4は、巻
き取りロール2に巻き取られるまでに、図2、図3、図
4に示す様な膜厚測定用の光り透過型センサー5、電気
特性測定センサー6、光反射型センサー7等により膜厚
測定が行われる。得られた膜厚のデータは、予め入力し
た目標とする膜厚値と比較され、その値とずれている時
は、その値に近づける様に膜形成基材14の送り速度、
膜形成材料12の送り量等の調整が、図示しないフィー
ドバック制御回路、手動等により成膜装置Bに対して成
される。その様にして第1層目の膜が形成され、以下同
じ様にして第2層目から最終層までの膜形成が繰り返さ
れる。
The operation of the film thickness measuring device will be described with reference to the flowchart shown in FIG. First, the feeding of the unwinding roll 1 of the monitoring device A is started, and the feeding of the film thickness measuring substrate 4 is started. The film thickness measuring substrate 4 is wound around the winding roll 8 via the main roll 3. After that, the unwinding roll 9, the main roll 10 and the winding roll 8 of the film forming apparatus are driven to start the feeding of the film forming substrate 14. At the same time, the feeding of the film forming material 12 is started, and the film is formed on the film forming base material 14 below the main roll 10. In addition, the film forming material 12 includes
It also adheres to the film thickness measuring substrate 4 below the main roll 3. The film thickness measuring base material 4 which has passed through the main roll 3 is, before being wound up by the winding roll 2, a light transmissive sensor 5 for film thickness measurement as shown in FIG. 2, FIG. 3 and FIG. The film thickness is measured by the characteristic measuring sensor 6, the light reflection type sensor 7 and the like. The obtained data of the film thickness is compared with the target film thickness value input in advance, and when it is deviated from the value, the feeding speed of the film forming base material 14 is made to approach the value,
The feed amount of the film forming material 12 and the like are adjusted for the film forming apparatus B by a feedback control circuit (not shown), manually, or the like. In this way, the film of the first layer is formed, and thereafter, the film formation from the second layer to the final layer is repeated in the same manner.

【0026】[0026]

【実施例1】厚さ50μmのポリエチレンテレフタレー
トを膜形成基材とし、巻取EB蒸着法にてTiO2 /S
iO2 /TiO2 の3層膜を形成した。蒸発材料は、一
度に複数セットし、真空を保ったまま、選択する。モニ
ターは図1に示した構成を採用し、膜厚測定用基材は、
厚さ25μmのポリエチレンテレフタレートを用い、一
定方向に巻取り続け、膜形成基材に多層膜が形成されて
も、膜厚測定用基材は常に単層膜が形成され、蒸着中の
膜の特性がモニタリングできるようにした。モニタリン
グには、光線透過率を用い、モニタリングの結果を即座
に成膜条件にフィードバックさせつつ成膜した。表1
に、形成された3層膜のnd(光学膜厚)について、目
標値と、実際に成膜された値を示した。膜厚測定用基材
を、膜を形成する基材とは別に設け、常に成膜中の層の
みをモニタリングできるので、目標値に対して極めて近
い値を取っていることがわかる。
Example 1 Polyethylene terephthalate having a thickness of 50 μm was used as a film forming base material, and TiO 2 / S was formed by a winding EB vapor deposition method.
3-layer film of iO 2 / TiO 2 was formed. A plurality of evaporation materials are set at one time and selected while keeping a vacuum. The monitor adopts the configuration shown in FIG. 1, and the film thickness measuring substrate is
Even if a 25 μm-thick polyethylene terephthalate film is continuously wound in a certain direction to form a multi-layer film on the film-forming substrate, a single-layer film is always formed on the film-thickness measuring substrate, and the characteristics of the film during vapor deposition are I was able to monitor it. The light transmittance was used for the monitoring, and the film was formed while the result of the monitoring was immediately fed back to the film forming condition. Table 1
The target value and the actually formed value are shown for the nd (optical film thickness) of the formed three-layer film. Since it is possible to provide the film thickness measuring base material separately from the base material for forming the film and constantly monitor only the layer being formed, it can be seen that the value is extremely close to the target value.

