JPH09263455A - Manufacture of ceramic turbine rotor - Google Patents

Manufacture of ceramic turbine rotor

Info

Publication number
JPH09263455A
JPH09263455A JP8074056A JP7405696A JPH09263455A JP H09263455 A JPH09263455 A JP H09263455A JP 8074056 A JP8074056 A JP 8074056A JP 7405696 A JP7405696 A JP 7405696A JP H09263455 A JPH09263455 A JP H09263455A
Authority
JP
Japan
Prior art keywords
blade
turbine rotor
mixture
shaft
dewaxed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8074056A
Other languages
Japanese (ja)
Other versions
JP3245346B2 (en
Inventor
Kazuhisa Itakura
一久 板倉
Kenichi Mizuno
賢一 水野
Toru Shimamori
融 島森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP07405696A priority Critical patent/JP3245346B2/en
Publication of JPH09263455A publication Critical patent/JPH09263455A/en
Application granted granted Critical
Publication of JP3245346B2 publication Critical patent/JP3245346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the manufacture by which the defective product generation rate can be reduced and the burst rotational speed of the product rotor can be enhanced, at the time of manufacturing a silicon nitride based ceramic turbine rotor with fitting and sintering. SOLUTION: In this manufacture, powdery Si3 N4 is subjected to wet mixing with powdery Y2 O3 , AlN and Al2 O3 and then, the powdery mixture is dried with a spray dryer. Thereafter, an organic binder is added to the dried powdery mixture and the resulting mixture is kneaded with a kneader and then, the kneaded mixture is subjected to injection molding with an injection molding machine into a blade molding and further, the blade molding is dewaxed in a non-oxidizing atmosphere to obtain a blade dewaxed body 1. On the other hand, in order to form a shaft of the rotor, the above kneaded mixture contg. the binder is dewaxed and thereafter, the dewaxed mixture is disintegrated and granulated into a granulated powder and then, the granulated powder is subjected to pressure compacting with a hydrostatic pressure to obtain a shaft dewaxed compact 3. The blade dewaxed body 1 and the shaft dewaxed compact 3 are engaged with each other and thereafter, the resulting engaged body is subjected to ordinary pressure sintering at 1,700 deg.C in a nitrogen atmosphere to obtain a ceramic sintered body used as the objective ceramic turbine rotor 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスタービンロー
タやターボチャ-ジャロータ等の熱機関部品などに使用
される窒化珪素質のセラミックタービンロータの製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a silicon nitride ceramic turbine rotor used for heat engine parts such as a gas turbine rotor and a turbocharger rotor.

【0002】[0002]

【従来の技術】従来より、窒化珪素は、金属と比べて高
温で安定であり、耐酸化特性、耐クリープ特性に優れて
いるため、例えばタービンロータの様なエンジン部品に
利用する研究が行われている。
2. Description of the Related Art Conventionally, silicon nitride is more stable at high temperatures than metals and is excellent in oxidation resistance and creep resistance, and therefore, research has been conducted for use in engine parts such as turbine rotors. ing.

【0003】また、タービンロータの製造方法に関して
は、例えば特開昭60−11276号公報等に記載の技
術が知られている。これは、射出成形による部品の製造
には、脱脂工程の問題から肉厚に制限がある点を考慮し
た技術であり、形状が大きく一体での射出成形が不可能
なタービンロータを製造する場合には、形状が複雑な翼
部を射出成形により成形するとともに、形状が単純な軸
部を静水圧加圧成形により成形し、両者の脱脂体を嵌合
し焼成する方法である。
Further, as a method of manufacturing a turbine rotor, a technique described in, for example, Japanese Patent Laid-Open No. 60-11276 is known. This is a technology that takes into consideration the fact that the thickness of the parts manufactured by injection molding is limited due to the problem of the degreasing process, and when manufacturing turbine rotors that are large in shape and cannot be injection-molded as a unit. Is a method in which a blade portion having a complicated shape is molded by injection molding, and a shaft portion having a simple shape is molded by hydrostatic pressure molding, and the degreased bodies of both are fitted and fired.

【0004】この様なタービンロータを、窒化珪素を材
料として製造する場合の製造工程、即ち、窒化珪素質嵌
合タービンロータの製造工程を、図3に示す。 まず、翼部を形成する場合には、窒化珪素原料と助剤
とを混合し乾燥した素地に、有機バインダ成分を加えて
ニーダー混練機により混練し、ペレット化した後に射出
成形を行なって翼部の形状を得ている。そして、翼部を
成形した後に、その脱脂を行なっている。尚、脱脂は、
通常、有機バインダが熱分解又は消失される温度まで加
熱することにより行なわれ、樹脂抜きと呼ばれる場合も
ある。
FIG. 3 shows a manufacturing process of manufacturing such a turbine rotor using silicon nitride as a material, that is, a manufacturing process of a silicon nitride fitting turbine rotor. First, in the case of forming the blade portion, the silicon nitride raw material and the auxiliary agent are mixed and dried, the organic binder component is added, and the mixture is kneaded by a kneader kneader and pelletized and then injection-molded to form the blade portion. Has obtained the shape of. Then, after the wing portion is molded, the degreasing is performed. In addition, degreasing is
Usually, it is performed by heating to a temperature at which the organic binder is thermally decomposed or disappears, and is sometimes called resin removal.