【0027】[0027]

【比較例1】厚さ50μmのポリエチレンテレフタレー
トを膜形成基材とし、巻取りEB蒸着法にて、TiO2
/SiO2 /TiO2 の3層膜を形成した。モニタリン
グには、光線透過率を用い、膜形成基材上の膜を直接モ
ニタリングした。モニタリングの結果は即座に成膜条件
にフィードバックさせつつ成膜した。表1に、形成され
た3層膜のnd(光学膜厚)について、目標値と、実際
に成膜された値を示した。実施例1と比較すると、膜厚
測定用基材を別に設けていないために、各層の誤差が増
幅されてしまい、目標値に対する実際の値の誤差が大き
いことが分かる。表1に、実施例1と比較例1の方法で
測定した結果を示す。
[Comparative Example 1] Polyethylene terephthalate having a thickness of 50 μm was used as a film forming base material, and TiO 2 was formed by a winding EB vapor deposition method.
A three-layer film of / SiO 2 / TiO 2 was formed. Light transmittance was used for monitoring, and the film on the film-forming substrate was directly monitored. The results of the monitoring were immediately fed back to the film forming conditions to form the film. Table 1 shows target values and actually deposited values of nd (optical film thickness) of the formed three-layer film. Comparing with Example 1, it is understood that the error of each layer is amplified because the film thickness measuring base material is not separately provided, and the error of the actual value with respect to the target value is large. Table 1 shows the results measured by the methods of Example 1 and Comparative Example 1.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【実施例2】厚さ50μmのポリエチレンテレフタレー
ト(屈折率n〜1.7)を膜を形成する基材とし、巻取
EB蒸着法にてAl2 3 (n〜1.7)膜を形成し
た。モニターは図1の構成を採用し、膜厚測定用基材は
厚さ50μmのTAC(n〜1.5)を用い、一定方向
に巻取り続けた。モニタリングには、光線透過率を用
い、モニタリングの結果を即座に成膜条件にフィードバ
ックさせつつ成膜した。表2に、形成されたAl2 3
膜のndについて、目標値と、実際に成膜された値を示
した。目標値に対して極めて近い値を取っていることが
分かる。
Example 2 A 50 μm thick polyethylene terephthalate (refractive index n to 1.7) was used as a base material for forming a film, and an Al 2 O 3 (n to 1.7) film was formed by a winding EB vapor deposition method. did. The monitor adopts the configuration of FIG. 1, the substrate for film thickness measurement is TAC (n to 1.5) having a thickness of 50 μm, and the film is continuously wound in a fixed direction. The light transmittance was used for the monitoring, and the film was formed while the result of the monitoring was immediately fed back to the film forming condition. Table 2 shows the formed Al 2 O 3
Regarding the nd of the film, the target value and the value actually formed are shown. It can be seen that the value is extremely close to the target value.

【0030】[0030]

【比較例2】厚さ50μmのポリエチレンテレフタレー
ト(屈折率n〜1.7)を膜を形成する基材とし、巻取
EB蒸着法にてAl2 3 (n〜1.7)膜を形成し
た。モニタリングは、光線透過率を用いて該基材上の膜
を直接モニタリングし、モニタリングの結果を即座に成
膜条件にフィードバックさせつつ成膜した。表2に、形
成されたAl2 3 膜のndについて、目標値と、実際
に成膜された値を示した。実施例2と比較すると目標値
との誤差が非常に大きいことが分かる。実施例2および
比較例2の結果から、膜厚測定用基材を別に設けること
により、形成しようとする膜によって適切な膜厚測定用
基材が選定できるため、モニタリングの精度が飛躍的に
向上することが確認できる。表2に、実施例2と比較例
2の方法で測定した結果を示す。
Comparative Example 2 Polyethylene terephthalate (refractive index n to 1.7) having a thickness of 50 μm was used as a base material for forming a film, and an Al 2 O 3 (n to 1.7) film was formed by a winding EB vapor deposition method. did. For the monitoring, the film on the substrate was directly monitored using the light transmittance, and the film was formed while the monitoring result was immediately fed back to the film forming conditions. Table 2 shows target values and actually deposited values of nd of the formed Al 2 O 3 film. It can be seen that the difference from the target value is very large as compared with the second embodiment. From the results of Example 2 and Comparative Example 2, by providing a film thickness measuring substrate separately, an appropriate film thickness measuring substrate can be selected according to the film to be formed, so that the monitoring accuracy is dramatically improved. It can be confirmed that Table 2 shows the results measured by the methods of Example 2 and Comparative Example 2.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【実施例3】厚さ50μmのポリエチレンテレフタレー
ト(屈折率n〜1.7)を膜を形成する基材とし、巻取
EB蒸着法にてAlとSiO2 の2層膜を形成した。モ
ニターは図1および図2を合わせた構成を採用し、膜圧
測定用基材は25μmのポリエチレンテレフタレートを
用い、一定方向に巻き取り続けた。モニタリングには、
Al層には抵抗率測定を用い、SiO2 層には光線透過
率を用いた。モニタリングの結果は、即座に成膜条件に
フィードバックさせつつ成膜した。また、膜厚測定用基
材の巻取速度は、膜厚測定用基材に形成されるAl膜の
抵抗値の測定感度が最も良くなるように調整し、その調
整量も考慮して目的の基材に形成される膜厚をモニタリ
ングした。表3に、形成された膜の厚さについて、目標
値と、実際に成膜された値を示した。目標値に対して極
めて近い値を取っていることが分かる。
Example 3 Using polyethylene terephthalate (refractive index n to 1.7) having a thickness of 50 μm as a base material for forming a film, a two-layer film of Al and SiO 2 was formed by a winding EB vapor deposition method. 1 and 2 were adopted as the monitor, 25 μm polyethylene terephthalate was used as the substrate for measuring the membrane pressure, and the film was continuously wound in a fixed direction. For monitoring,
Resistivity measurement was used for the Al layer and light transmittance was used for the SiO 2 layer. The results of the monitoring were immediately fed back to the film forming conditions to form the film. Further, the winding speed of the film thickness measurement base material is adjusted so that the measurement sensitivity of the resistance value of the Al film formed on the film thickness measurement base material becomes the best, and the adjustment amount is also taken into consideration to set the target value. The film thickness formed on the substrate was monitored. Table 3 shows the target values and the values of actually formed films for the thickness of the formed film. It can be seen that the value is extremely close to the target value.

【0033】[0033]

【比較例3】厚さ50μmのポリエチレンテレフタレー
ト(屈折率n〜1.7)を膜を形成する基材とし、巻取
EB蒸着法にてAlとSiO2 の2層膜を形成した。モ
ニタリングは、膜を形成する基材上の膜を直接モニタリ
ングし、抵抗率測定と光線透過率を用い、モニタリング
の結果を即座に成膜条件にフィードバックさせつつ成膜
した。表3に、形成された膜の厚さについて目標値と実
際に成膜された値を示した。1層目であるAlは、形成
するAl膜の膜厚が厚いため、抵抗値のモニタリングは
非常に困難で有った。2層目の SiO2 膜のモニタリ
ングは、1層目のAl層の光線透過率が極端に低いた
め、不可能であった。表3に、実施例3と比較例3の方
法で測定した結果を示す。
Comparative Example 3 A two-layer film of Al and SiO 2 was formed by a winding EB vapor deposition method using polyethylene terephthalate (refractive index n to 1.7) having a thickness of 50 μm as a base material for forming a film. For the monitoring, the film on the substrate forming the film was directly monitored, and the resistivity was measured and the light transmittance was used to form the film while immediately feeding back the monitoring result to the film forming conditions. Table 3 shows target values and actually deposited values for the thickness of the formed film. Since the first layer of Al has a thick Al film to be formed, it is very difficult to monitor the resistance value. Monitoring of the SiO 2 film of the second layer was impossible because the light transmittance of the Al layer of the first layer was extremely low. Table 3 shows the results measured by the methods of Example 3 and Comparative Example 3.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【実施例4】厚さ75μmのポリエチレンテレフタレー
ト(屈折率n〜1.7)を膜を形成する基材とし、スパ
ッタリング法によりITO(In2 3 +SnO(5w
t%))を形成した。膜圧測定用基材は25μmのポリ
エチレンテレフタレートを用い、一定方向に巻き取り続
けた。モニタリングには、抵抗測定と光線透過率を用い
た。モニタリングの結果は、即座に成膜条件にフィード
バックさせつつ成膜した。また、モニタリング用基材の
巻取速度は、抵抗値の測定感度が最も良くなるように調
整し、その調整量も考慮して目的の基材に形成される膜
厚をモニタリングした。表4に、形成された膜の厚さに
ついて、目標値と電気抵抗値、実際に成膜された値を示
した。目標値に対して極めて近い値を取っていることが
分かる。
Example 4 Polyethylene terephthalate (refractive index n to 1.7) having a thickness of 75 μm was used as a substrate for forming a film, and ITO (In 2 O 3 + SnO (5w) was formed by a sputtering method.
t%)) was formed. As the substrate for measuring the film pressure, polyethylene terephthalate having a thickness of 25 μm was used and the film was continuously wound in a fixed direction. For monitoring, resistance measurement and light transmittance were used. The results of the monitoring were immediately fed back to the film forming conditions to form the film. The winding speed of the monitoring base material was adjusted so that the resistance measurement sensitivity was maximized, and the film thickness formed on the target base material was monitored in consideration of the adjustment amount. Table 4 shows target values, electric resistance values, and actually deposited values for the thickness of the formed film. It can be seen that the value is extremely close to the target value.