【0005】前記混練工程においては、窒化珪素粒子の
粉砕が起こり、平均粒径が小さくなり、粒度分布が狭く
なると同時に、新しい窒化珪素表面の出現により、窒化
珪素が酸化されて素地中の酸素量(SiO2量)が増加
する。また、混練工程中に混練装置の摩耗により微量の
金属成分が混入するが、この金属成分は、わずかながら
緻密化を促進する。つまり、この混練工程を採用するこ
とにより、後の焼成工程にて翼部が緻密化の際に、収縮
し易くなる。
In the kneading step, crushing of silicon nitride particles occurs, the average particle diameter becomes smaller and the particle size distribution becomes narrower, and at the same time, the appearance of a new silicon nitride surface oxidizes the silicon nitride and the oxygen content in the matrix. (SiO 2 amount) increases. Further, a slight amount of metal component is mixed due to abrasion of the kneading device during the kneading step, but this metal component promotes densification, although slightly. That is, by adopting this kneading step, the blade portion is likely to shrink when the wing is densified in the subsequent firing step.

【0006】一方、軸部を形成する場合は、窒化珪素
原料と助剤とを混合し乾燥・造粒した素地に、静水圧加
圧加工を施して、軸部の形状を得ている。そして、軸部
を成形した後に、外径修正等の後加工を行なってから脱
脂を行なっている。尚、この軸部の製造工程には、翼部
の様な混練工程がないため、その焼結の際に、軸部は翼
部と比較して収縮しにくいという傾向がある。
On the other hand, when the shaft portion is formed, the base material obtained by mixing the silicon nitride raw material and the auxiliary agent, drying and granulating is subjected to hydrostatic pressure processing to obtain the shape of the shaft portion. Then, after molding the shaft portion, post-processing such as outer diameter correction is performed and then degreasing is performed. Since there is no kneading process like the blade in the manufacturing process of the shaft, the shaft tends to shrink less than the blade when it is sintered.

【0007】次に、翼部と軸部とを嵌合させ、静水圧
加圧にて結合させた後に焼成して焼結させる。このと
き、前記収縮の傾向により、焼成工程の各焼成温度に於
ける翼部と軸部との密度の関係は、翼部>軸部となり、
その差は相対密度で3〜10%となる。その後、仕上げ
等の後加工を行なって窒化珪素質嵌合タービンロータを
完成する。
Next, the wing portion and the shaft portion are fitted to each other, and they are joined together by hydrostatic pressure and then fired and sintered. At this time, due to the tendency of shrinkage, the density relationship between the blade portion and the shaft portion at each firing temperature in the firing step is as follows: blade portion> shaft portion,
The difference is 3 to 10% in relative density. Then, post-processing such as finishing is performed to complete the silicon nitride fitting turbine rotor.

【0008】[0008]

【発明が解決しようとする課題】上述した方法でも、あ
る程度の品質の製品を製造することが可能であるが、例
えば直径100mmを越す様な大きな寸法のタービンロ
ータを、この方法で製造する場合には、焼結過程におけ
る翼部と軸部との相対密度の差によって、焼成後に、嵌
合面のキレ不良(嵌合面におけるクラックによる不良)
が多く発生するという問題があった。
The above-mentioned method can also produce a product of a certain quality, but when a turbine rotor having a large size, for example, a diameter of 100 mm or more is produced by this method. Due to the difference in relative density between the blade and the shaft during the sintering process, the mating surface is not sharp after firing (defects due to cracks on the mating surface).
There was a problem that many occur.

【0009】また、そのタービンロータのバースト回転
数(破壊する回転数)は、材料強度から予測される値よ
りもかなり低い値、例えば応力比が0.5程度と低い値
であるという問題もあった。(但し、応力比=回転数か
ら計算される応力値/実際の材料強度) 本発明は、前記課題を解決するためになされたものであ
り、窒化珪素質のタービンロータを嵌合及び焼成により
製造する場合に、不良品の発生率を低減するとともに、
バースト回転数を高くすることができるセラミックター
ビンロータの製造方法を提供することを目的とする。
Further, there is a problem that the burst rotational speed (rotational speed at which it breaks) of the turbine rotor is a value considerably lower than the value predicted from the material strength, for example, the stress ratio is as low as about 0.5. It was (However, stress ratio = stress value calculated from rotation speed / actual material strength) The present invention has been made to solve the above-mentioned problems, and a silicon nitride turbine rotor is manufactured by fitting and firing. If you do, while reducing the incidence of defective products,
An object of the present invention is to provide a method for manufacturing a ceramic turbine rotor capable of increasing the burst rotation speed.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
の請求項1の発明は、射出成形した翼部脱脂体と、静水
圧加圧成形した軸部脱脂体とを嵌合した後に焼結する窒
化珪素質のタービンロータの製造方法において、前記焼
結の過程の各温度における翼部と軸部との密度差を相対
密度で1%以内とすることを特徴とするセラミックター
ビンロータの製造方法を要旨とする。
In order to achieve the above-mentioned object, the invention of claim 1 sinters after fitting the injection-molded blade degreased body and the hydrostatic pressure-molded shaft degreased body. In the method for manufacturing a silicon nitride turbine rotor according to claim 1, the density difference between the blade portion and the shaft portion at each temperature in the sintering process is set to within 1% in relative density. Is the gist.

【0011】請求項2の発明は、射出成形した翼部脱脂
体と、静水圧加圧成形した軸部脱脂体とを嵌合した後に
焼結する窒化珪素質のタービンロータの製造方法におい
て、窒化珪素質素地に混練により有機バインダを混合し
その混合物を射出成形し脱脂した翼部脱脂体と、同混練
によって得られた混合物を脱脂した後に静水圧加圧成形
した軸部脱脂体とを嵌合し、前記焼結を行なうことを特
徴とするセラミックタービンロータの製造方法を要旨と
する。
According to a second aspect of the present invention, there is provided a method for manufacturing a silicon nitride turbine rotor in which a blade degreased body formed by injection molding and a shaft degreased body formed by hydrostatic pressure molding are fitted and then sintered. Fit the degreased blades that are degreased by injection-molding the mixture and the organic binder mixed into the siliceous base, and the degreased body that is hydrostatically pressure-molded after degreasing the mixture obtained by the same kneading. Then, the gist is a method for manufacturing a ceramic turbine rotor, which is characterized in that the sintering is performed.

【0012】請求項3の発明は、射出成形した翼部脱脂
体と、静水圧加圧成形した軸部脱脂体とを嵌合した後に
焼結する窒化珪素質のタービンロータの製造方法におい
て、窒化珪素質素地に混練により有機バインダを混合し
その混合物を射出成形し脱脂した翼部脱脂体と、前記混
合物と同様な酸素量、金属量、粒径、及び粒度分布を有
する窒化珪素質材料を用いて静水圧加圧成形した軸部脱
脂体とを嵌合し、前記焼結を行なうことを特徴とするセ
ラミックタービンロータの製造方法を要旨とする。
A third aspect of the present invention is a method for manufacturing a silicon nitride turbine rotor in which an injection-molded blade degreased body and a hydrostatic pressure-molded shaft degreased body are fitted and then sintered. Using a degreased blade portion obtained by mixing an organic binder by kneading into a siliceous base material, injection molding the mixture, and degreasing the same, and a silicon nitride material having the same oxygen content, metal content, particle size, and particle size distribution as the above mixture. A method for manufacturing a ceramic turbine rotor is characterized in that a shaft degreased body formed by hydrostatic pressure molding is fitted and the sintering is performed.

【0013】[0013]

【発明の実施の形態】本発明者らは、上述した問題を解
決するために鋭意研究を重ねた結果、翼部と軸部の焼成
時における温度(焼結の過程での各温度)における密度
差が、嵌合部のキレ不良の発生と、バースト回転数の低
下に影響を及ぼしていることを見いだし、本発明を完成
した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the density of the blade portion and the shaft portion at the temperature during firing (each temperature during the sintering process) The present inventors have completed the present invention by discovering that the difference affects the occurrence of defective snapping of the fitting portion and the reduction of the burst rotation speed.

【0014】従って、請求項1の発明では、焼結の過程
の各温度における翼部と軸部との密度差を相対密度で1
%以内とすることにより、嵌合部のキレ不良を防止する
ことができる。つまり、最終の焼結温度だけでなく、焼
結過程の温度領域において、即ち焼結過程のどの段階に
おいても翼部と軸部との密度に大きな差があると、その
段階で収縮量に差が生じて嵌合部にキレが発生する。ま
た、キレが発生しない場合でも、収縮量の差によって翼
部及び軸部に歪みが発生するため、この歪みが影響して
バースト回転数が低下すると考えられる。
Therefore, according to the first aspect of the invention, the density difference between the blade portion and the shaft portion at each temperature in the sintering process is 1 in relative density.
By setting the content to be within the range of%, it is possible to prevent the defective snapping of the fitting portion. That is, not only the final sintering temperature but also the temperature range of the sintering process, that is, if there is a large difference in the density between the blade and the shaft at any stage of the sintering process, there is a difference in the amount of shrinkage at that stage. Occurs and the fitting portion is sharpened. Further, even when the breakage does not occur, distortion occurs in the blade and the shaft due to the difference in the amount of contraction, and it is considered that this distortion affects the burst rotation speed.