【0036】[0036]

【比較例4】厚さ75μmのポリエチレンテレフタレー
ト(屈折率n〜1.7)を膜を形成する基材とし、スパ
ッタリング法によりITO(In2 3 +SnO(5w
t%))を形成した。モニタリングは、膜を形成する基
材上の膜を直接、抵抗値あるいは光線透過率を別々に、
モニタリングした。モニタリングの結果は、即座に成膜
条件にフィードバックさせつつ成膜した。表4に、形成
された膜の厚さと電気抵抗値を示した。ITO等の透明
導電性のフィルムでは、光線透過率と、抵抗値の双方の
性能が重要となるため、いずれかに合わせることは、問
題があり、性能の良いものを得るには到らなかった。表
4に、実施例4と比較例4の方法で測定した結果を示
す。
Comparative Example 4 Polyethylene terephthalate (refractive index n to 1.7) having a thickness of 75 μm was used as a substrate for forming a film, and ITO (In 2 O 3 + SnO (5w) was formed by a sputtering method.
t%)) was formed. Monitoring is performed by directly measuring the resistance value or light transmittance of the film on the base material forming the film,
It was monitored. The results of the monitoring were immediately fed back to the film forming conditions to form the film. Table 4 shows the thickness of the formed film and the electric resistance value. In a transparent conductive film such as ITO, performance of both light transmittance and resistance value is important, so there is a problem in matching with either, and it has not been possible to obtain a good performance. . Table 4 shows the results measured by the methods of Example 4 and Comparative Example 4.

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【発明の効果】本発明の膜厚測定装置によれば、膜厚測
定用基材を膜を形成する基材とは別に設けるため、形成
しようとする基材上の膜にモニタリングによる悪影響を
何ら与えない。また、フィルムなどの膜厚測定用基材を
用い、巻取り方式などによって膜厚測定用基材を連続的
に供給することにより、長時間の連続的な成膜工程に対
してのモニタリングが可能になる。しかも、膜厚測定用
基材を連続的に供給するため、多層膜を形成する場合に
も、モニタリングする情報の誤差が増幅せずに、各層を
最適化し得る情報をモニタリングできる。さらには光学
特性をモニタリングする際に基材と形成しようとする膜
の屈折率がほぼ同じ様な場合であっても、また、導電性
を有する基材上に導電性の膜を形成し電気特性をモニタ
リングしたい場合などであっても、膜厚測定用基材を適
当に選択することにより、形成しようとする膜の特性が
モニタリングできる膜厚測定装置である。
According to the film thickness measuring device of the present invention, the film thickness measuring base material is provided separately from the base material for forming the film. Therefore, the film on the base material to be formed is not adversely affected by the monitoring. Do not give. In addition, by using a film thickness measurement substrate such as a film and continuously supplying the film thickness measurement substrate by a winding method, etc., it is possible to monitor for a long continuous film forming process. become. Moreover, since the base material for film thickness measurement is continuously supplied, even when a multilayer film is formed, it is possible to monitor information that can optimize each layer without amplifying an error in information to be monitored. Furthermore, even if the refractive index of the film to be formed is almost the same as that of the film to be formed when monitoring the optical properties, it is also possible to form an electrically conductive film on the electrically conductive substrate and This is a film thickness measuring device capable of monitoring the characteristics of a film to be formed by appropriately selecting a film thickness measuring base material even when it is desired to monitor.

【0039】[0039]

【図面の簡単な説明】[Brief description of drawings]

【図1】蒸着法により膜形成する場合の本発明の膜形成
装置を示す概略図である。
FIG. 1 is a schematic view showing a film forming apparatus of the present invention when forming a film by a vapor deposition method.

【図2】スパッタリング法により膜形成する場合の本発
明の膜形成装置を示す概略図である。
FIG. 2 is a schematic view showing a film forming apparatus of the present invention when forming a film by a sputtering method.

【図3】図1の膜形成装置の膜厚測定に使用する膜厚測
定装置のうち、透過光により膜厚測定するものを示す概
略図である。
FIG. 3 is a schematic diagram showing a film thickness measuring device used for film thickness measurement of the film forming device of FIG. 1, which measures film thickness by transmitted light.

【図4】図1の膜形成装置の膜厚測定に使用する膜厚測
定装置のうち、抵抗値測定により膜厚測定するものを示
す概略図である。
FIG. 4 is a schematic view showing a film thickness measuring device used for film thickness measurement of the film forming device of FIG. 1, which measures film thickness by resistance value measurement.

【図5】図1の膜形成装置の膜厚測定に使用する膜厚測
定装置のうち、反射光により膜厚測定するものを示す概
略図である。
5 is a schematic view showing a film thickness measuring device used for film thickness measurement of the film forming device of FIG. 1, which measures film thickness by reflected light.

【図6】図2の膜形成装置の膜厚測定に使用する膜厚測
定装置のうち、透過光と抵抗値測定との併用により膜厚
測定するものを示す概略図である。
FIG. 6 is a schematic diagram showing a film thickness measuring device used for film thickness measurement of the film forming device of FIG. 2, which measures film thickness by combined use of transmitted light and resistance value measurement.

【図7】本発明のモニターを設置した成膜装置の動作を
説明するフロー図である。
FIG. 7 is a flowchart illustrating the operation of the film forming apparatus equipped with the monitor of the present invention.

【符号の説明】[Explanation of symbols]

A‥‥膜厚測定装置 B‥‥膜形成装置 C‥‥膜形成基材供給・回収手段 D‥‥膜材料供給源 1‥‥モニタリング基材用巻出ロール 2‥‥モニタリング基材用巻取ロール 3‥‥モニタリング基材用メインロール 4‥‥膜厚測定用基材 5‥‥光学特性測定部(透過) 6‥‥光学特性測定部(反射) 7‥‥電気特性(抵
抗)測定部 8、9‥‥巻取り・巻き出しロール 10‥‥メインロ
ール 11‥‥膜形成材料移動領域 12‥‥電子線 13‥‥膜材料 14‥‥膜形成基材 15‥‥真空容器
A: Film thickness measuring device B: Film forming device C: Film forming substrate supply / collection means D: Film material supply source 1 ... Monitoring substrate unwinding roll 2 ... Monitoring substrate winding Roll 3 ... Main roll for monitoring substrate 4 ... Substrate for film thickness measurement 5 ... Optical characteristic measurement unit (transmission) 6 ... Optical characteristic measurement unit (reflection) 7 ... Electrical characteristic (resistance) measurement unit 8 , 9 ... winding / unwinding roll 10 ... main roll 11 ... film forming material moving region 12 ... electron beam 13 ... film material 14 ... film forming substrate 15 ... vacuum container

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】物理的又は化学的蒸着法により膜が形成さ
れる膜形成基材を膜形成可能な所定位置に導き、該膜形
成基材に膜形成すると同時に、該膜形成基材に膜形成可
能な所定位置に該膜形成基材に形成される膜の材料を供
給する膜材料が移動する膜材料移動領域内に、膜厚測定
用基材を、連続的かつ同一方向に送りながら通過させ、
該膜厚測定用基材に膜形成後、該膜厚測定用基材に形成
された膜の厚さを膜厚測定手段により測定することを特
徴とする膜形成方法。
1. A film-forming substrate on which a film is formed by a physical or chemical vapor deposition method is guided to a predetermined position where the film can be formed, and a film is formed on the film-forming substrate, and at the same time, a film is formed on the film-forming substrate. The film thickness measuring base material is passed continuously and in the same direction into the film material moving area where the film material that supplies the film material to be formed on the film forming base material moves to a predetermined position where it can be formed. Let
A film forming method, comprising: forming a film on the film thickness measuring substrate; and then measuring the thickness of the film formed on the film thickness measuring substrate by a film thickness measuring means.
【請求項2】請求項1の膜形成方法において、膜形成基
材に多層膜を形成する場合、膜厚測定用基材には各層の
膜を別の領域に単層で形成し、各層の膜厚を別々に測定
し、その合計を算出することにより膜厚を測定すること
を特徴とする膜形成方法。
2. The film forming method according to claim 1, wherein when a multilayer film is formed on the film-forming substrate, the film of each layer is formed as a single layer in a different region on the film-forming substrate, and each of the layers is formed. A film forming method characterized in that the film thickness is measured by separately measuring the film thickness and calculating the total thereof.
【請求項3】膜形成基材を供給する膜形成基材供給機
構、該膜形成基材を膜が形成される領域に誘導する誘導
機構、該膜形成基材に膜形成後回収する膜形成基材回収
機構を有する膜形成基材供給・回収手段、膜形成可能な
所定の領域に導かれた膜形成基材に物理的又は化学的蒸
着法により膜形成するために膜材料を供給する膜材料供
給源が、前記膜形成基材供給・回収手段に離設されてい
る膜形成装置本体と、膜厚測定用基材を供給する膜厚測
定用基材供給機構、前記膜厚測定用基材に膜を形成する
ために、該膜厚測定用基材を前記膜形成基材供給・回収
手段の前記誘導機構と膜材料供給源との間の膜材料移動
領域内に誘導する膜厚測定用基材誘導機構、該膜厚測定
用基材に膜形成後、膜厚測定する膜厚測定手段を具備
し、該膜厚測定用基材を連続的にかつ同一方向に送りな
がら膜厚測定を行う膜厚測定装置とから成ることを特徴
とする膜形成装置。
3. A film forming base material supplying mechanism for supplying a film forming base material, a guiding mechanism for guiding the film forming base material to a region where a film is formed, and a film forming operation for collecting the film forming base material after forming the film. Membrane forming substrate supplying / collecting means having a substrate collecting mechanism, a film for supplying a film material for forming a film by a physical or chemical vapor deposition method on a film forming substrate introduced to a predetermined region where the film can be formed The material supply source is a film forming apparatus main body separated from the film forming base material supply / recovery means, a film thickness measuring base material supplying mechanism for supplying a film thickness measuring base material, and the film thickness measuring base material. Film thickness measurement for guiding the film thickness measuring base material into the film material moving region between the guiding mechanism of the film forming base material supply / recovering means and the film material supply source in order to form a film on the material. And a film thickness measuring means for measuring the film thickness after the film is formed on the film thickness measuring base material. Film forming apparatus, comprising continuously and be composed of a film thickness measuring apparatus for performing thickness measurement while feeding in the same direction.
JP7564396A 1996-03-29 1996-03-29 Film formation method and device thereof Pending JPH09263934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7564396A JPH09263934A (en) 1996-03-29 1996-03-29 Film formation method and device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7564396A JPH09263934A (en) 1996-03-29 1996-03-29 Film formation method and device thereof

Publications (1)

Publication Number Publication Date
JPH09263934A true JPH09263934A (en) 1997-10-07

Family

ID=13582147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7564396A Pending JPH09263934A (en) 1996-03-29 1996-03-29 Film formation method and device thereof

Country Status (1)

Country Link
JP (1) JPH09263934A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283121A (en) * 2005-03-31 2006-10-19 Sony Corp Vacuum vapor deposition apparatus
JP2008537781A (en) * 2005-04-11 2008-09-25 ルドルフテクノロジーズ インコーポレイテッド Dual photoacoustic and resistance measurement system
JP2008231454A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Vacuum vapor-deposition apparatus
JP2014034701A (en) * 2012-08-08 2014-02-24 Dexerials Corp Thin film deposition device and thin film deposition method
WO2014030382A1 (en) * 2012-08-24 2014-02-27 株式会社アルバック Film formation method
JP2014515789A (en) * 2011-04-20 2014-07-03 コーニンクレッカ フィリップス エヌ ヴェ Measuring apparatus and method for vapor deposition applications
JP2018016892A (en) * 2017-10-31 2018-02-01 デクセリアルズ株式会社 Thin film forming apparatus, thin film forming method, and optical film manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283121A (en) * 2005-03-31 2006-10-19 Sony Corp Vacuum vapor deposition apparatus
JP2008537781A (en) * 2005-04-11 2008-09-25 ルドルフテクノロジーズ インコーポレイテッド Dual photoacoustic and resistance measurement system
JP2008231454A (en) * 2007-03-16 2008-10-02 Matsushita Electric Ind Co Ltd Vacuum vapor-deposition apparatus
JP2014515789A (en) * 2011-04-20 2014-07-03 コーニンクレッカ フィリップス エヌ ヴェ Measuring apparatus and method for vapor deposition applications
JP2014034701A (en) * 2012-08-08 2014-02-24 Dexerials Corp Thin film deposition device and thin film deposition method
WO2014030382A1 (en) * 2012-08-24 2014-02-27 株式会社アルバック Film formation method
CN104271796A (en) * 2012-08-24 2015-01-07 株式会社爱发科 Film formation method
JPWO2014030382A1 (en) * 2012-08-24 2016-07-28 株式会社アルバック Deposition method
JP2018016892A (en) * 2017-10-31 2018-02-01 デクセリアルズ株式会社 Thin film forming apparatus, thin film forming method, and optical film manufacturing method

Similar Documents

Publication Publication Date Title
TWI253388B (en) Transparent conductive stratiform coating of indium tin oxide
US7435300B2 (en) Dynamic film thickness control system/method and its utilization
TWI398672B (en) Light collimating and diffusing film and system for making the film
JP6096195B2 (en) Method and system for producing a transparent body used in a touch panel
JPH09263934A (en) Film formation method and device thereof
KR101488203B1 (en) Film formation apparatus and film formation method
JPS60258461A (en) Method and device for forming conductive transparent metal oxide membrane to web by reactive sputtering
WO1995033081A1 (en) Filmed substrate, and method and apparatus for producing the same
US10752985B2 (en) Laminate film and electrode substrate film, and method of manufacturing the same
JP2002350610A (en) Thin film nd filter and method for manufacturing the same
JP6852987B2 (en) Multilayer film formation method
JPH1048402A (en) Optical element or device, their production, and equipment for production therefor
EP1028174A1 (en) Web coating apparatus
JP6983068B2 (en) Conductive substrate
JP2005154804A (en) Apparatus and method for forming optical thin film
JP2000241605A (en) Antireflection film, display device and film forming device
JPH0790583A (en) Thin film forming method
JPH08136730A (en) Production of antireflection polarizing film
JP4669593B2 (en) Method and apparatus for forming AlOx film with controlled film characteristics by light transmittance of one wavelength
JP2000241127A (en) Film thickness measurement method and winding-up vacuum film-forming device
JPH0882701A (en) Production of antireflection film
CN113278945B (en) Film thickness monitoring device, film plating equipment and film thickness monitoring method
JPH08219731A (en) Method and apparatus for optically monitoring film thickness
JPH08165559A (en) Formation of functional film and device therefor
JPH0790584A (en) Thin film forming method