【0015】そこで本発明では、焼結過程の全ての温度
領域において、翼部と軸部との相対密度の差を1%以内
とすることにより、両者の収縮量がほぼ等しくなり、キ
レの発生を防止できるとともに、歪みの発生も抑えら
れ、バースト回転数が向上するものと考えられる。
Therefore, in the present invention, in all temperature regions of the sintering process, the difference between the relative densities of the blade portion and the shaft portion is set to be within 1%, so that the shrinkage amounts of both are almost equal and the occurrence of cracking occurs. It is considered that the occurrence of distortion can be suppressed and the burst rotation speed can be improved.

【0016】請求項2の発明は、具体的に、翼部と軸部
との密度差を相対密度で1%以内とする手段を示したも
のである。ここでは、翼部脱脂体は、窒化珪素質素地に
混練により有機バインダを混合しその混合物を射出成形
し脱脂して形成し、一方、軸部脱脂体に関しては、翼部
の製造のために混練して得た混合物を材料として使用
し、脱脂した後に静水圧加圧成形する。
The invention of claim 2 specifically shows means for keeping the density difference between the blade portion and the shaft portion within 1% in relative density. Here, the blade degreased body is formed by mixing an organic binder by kneading into a silicon nitride base material and injection-molding and degreasing the mixture, while the shaft degreased body is kneaded for manufacturing the blade portion. The mixture thus obtained is used as a material, and after degreasing, isostatic pressing is performed.

【0017】つまり、翼部と軸部とを製造する場合に、
同じ混練工程にて、上述した様に、窒化珪素粒子の粉砕
により平均粒径が小さくなり、粒度分布が狭くなると同
時に、素地中の酸素量が増加し、また、金属粉が混入し
て緻密化が促進される。その結果、焼結の際の全ての温
度領域において、軸部は翼部と同様に緻密化するので、
翼部と軸部との密度差を相対密度で1%以内とすること
ができ、それによって、嵌合部のキレ不良を防止すると
ともに、バースト回転数を大幅に向上することができ
る。
That is, when manufacturing the wing portion and the shaft portion,
In the same kneading process, as described above, the crushing of silicon nitride particles reduces the average particle size, narrows the particle size distribution, and at the same time increases the oxygen content in the base material and densifies the metal powder. Is promoted. As a result, in all temperature regions during sintering, the shank densifies like the wings,
The relative density difference between the blade portion and the shaft portion can be set to be within 1%, thereby preventing the fitting portion from being defectively cracked and significantly improving the burst rotation speed.

【0018】尚、軸部を形成するための混合物は、射出
成形ではなく静水圧加圧成形に用いられるので、不要な
有機バインダを除去するために、成形の前に脱脂され
る。また、静水圧加圧成形に先だって、通常は、脱脂後
の混合物の解砕及び造粒が行われる。
Since the mixture for forming the shaft portion is used for hydrostatic pressure molding rather than injection molding, it is degreased before molding in order to remove unnecessary organic binder. Prior to the hydrostatic pressure molding, the mixture after degreasing is usually crushed and granulated.

【0019】請求項3の発明も、具体的に、翼部と軸部
との密度差を相対密度で1%以内とする手段を示したも
のである。ここでは、翼部脱脂体は、窒化珪素質素地に
混練により有機バインダを混合しその混合物を射出成形
し脱脂して形成するが、軸部脱脂体に関しては、前記請
求項2とは異なり、有機バインダを混練して得た混合物
を軸部用としてそのまま材料に用いるのではなく、それ
とは別に製造した材料を使用する。つまり、翼部用の混
合物と同様な酸素量、金属量、粒径、及び粒度分布を有
する窒化珪素質材料を用いて静水圧加圧成形を行なう。
The invention according to claim 3 also specifically shows means for keeping the density difference between the blade portion and the shaft portion within 1% in relative density. Here, the blade degreased body is formed by mixing the organic binder by kneading into the silicon nitride base material, injection-molding the mixture and degreasing the mixture. The mixture obtained by kneading the binder is not used as a material for the shaft portion as it is, but a material manufactured separately from it is used. That is, isostatic pressing is performed using a silicon nitride material having the same oxygen content, metal content, particle size, and particle size distribution as the mixture for the blade.

【0020】尚、この場合、軸部は静水圧加圧により成
形されるので、当然ながら、射出成形に用いられる有機
バインダは必要としない。この方法によっても、前記請
求項2とほぼ同様な効果が得られる。つまり、焼結の際
の全ての温度領域において、軸部は翼部と同様に緻密化
するので、翼部と軸部との密度差を相対密度で1%以内
とすることができ、嵌合部のキレ不良を防止するととも
に、バースト回転数を大幅に向上することができる。
In this case, since the shaft portion is molded by hydrostatic pressing, the organic binder used for injection molding is not necessary, of course. With this method as well, an effect similar to that of claim 2 can be obtained. That is, in all temperature regions during sintering, the shaft portion is densified in the same manner as the blade portion, so that the relative density difference between the blade portion and the shaft portion can be kept within 1% in terms of relative density. It is possible to prevent a sharp defect in the portion and to significantly improve the burst rotation speed.

【0021】[0021]

【実施例】以下に、本発明のセラミックタービンロータ
の製造方法の実施例について説明する。 (実施例)本実施例のセラミックタービンロータの製造
工程を、図1に示す。
EXAMPLES Examples of a method for manufacturing a ceramic turbine rotor according to the present invention will be described below. (Example) The manufacturing process of the ceramic turbine rotor of this example is shown in FIG.

【0022】平均粒怪0.75μm、α率95%のS
34粉末に、平均粒径1〜3μmのY23、AlN、
Al28を(6:3:3)の重量の割合で湿式混合し、
スプレードライヤーで乾燥した。得られた粉末100重
量部に対し、有機バインダとして、ポリエチレン樹脂
(13重量部)、マイクロクリスタリンワックス(10
重量部)及びジブチルフタレート(2重量部)を、合計
で25重量部(体積で50%相当)の割合で加え、混練
機にて15Hr混練する。そして、この混練によって製
造した混合物を用いて、所定の射出条件にて射出成形機
にて翼部を成形した。
S with an average grain size of 0.75 μm and an α ratio of 95%
i 3 N 4 powder, Y 2 O 3 having an average particle size of 1 to 3 μm, AlN,
Al 2 0 8 (6: 3: 3) were wet-mixed in a ratio by weight of,
It was dried with a spray dryer. With respect to 100 parts by weight of the obtained powder, polyethylene resin (13 parts by weight) and microcrystalline wax (10 parts by weight) were used as an organic binder.
Parts by weight) and dibutyl phthalate (2 parts by weight) at a total ratio of 25 parts by weight (corresponding to 50% by volume), and kneading is carried out for 15 hours with a kneader. Then, using the mixture produced by this kneading, the blade portion was molded by an injection molding machine under predetermined injection conditions.

【0023】次に、その翼部成形体に対し、非酸化雰囲
気中(例えば窒素雰囲気中)にて、脱脂を行った。例え
ば、450℃まで2.5℃/hrの昇温速度で加熱し、
その後、昇温速度を7.5℃/hrに増大して700℃
まで昇温し、700℃で2時間保持し、冷却した後に、
大気中にて、450℃まで100℃/hrの昇温速度で
加熱し、450℃で2時間保持することにより、脱脂を
行って、図2(a)に示す径寸法100mmの翼部脱脂
体1を得た。
Next, the blade body was degreased in a non-oxidizing atmosphere (for example, in a nitrogen atmosphere). For example, heating up to 450 ° C. at a heating rate of 2.5 ° C./hr,
After that, the temperature rising rate was increased to 7.5 ° C / hr to 700 ° C.
Up to 700 ° C for 2 hours, cool down,
Degreasing is performed by heating in air to a temperature of 450 ° C. at a temperature rising rate of 100 ° C./hr and holding at 450 ° C. for 2 hours to obtain a blade degreased body having a diameter of 100 mm shown in FIG. Got 1.

【0024】また、軸部の製造のために、同混合物に
ついて脱脂を行った。その脱脂の条件は、例えば、窒素
雰囲気中にて、450℃まで10℃/hrの昇温速度で
加熱し、その後、昇温速度を50℃/hrに増大して7
00℃まで昇温し、冷却した後に、大気中にて、450
℃まで100℃/hrの昇温速度で加熱し、450℃で
2時間保持するものである。
Further, the same mixture was degreased in order to manufacture the shaft portion. The degreasing condition is, for example, heating in a nitrogen atmosphere up to 450 ° C. at a temperature rising rate of 10 ° C./hr, and thereafter increasing the temperature rising rate to 50 ° C./hr to 7 ° C.
After heating up to 00 ° C and cooling, 450 in the atmosphere
It is heated up to 100 ° C. at a temperature rising rate of 100 ° C./hr and kept at 450 ° C. for 2 hours.

【0025】その後、この混合物を解砕、造粒し、その
造粒粉(粒径500μm以下)を用いて、軸部を静水圧
加圧成形し、図2(b)に示す加工前の軸部脱脂体2を
得た。この加工前の軸部脱脂体2を、前記翼部脱脂体1
の嵌合孔1aと密着して嵌合する様に、超硬バイトを用
いて図2(c)に示す所定の形状に加工し、軸部脱脂体
3を得た。
Thereafter, the mixture was crushed and granulated, and the granulated powder (particle size of 500 μm or less) was used to hydrostatically press the shaft portion, and the shaft before processing shown in FIG. A partially defatted body 2 was obtained. The shaft degreased body 2 before this processing is replaced with the blade degreased body 1 described above.
The shaft degreased body 3 was obtained by processing into a predetermined shape shown in FIG. 2 (c) using a cemented carbide bit so as to be closely fitted into the fitting hole 1a.

【0026】尚、図1の軸部の静水圧加圧成形の後の
(脱脂)は、使用される有機バインダ等の除去が十分で
ない場合等に適宜実施されるものである。 次に、翼部脱脂体1と軸部脱脂体3とを嵌合した後、
窒素雰囲気中にて、昇温速度600℃/hr、最終的な
焼成温度1700℃という条件で、常圧焼結を行った。
最後に研磨加工を行って、図2(c)に示すセラミック
タービンロータ4の焼結体を得た。 (比較例)次に、後述する実験に使用する比較例のセラ
ミックタービンロータの製造方法について、簡単に説明
する。
Incidentally, the (degreasing) after the hydrostatic pressure molding of the shaft portion of FIG. 1 is appropriately carried out when the removal of the used organic binder and the like is not sufficient. Next, after fitting the blade degreased body 1 and the shaft degreased body 3,
Pressureless sintering was performed in a nitrogen atmosphere under the conditions of a temperature rising rate of 600 ° C./hr and a final firing temperature of 1700 ° C.
Finally, polishing was performed to obtain a sintered body of the ceramic turbine rotor 4 shown in FIG. 2 (c). (Comparative Example) Next, a method of manufacturing a ceramic turbine rotor of a comparative example used in an experiment described later will be briefly described.

【0027】前記実施例と同様なSi34粉末に、同
様の割合でY23、AlN、Al28を加えて湿式混合
し、スプレードライヤーで乾燥した。得られた粉末に、
同様な割合で有機バインダを加え、ニーダー混練機にて
15Hr混練した。その混合物を用い射出成形機にて翼
部を成形した。その翼部成形体を、前記実施例と同様
に、非酸化雰囲気にて脱脂を行ない、同様な形状の翼部
脱脂体を得た。
Y 2 O 3 , AlN, and Al 2 O 8 were added to the same Si 3 N 4 powder as in the above-mentioned Examples in the same proportions, wet mixed, and dried by a spray dryer. In the obtained powder,
The organic binder was added at the same ratio, and the mixture was kneaded with a kneader kneader for 15 hours. The mixture was used to mold a blade with an injection molding machine. The blade formed body was degreased in a non-oxidizing atmosphere in the same manner as in the above-mentioned example to obtain a blade-shaped degreased body having the same shape.

【0028】また、平均粒径0.75μm、α率95
%のSi34粉末に、平均粒径1〜3μmのY23、A
lN、Al23を(6:3:3)の重量の割合で湿式混
合し、スプレードライヤーで造粒乾燥した。その造粒粉
を用いて軸部を静水圧加圧成形し、所定の形状に加工し
て、実施例と同様な形状の軸部を得た。尚、この軸部の
場合、有機バインダを加えていないので、脱脂を行わな
い。
Further, the average particle size is 0.75 μm and the α ratio is 95.
% Si 3 N 4 powder to Y 2 O 3 , A having an average particle size of 1 to 3 μm.
1N and Al 2 O 3 were wet mixed at a weight ratio of (6: 3: 3), and granulated and dried with a spray dryer. Using the granulated powder, the shaft portion was hydrostatically pressure-molded and processed into a predetermined shape to obtain a shaft portion having the same shape as that of the example. Incidentally, in the case of this shaft portion, since no organic binder is added, degreasing is not performed.

【0029】次に、翼部脱脂体と軸部を嵌合した後、
窒素雰囲気、1700℃で常圧焼結を行い、最後に研磨
加工を行って、実施例と同様な形状のセラミックタービ
ンロータの焼結体を得た。 (実験例)次に、本実施例の効果を確認するために行っ
た実験例について説明する。
Next, after fitting the blade degreasing body and the shaft portion,
Atmospheric pressure sintering was performed in a nitrogen atmosphere at 1700 ° C., and finally polishing was performed to obtain a sintered body of a ceramic turbine rotor having the same shape as that of the example. (Experimental Example) Next, an experimental example performed to confirm the effect of the present embodiment will be described.

【0030】上述した実施例の方法でセラミックタービ
ンロータを製造する場合において、その焼結の過程の各
温度における相対密度を、翼部及び軸部に分けて測定し
た。そして、その相対密度の密度差(=翼部の密度−軸
部の密度)も求めた。各温度に於ける密度測定は、焼結
スケジュール上で任意の温度に到達した時点で焼成をや
め冷却し、アルキメデス法にて密度を測定した。
When the ceramic turbine rotor was manufactured by the method of the above-mentioned embodiment, the relative density at each temperature during the sintering process was measured separately for the blade portion and the shaft portion. Then, the density difference between the relative densities (= the density of the blade portion-the density of the shaft portion) was also obtained. For the density measurement at each temperature, the firing was stopped when the temperature reached an arbitrary temperature on the sintering schedule, and the density was measured by the Archimedes method.

【0031】但し、相対密度={実際の密度(g/cm
3)/混合組成における計算密度(g/cm3)}×10
0(%) また、焼成後の翼部と軸部との嵌合部のキレ不良を観察
し、キレ不良率を求めた。
However, relative density = {actual density (g / cm
3 ) / calculated density in mixed composition (g / cm 3 )} × 10
0 (%) Further, the failure rate of the failure of the fitting portion between the blade portion and the shaft portion after firing was observed, and the failure rate was determined.

【0032】但し、キレ不良率=30本の試作による発
生率 更に、完成したセラミックタービンロータを回転させ
て、そのバースト回転数を測定した。それらの実験結果
を下記表1に記す。また、比較例の製造方法でもセラミ
ックタービンロータを製造し、同様な実験を行った。そ
の結果を同じく表1に記す。
However, the defective rate of scratches = the rate of occurrence of 30 prototypes, the completed ceramic turbine rotor was rotated, and the burst rotational speed thereof was measured. The experimental results are shown in Table 1 below. Also, a ceramic turbine rotor was manufactured by the manufacturing method of the comparative example, and the same experiment was conducted. The results are also shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】この表1から明かなように、同じように混
練した混合物を翼部及び軸部の材料とする本実施例の製
造方法では、焼結の過程の各温度における翼部と軸部と
の相対密度の密度差が1.0%以内であり、密度差が小
さいので、焼結されたセラミックタービンロータの嵌合
部におけるキレ不良の発生率が0%と好適であった。ま
た、バースト回転数に関しても、147000rpmと
高く、この点からも好適であった。
As can be seen from Table 1, in the manufacturing method of this embodiment, in which the same kneaded mixture is used as the material for the blade and the shaft, the blade and the shaft are formed at each temperature in the sintering process. Since the difference in relative density was less than 1.0% and the difference in density was small, the rate of occurrence of crack failure in the fitting portion of the sintered ceramic turbine rotor was 0%, which was preferable. Further, the burst rotation speed was as high as 147,000 rpm, which was also suitable from this point.

【0035】これに対して、比較例の(同じように混練
した混合物を用いない)製造方法では、焼結の過程の各
温度における翼部と軸部との相対密度の密度差が1.0
%を上回ることがあり、密度差が大きいので、焼結され
たセラミックタービンロータの嵌合部におけるキレ不良
の発生率が50%と多く好ましくない。また、バースト
回転数に関しても、121000rpmと低く、この点
からも好ましくない。
On the other hand, in the manufacturing method of the comparative example (without using the similarly kneaded mixture), the difference in relative density between the blade and the shaft at each temperature in the sintering process is 1.0.
%, And there is a large difference in density, and the occurrence rate of defective cracking at the fitting portion of the sintered ceramic turbine rotor is as large as 50%, which is not preferable. The burst rotation speed is also low at 121,000 rpm, which is also not preferable.

【0036】尚、本発明は前記実施例になんら限定され
るものではなく、本発明の要旨を逸脱しない範囲におい
て種々の態様で実施しうることはいうまでもない。
Needless to say, the present invention is not limited to the above-mentioned embodiments, and can be carried out in various modes without departing from the gist of the present invention.

【0037】[0037]

【発明の効果】以上詳述した様に、請求項1〜3の発明
の窒化珪素質の嵌合及び焼結によって製造するセラミッ
クタービンロータの製造方法によれば、焼結されたセラ
ミックタービンロータの嵌合部におけるキレ不良の発生
率が低くなり、しかも、バースト回転数が高くなるとい
う顕著な効果を奏する。
As described in detail above, according to the method for manufacturing a ceramic turbine rotor manufactured by fitting and sintering silicon nitride based on the inventions of claims 1 to 3, the sintered ceramic turbine rotor The remarkable effect that the occurrence rate of the breakage defect in the fitting portion is lowered and the burst rotation speed is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例のセラミックタービンロータの製造工
程を示す説明図である。
FIG. 1 is an explanatory view showing a manufacturing process of a ceramic turbine rotor of an embodiment.

【図2】 実施例のセラミックタービンロータを示し、
(a)はその翼部を一部破断して示す正面図、(b)は
その軸部を示す正面図、(c)はタービンロータを一部
破断して示す正面図である。
FIG. 2 shows an example ceramic turbine rotor,
(A) is a front view showing a part of the blade portion thereof cut away, (b) is a front view showing a shaft portion thereof, and (c) is a front view showing a turbine rotor partly cut away.

【図3】 従来のセラミックタービンロータの製造工程
を示す説明図である。
FIG. 3 is an explanatory view showing a manufacturing process of a conventional ceramic turbine rotor.

【符号の説明】[Explanation of symbols]

1…翼部脱脂体 2…加工前の軸部脱脂体 3…軸部脱脂体 4…セラミックタービンロータ 1 ... Blade degreasing body 2 ... Shaft degreasing body before processing 3 ... Shafting degreasing body 4 ... Ceramic turbine rotor

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 射出成形した翼部脱脂体と、静水圧加圧
成形した軸部脱脂体とを嵌合した後に焼結する窒化珪素
質のタービンロータの製造方法において、 前記焼結の過程の各温度における翼部と軸部との密度差
を相対密度で1%以内とすることを特徴とするセラミッ
クタービンロータの製造方法。
1. A method for manufacturing a silicon nitride turbine rotor, which comprises sintering an injection-molded blade degreased body and a hydrostatic pressure-molded shaft degreased body and then sintering the same. A method for manufacturing a ceramic turbine rotor, characterized in that the relative density of the density difference between the blade portion and the shaft portion at each temperature is within 1%.
【請求項2】 射出成形した翼部脱脂体と、静水圧加圧
成形した軸部脱脂体とを嵌合した後に焼結する窒化珪素
質のタービンロータの製造方法において、 窒化珪素質素地に混練により有機バインダを混合しその
混合物を射出成形し脱脂した翼部脱脂体と、同混練によ
って得られた混合物を脱脂した後に静水圧加圧成形した
軸部脱脂体とを嵌合し、前記焼結を行なうことを特徴と
するセラミックタービンロータの製造方法。
2. A method for manufacturing a silicon nitride turbine rotor in which an injection-molded blade degreased body and a hydrostatic pressure-molded shaft degreased body are fitted together and then sintered, in a silicon nitride matrix. By mixing the organic binder by injection molding and degreasing the mixture, the blade degreased body and the shaft degreased body obtained by degreasing the mixture obtained by the same kneading and then isostatic pressing are fitted, and the sintering is performed. A method for manufacturing a ceramic turbine rotor, comprising:
【請求項3】 射出成形した翼部脱脂体と、静水圧加圧
成形した軸部脱脂体とを嵌合した後に焼結する窒化珪素
質のタービンロータの製造方法において、 窒化珪素質素地に混練により有機バインダを混合しその
混合物を射出成形し脱脂した翼部脱脂体と、前記混合物
と同様な酸素量、金属量、粒径、及び粒度分布を有する
窒化珪素質材料を用いて静水圧加圧成形した軸部脱脂体
とを嵌合し、前記焼結を行なうことを特徴とするセラミ
ックタービンロータの製造方法。
3. A method for manufacturing a silicon nitride turbine rotor in which an injection-molded blade degreased body and a hydrostatically pressure-molded shaft degreased body are fitted and then sintered, in which a silicon nitride matrix is kneaded. Hydrostatic pressure is applied by using a degreased blade portion obtained by mixing the organic binder with the above and injection-molding the mixture and degreasing it, and a silicon nitride material having the same oxygen content, metal content, particle size, and particle size distribution as the above mixture. A method for manufacturing a ceramic turbine rotor, comprising fitting the molded degreased shaft portion and performing the sintering.
JP07405696A 1996-03-28 1996-03-28 Manufacturing method of ceramic turbine rotor Expired - Fee Related JP3245346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07405696A JP3245346B2 (en) 1996-03-28 1996-03-28 Manufacturing method of ceramic turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07405696A JP3245346B2 (en) 1996-03-28 1996-03-28 Manufacturing method of ceramic turbine rotor

Publications (2)

Publication Number Publication Date
JPH09263455A true JPH09263455A (en) 1997-10-07
JP3245346B2 JP3245346B2 (en) 2002-01-15

Family

ID=13536162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07405696A Expired - Fee Related JP3245346B2 (en) 1996-03-28 1996-03-28 Manufacturing method of ceramic turbine rotor

Country Status (1)

Country Link
JP (1) JP3245346B2 (en)

Also Published As

Publication number Publication date
JP3245346B2 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JPH0231648B2 (en)
JP5322382B2 (en) Ceramic composite member and manufacturing method thereof
JP4261130B2 (en) Silicon / silicon carbide composite material
JP2002326875A (en) Abrasion resistant member of silicon nitride and its manufacturing method
JP5527949B2 (en) Silicon nitride sintered body
JP2003034581A (en) Silicon nitride abrasion resistant member and method for producing the same
EP2636659B1 (en) High rigidity ceramic material and method for producing same
JPS59109304A (en) Manufacture of radial type ceramic turbine rotor
JPH09263455A (en) Manufacture of ceramic turbine rotor
JP5673946B2 (en) Method for producing silicon nitride ceramics
US5008054A (en) Ceramic injection molded body and method of injection molding the same
US5030397A (en) Method of making large cross section injection molded or slip cast ceramics shapes
EP0708067B1 (en) Ceramic material and method for manufacturing ceramic product utilizing it
JP2007283435A (en) Silicon-carbide-based polishing plate, manufacturing method, and polishing method for semiconductor wafer
US5342166A (en) Ceramic gas-turbine nozzle with cooling fine holes and method for preparing the same
KR101722652B1 (en) A composite ceramic material having ultra high temperature stability in atmosphere and manufacturing method of the composite ceramic material
JPH0375510B2 (en)
JP2829724B2 (en) Silicon nitride composite ceramics and method for producing the same
Carlsson The shaping of engineering ceramics
JPH08295569A (en) Silicon nitride-based sintered compact and its production
EP0112146A2 (en) Radial blade type ceramic rotor and method of producing the same
CN109516829A (en) A method of alleviating porous silicon nitride and transparent aluminium oxynitride ceramic joining process thermal stress
KR102573024B1 (en) Capillary for Wire Bonding and Method for Manufacturing the Same
JP3564165B2 (en) Method for producing silicon nitride reaction sintered body
KR101722648B1 (en) An induced heatful device having core-shell structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees