JPH09260934A - Microstrip antenna - Google Patents

Microstrip antenna

Info

Publication number
JPH09260934A
JPH09260934A JP7073096A JP7073096A JPH09260934A JP H09260934 A JPH09260934 A JP H09260934A JP 7073096 A JP7073096 A JP 7073096A JP 7073096 A JP7073096 A JP 7073096A JP H09260934 A JPH09260934 A JP H09260934A
Authority
JP
Japan
Prior art keywords
radiation
conductor
microstrip antenna
radiation conductor
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7073096A
Other languages
Japanese (ja)
Inventor
Hiromichi Goto
弘通 後藤
Katsuya Tsukamoto
活也 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7073096A priority Critical patent/JPH09260934A/en
Publication of JPH09260934A publication Critical patent/JPH09260934A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the microstrip antenna covering two frequency bands while keeping miniaturization. SOLUTION: Two radiation conductors 1, 2 are arranged in parallel. The radiation conductors 1, 2 are opposed to a ground conductor 4 via a dielectric layer 3 and the radiation conductors 1, 2 are electrically short-circuited to the ground conductor, one radiation conductor 1 is formed as a feeding element having a feeding section 5 and the other radiation conductor 2 is formed as a parasitic element without a feeding part. Plural slits 6 to each of the radiation conductors 1, 2. Two resonance states consisting of the resonance of the feeding element by the radiation conductor 1 and the resonance by the radiation conductor 2 of the parasitic element operated by electromagnetic coupling with the radiation conductor 1 of the feeding element are formed. Furthermore, the circumferential length of the radiation conductors 1, 2 is extended by the circumferential length of the slits 6 to reduce the area of the radiation conductors 1, 2 to make the microstrip antenna small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、携帯電話機など移
動体通信用機器への組み込みに適した小型のマイクロス
トリップアンテナに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact microstrip antenna suitable for being incorporated in a mobile communication device such as a mobile phone.

【0002】[0002]

【従来の技術】最近では携帯電話機などの移動体通信機
器の普及により、使用周波数帯域に対して無線局の数が
著しく多くなっており、通信の混雑が問題になってい
る。特に約800MHz帯の携帯電話機については、使
用周波数帯域が狭いためにチャンネルが混雑し、通信に
支障が出ている。そこで携帯電話機ではデジタル式とア
ナログ式で周波数帯域が違うことを利用し、一方の周波
数帯域のチャンネルが混雑しているときには他方の周波
数帯域のチャンネルに切り換えることによって、混み具
合を緩和することが行なわれるようになっている。
2. Description of the Related Art Recently, with the spread of mobile communication devices such as mobile phones, the number of wireless stations has increased remarkably with respect to the frequency band used, and communication congestion has become a problem. In particular, for mobile phones in the 800 MHz band, channels are congested due to the narrow frequency band used, which hinders communication. Therefore, mobile phones use the difference in frequency band between digital and analog systems, and when one frequency band channel is congested, switch to the other frequency band channel to reduce the degree of congestion. It is supposed to be.

【0003】一方、携帯電話機などの移動体通信機器に
内蔵するアンテナとしては、アンテナ体積を小さく形成
することが容易な逆F型マイクロストリップアンテナが
よく用いられている。
On the other hand, as an antenna incorporated in a mobile communication device such as a mobile phone, an inverted F-type microstrip antenna is often used because it is easy to form a small antenna volume.

【0004】[0004]

【発明が解決しようとする課題】しかし、逆F型マイク
ロストリップアンテナはダイポールアンテナなどと比較
して共振周波数帯域が狭く、デジタル式とアナログ式の
周波数帯域の両方をカバーするのは非常に困難である。
帯域を広げる方法としてはアンテナ高さを高くする方法
があるが、この場合にはアンテナ体積が大きくなって移
動体通信機器に内蔵するのが難しくなり、現実的な方法
ではない。
However, the inverse F-type microstrip antenna has a narrow resonance frequency band as compared with a dipole antenna or the like, and it is very difficult to cover both digital and analog frequency bands. is there.
There is a method of increasing the height of the antenna as a method of widening the band, but in this case, the volume of the antenna becomes large and it is difficult to incorporate the antenna in the mobile communication device, which is not a realistic method.

【0005】本発明は上記の点に鑑みてなされたもので
あり、小型化しつつ、2つの周波数帯域をカバーするこ
とができるマイクロストリップアンテナを提供すること
を目的とするものである。
The present invention has been made in view of the above points, and an object thereof is to provide a microstrip antenna capable of covering two frequency bands while being downsized.

【0006】[0006]

【課題を解決するための手段】本発明に係るマイクロス
トリップアンテナは、二つの放射導体1,2を並列配置
し、各放射導体1,2を誘電体層3を介して接地導体4
と対向させると共に各放射導体1,2を接地導体と電気
的に短絡させ、一方の放射導体1を給電部5を有する給
電素子として形成すると共に他方の放射導体2を給電部
を有しない無給電素子として形成し、各放射導体1,2
に複数のスリット6を設けて成ることを特徴とするもの
である。
In the microstrip antenna according to the present invention, two radiation conductors 1 and 2 are arranged in parallel, and each radiation conductor 1 and 2 is grounded through a dielectric layer 3 to a ground conductor 4.
And the respective radiation conductors 1 and 2 are electrically short-circuited with the grounding conductor to form one radiation conductor 1 as a feeding element having a feeding portion 5 and the other radiation conductor 2 without feeding a feeding portion. Formed as an element, each radiation conductor 1, 2
Is provided with a plurality of slits 6.

【0007】また請求項2の発明は、二つの放射導体
1,2を0.011λ(λ=使用周波数での波長)以上
離して配置して成ることを特徴とするものである。
Further, the invention of claim 2 is characterized in that the two radiation conductors 1 and 2 are arranged at a distance of 0.011λ (λ = wavelength at a use frequency) or more.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の実施の一形態を示すものであり、
金属板で形成される接地導体4の端部の表面に誘電体層
3を接着等して積層すると共に、誘電体層3の表面に銅
箔等のパッチ状の金属箔を積層して二つの放射導体1,
2が設けてある。二つの放射導体1,2はマイクロスト
リップアンテナを携帯用通信機器に組み込むときに上側
と下側になるように平行に並べて設けてある。そして各
放射導体1,2の一端部には短絡部7が設けてある。短
絡部7は例えば、誘電体層3を貫通する貫通孔の内周に
金属メッキを設けることによって形成されるものであ
り、短絡部7によって各放射導体1,2を接地導体3に
電気的に接続するようにしてある。
Embodiments of the present invention will be described below. FIG. 1 shows an embodiment of the present invention.
The dielectric layer 3 is laminated on the surface of the end portion of the ground conductor 4 formed of a metal plate by bonding or the like, and a patch-shaped metal foil such as a copper foil is laminated on the surface of the dielectric layer 3 to form two layers. Radiation conductor 1,
2 are provided. The two radiating conductors 1 and 2 are arranged in parallel so that they are on the upper side and the lower side when the microstrip antenna is incorporated in a portable communication device. A short-circuit portion 7 is provided at one end of each radiation conductor 1, 2. The short-circuit portion 7 is formed, for example, by providing metal plating on the inner circumference of a through hole that penetrates the dielectric layer 3. The short-circuit portion 7 electrically connects the radiation conductors 1 and 2 to the ground conductor 3. I am trying to connect.

【0009】また二つの放射導体1,2のうち一方(マ
イクロストリップアンテナを携帯用通信機器に組み込む
ときに上側になる放射導体1)に、短絡部7の近傍にお
いて給電部5が設けてある。給電部5は誘電体層3を貫
通する貫通孔の内周に金属メッキを設けることによって
形成されるものであり、接地導体4側から給電するよう
にしてある。このように、二つの放射導体1,2のうち
一方の放射導体1は給電部5を有する給電素子として形
成し、他方の放射導体2を給電部を有しない無給電素子
として形成するようにしてある。
Further, one of the two radiating conductors 1 and 2 (the radiating conductor 1 which is on the upper side when the microstrip antenna is incorporated in a portable communication device) is provided with a feeding portion 5 near the short-circuit portion 7. The power feeding part 5 is formed by providing metal plating on the inner circumference of a through hole penetrating the dielectric layer 3, and power is fed from the ground conductor 4 side. As described above, one of the two radiation conductors 1 and 2 is formed as a feeding element having the feeding portion 5, and the other radiation conductor 2 is formed as a parasitic element having no feeding portion. is there.

【0010】このように給電素子として形成した放射導
体1と無給電素子として形成した放射導体2を並べて設
けることによって、給電素子の放射導体1による共振
と、給電素子の放射導体1からの電磁結合によって動作
する無給電素子の放射導体2による共振との、2つの共
振をつくることができるものである。従って、2つの共
振を携帯電話のデジタル式の場合の使用周波数帯域(中
心の周波数は818MHzであり、±8MHz程度の範
囲が周波数帯域)と携帯電話のアナログ式の場合の使用
周波数帯域(中心の周波数は873MHzであり、±1
3MHz程度の範囲が周波数帯域)にそれぞれ合わせる
ことによって、2つの周波数帯域をカバーすることがで
きるものである。
By thus providing the radiation conductor 1 formed as a feeding element and the radiation conductor 2 formed as a parasitic element side by side, resonance due to the radiation conductor 1 of the feeding element and electromagnetic coupling from the radiation conductor 1 of the feeding element. It is possible to create two resonances, that is, the resonance by the radiation conductor 2 of the parasitic element operated by. Therefore, two resonances are used in the frequency band of the digital type of the mobile phone (the center frequency is 818 MHz and the range of ± 8 MHz is the frequency band) and the frequency band of the analog type of the mobile phone (the center frequency is The frequency is 873MHz, ± 1
It is possible to cover two frequency bands by adjusting the range of about 3 MHz to the frequency band.

【0011】但し、給電素子の放射導体1と無給電素子
の放射導体2を上下に並べると、誘電体層3の面積が二
倍になり、マイクロストリップアンテナの体積が約2倍
になる。このために本発明では、給電素子の放射導体1
と無給電素子の放射導体2にそれぞれ複数のスリット6
を設けることによって、各放射導体1,2の面積を小さ
くし、マイクロストリップアンテナを小型化するように
している。すなわち、放射導体1,2にスリット6を設
けることによってスリット6の周長分、放射導体1,2
の周囲長が長くなり、共振する周波数の波長λが長くな
る(つまり共振周波数は低くなる)。従って、放射導体
1,2の面積を小さく形成してもスリット6を設けるこ
とによって、放射導体1,2の周囲長を同じ寸法に形成
することができ、同じ周波数に共振させるのであれば、
スリット6を設けることによって放射導体1,2の面積
を小さくすることができるものであり、マイクロストリ
ップアンテナを小型化することができるのである。
However, if the radiation conductor 1 of the feeding element and the radiation conductor 2 of the parasitic element are arranged vertically, the area of the dielectric layer 3 is doubled, and the volume of the microstrip antenna is approximately doubled. For this reason, in the present invention, the radiation conductor 1 of the feeding element is used.
And a plurality of slits 6 on the radiation conductor 2 of the parasitic element, respectively.
Is provided, the area of each radiation conductor 1 and 2 is reduced, and the microstrip antenna is downsized. That is, by providing the slits 6 on the radiation conductors 1 and 2, the radiation conductors 1 and 2 are divided by the circumferential length of the slit 6.
And the wavelength λ of the resonance frequency becomes longer (that is, the resonance frequency becomes lower). Therefore, even if the areas of the radiation conductors 1 and 2 are formed small, by providing the slits 6, the circumferential lengths of the radiation conductors 1 and 2 can be formed to have the same size, and if they are resonated at the same frequency,
By providing the slit 6, the area of the radiation conductors 1 and 2 can be reduced, and the microstrip antenna can be miniaturized.

【0012】また、このように放射導体1,2にスリッ
ト6を設けると、給電素子の放射導体1と無給電素子の
放射導体2の電磁結合が強くなり、給電素子の放射導体
1により発生する共振と、無給電素子の放射導体2によ
り発生する共振のそれぞれの共振周波数を独立して調整
することが困難になる。このために請求項2の発明で
は、給電素子の放射導体1と無給電素子の放射導体2の
それぞれの共振周波数を独立して調整できるように、給
電素子の放射導体1と無給電素子の放射導体2を0.0
11λ(λ=使用周波数での波長)以上の間隔で離して
形成するようにしてある。給電素子の放射導体1と無給
電素子の放射導体2の間隔は大きい程好ましいが、この
間隔を大きくするとマイクロストリップアンテナの小型
化が難しくなるので、この間隔は0.2λ程度を上限に
するが好ましい。尚、本発明では給電素子の放射導体1
による共振と無給電素子の放射導体2による共振の2つ
の共振が発生して受信周波数のピークは図2のように2
つできるが、本発明において上記の使用周波数とは、こ
の2つのピークの中央の周波数をいうものである。
Further, when the slits 6 are provided in the radiation conductors 1 and 2 as described above, the electromagnetic coupling between the radiation conductor 1 of the feeding element and the radiation conductor 2 of the parasitic element is strengthened, and is generated by the radiation conductor 1 of the feeding element. It becomes difficult to independently adjust each resonance frequency of the resonance and the resonance generated by the radiation conductor 2 of the parasitic element. For this reason, in the invention of claim 2, the radiation conductor 1 of the feeding element and the radiation of the parasitic element are adjusted so that the respective resonance frequencies of the radiation conductor 1 of the feeding element and the radiation conductor 2 of the parasitic element can be adjusted independently. Conductor 2 to 0.0
They are formed at intervals of 11 λ (λ = wavelength at the used frequency) or more. The larger the distance between the radiating conductor 1 of the feeding element and the radiating conductor 2 of the parasitic element, the more preferable it is. However, if the distance is increased, it becomes difficult to downsize the microstrip antenna. Therefore, the upper limit of this distance is about 0.2λ. preferable. In the present invention, the radiation conductor 1 of the power feeding element
2 and the radiation conductor 2 of the parasitic element cause two resonances, and the peak of the reception frequency is 2 as shown in FIG.
However, in the present invention, the above-mentioned used frequency means the center frequency of these two peaks.

【0013】[0013]

【実施例】次に、本発明を実施例によって具体的に説明
する。 (実施例1)誘電体層3として比誘電率εr=3.5の
プリント配線板を用い、放射導体1,2として銅箔を、
接地導体4として真鍮板をそれぞれ用いて、図1のよう
な二つの放射導体1,2を並列配置したマイクロストリ
ップアンテナを作製した。二つの各放射導体1,2は貫
通孔に銅メッキを施して形成した短絡部7によって接地
導体4と電気的に接続してある。またこの二つの各放射
導体1,2のうち一方の放射導体1には貫通孔に銅メッ
キを施して形成した給電部5を設けて給電素子として形
成してあり、給電部5の接地導体4の側の端部に給電ケ
ーブルを接続するようにしてある。他方の放射導体2は
このような給電部を有しない無給電素子として形成して
ある。このマイクロストリップアンテナの各部の寸法は
図1に示す通りであり(単位はmm)、各放射導体1,
2にそれぞれ幅0.8mm、長さ6.2mmのスリット
6を15本ずつ設けた。また放射導体1,2の間隔は4
mm(0.011λ)に設定した。
EXAMPLES Next, the present invention will be specifically described with reference to examples. Example 1 A printed wiring board having a relative dielectric constant εr = 3.5 is used as the dielectric layer 3, and copper foil is used as the radiation conductors 1 and 2.
A brass plate was used as the grounding conductor 4 to fabricate a microstrip antenna in which two radiation conductors 1 and 2 are arranged in parallel as shown in FIG. The two radiation conductors 1 and 2 are electrically connected to the ground conductor 4 by a short-circuit portion 7 formed by plating a through hole with copper. Further, one of the two radiation conductors 1 and 2 is provided with a feeding portion 5 formed by plating a through hole with copper to form a feeding element, and the grounding conductor 4 of the feeding portion 5 is formed. A power supply cable is connected to the end on the side of. The other radiation conductor 2 is formed as a parasitic element having no such feeding portion. The dimensions of each part of this microstrip antenna are as shown in FIG. 1 (unit: mm).
Two slits 6 each having a width of 0.8 mm and a length of 6.2 mm were provided in each of the 2 pieces. The distance between the radiation conductors 1 and 4 is 4
It was set to mm (0.011λ).

【0014】(比較例1)誘電体層3として比誘電率ε
r=3.5のプリント配線板を用い、放射導体10とし
て銅箔を、接地導体4として真鍮板をそれぞれ用いて、
図4のような標準的な逆F型マイクロストリップアンテ
ナを作製した。放射導体10は貫通孔に銅メッキを施し
て形成した短絡部7によって接地導体4と電気的に接続
してあり、また貫通孔に銅メッキを施して形成した給電
部5の接地導体4の側の端部に給電ケーブルを接続する
ようにしてある。このマイクロストリップアンテナの各
部の寸法は図4に示す通りである(単位はmm)。
Comparative Example 1 The dielectric layer 3 has a relative permittivity ε.
Using a printed wiring board of r = 3.5, using a copper foil as the radiation conductor 10 and a brass plate as the grounding conductor 4,
A standard inverted F-type microstrip antenna as shown in FIG. 4 was manufactured. The radiation conductor 10 is electrically connected to the ground conductor 4 by a short-circuit portion 7 formed by plating the through hole with copper, and the side of the ground conductor 4 of the power feeding portion 5 formed by plating the through hole with copper. A power supply cable is connected to the end of the. The dimensions of each part of this microstrip antenna are as shown in FIG. 4 (unit is mm).

【0015】(比較例2)誘電体層3として比誘電率ε
r=3.5のプリント配線板を用い、放射導体10とし
て銅箔を、接地導体4として真鍮板をそれぞれ用いて、
図6のような逆F型マイクロストリップアンテナを作製
した。放射導体10は貫通孔に銅メッキを施して形成し
た短絡部7によって接地導体4と電気的に接続してあ
り、また貫通孔に銅メッキを施して形成した給電部5の
接地導体4の側の端部に給電ケーブルを接続するように
してある。このマイクロストリップアンテナの各部の寸
法は図6に示す通りであり(単位はmm)、放射導体1
0に幅1.0mm、長さ14.5mmのスリット6を1
本設けた。
(Comparative Example 2) As the dielectric layer 3, the relative permittivity ε
Using a printed wiring board of r = 3.5, using a copper foil as the radiation conductor 10 and a brass plate as the grounding conductor 4,
An inverted F type microstrip antenna as shown in FIG. 6 was produced. The radiation conductor 10 is electrically connected to the ground conductor 4 by a short-circuit portion 7 formed by plating the through hole with copper, and the side of the ground conductor 4 of the power feeding portion 5 formed by plating the through hole with copper. A power supply cable is connected to the end of the. The dimensions of each part of this microstrip antenna are as shown in FIG. 6 (unit: mm).
1 slit 0 with width 1.0mm and length 14.5mm
Book provided.

【0016】実施例1のマイクロストリップアンテナの
インピーダンス特性を図2に、比較例1のマイクロスト
リップアンテナのインピーダンス特性を図5に、比較例
2のマイクロストリップアンテナのインピーダンス特性
を図7にそれぞれ示す。各図において(a)はスミスチ
ャート、(b)は周波数に対するVSWR(電圧定在波
比)を示す図であり、横軸に周波数を、縦軸にVSWR
を示す。
FIG. 2 shows the impedance characteristic of the microstrip antenna of Example 1, FIG. 5 shows the impedance characteristic of the microstrip antenna of Comparative Example 1, and FIG. 7 shows the impedance characteristic of the microstrip antenna of Comparative Example 2. In each figure, (a) is a Smith chart, (b) is a diagram showing VSWR (voltage standing wave ratio) with respect to frequency, where the horizontal axis represents frequency and the vertical axis represents VSWR.
Is shown.

【0017】まず比較例1のインピーダンス特性を示す
図5について検討すると、図5(a)のスミスチャート
は周波数750MHzから950MHzの間を掃引した
ときの軌跡を示しており、図5(a)(b)においてマ
ーカ1は810MHz、マーカ2は826MHz、マー
カ3は860MHz、マーカ4は885MHzを示す。
そして図5(b)にみられるように、携帯電話のデジタ
ルの周波数帯域の下側の端の810MHzでVSWRが
4.8、上側の端の826MHzでVSWRが2.5、
携帯電話のアナログの周波数帯域の下側の端の860M
HzでVSWRが2.3、上側の端の885MHzでV
SWRが4.5である。このように標準的な逆F型マイ
クロストリップアンテナでは共振のピークが一つである
ために、携帯電話のデジタルの周波数帯域の下側の端の
周波数と携帯電話のアナログの周波数帯域の上側の端の
周波数でVSWRが大きくなり、二つの周波数帯域をカ
バーすることは困難である。
First, considering FIG. 5 showing the impedance characteristics of Comparative Example 1, the Smith chart of FIG. 5A shows a locus when the frequency is swept from 750 MHz to 950 MHz, and FIG. In b), the marker 1 indicates 810 MHz, the marker 2 indicates 826 MHz, the marker 3 indicates 860 MHz, and the marker 4 indicates 885 MHz.
Then, as shown in FIG. 5B, VSWR is 4.8 at the lower end of 810 MHz of the digital frequency band of the mobile phone, and VSWR is 2.5 at the upper end of 826 MHz.
860M at the lower end of the mobile phone analog frequency band
VSWR is 2.3 at Hz, V at 885MHz at the upper end
SWR is 4.5. As described above, since the standard inverted F-type microstrip antenna has only one resonance peak, the frequency at the lower end of the digital frequency band of the mobile phone and the upper end of the analog frequency band of the mobile phone are It becomes difficult to cover two frequency bands because VSWR becomes large at the frequency of.

【0018】次に、比較例2は放射導体10にスリット
8を設けた逆F型マイクロストリップアンテナであり、
放射導体10にスリット8を設けることによって誘電体
層3の寸法が30×20×5mmとなって、32×28
×5mmの比較例1のマイクロストリップアンテナより
も寸法を小さくして小型化することができた。また比較
例2のインピーダンス特性を示す図7について検討する
と、図7(a)のスミスチャートは周波数750MHz
から950MHzの間を掃引したときの軌跡を示してお
り、図7(a)(b)においてマーカ1は810MH
z、マーカ2は826MHz、マーカ3は860MH
z、マーカ4は885MHzを示す。そして図7(b)
にみられるように、携帯電話のデジタルの周波数帯域の
下側の端の810MHzでVSWRが6.4、上側の端
の826MHzでVSWRが2.9、携帯電話のアナロ
グの周波数帯域の下側の端の860MHzでVSWRが
2.4、上側の端の885MHzでVSWRが5.6で
ある。このように比較例2のマイクロストリップアンテ
ナは標準的な逆F型マイクロストリップアンテナである
比較例1のものよりも小型化することができるが、比較
例1のものと同様に共振のピークが一つであるために、
携帯電話のデジタルの周波数帯域の下側の端の周波数と
携帯電話のアナログの周波数帯域の上側の端の周波数で
VSWRが大きくなり、二つの周波数帯域をカバーする
ことは困難である。
Next, Comparative Example 2 is an inverted F type microstrip antenna in which the slit 8 is provided in the radiation conductor 10,
By providing the slit 8 in the radiation conductor 10, the size of the dielectric layer 3 becomes 30 × 20 × 5 mm, and 32 × 28.
It was possible to reduce the size and size of the microstrip antenna of Comparative Example 1 having a size of × 5 mm. Further, considering FIG. 7 showing the impedance characteristics of Comparative Example 2, the Smith chart of FIG. 7A shows a frequency of 750 MHz.
7 shows a locus when swept from 950 MHz to 950 MHz, and the marker 1 is 810 MH in FIGS.
z, marker 2 is 826 MHz, marker 3 is 860 MH
z and marker 4 indicate 885 MHz. And FIG. 7 (b)
As can be seen in Fig. 7, the VSWR at the lower end of the mobile phone digital frequency band is 6.4 MHz, the VSWR is 6.4 at the upper end of 826 MHz, and the VSWR is 2.9 at the lower end of the mobile phone analog frequency band. The VSWR is 2.4 at the end of 860 MHz, and the VSWR is 5.6 at the upper end of 885 MHz. As described above, the microstrip antenna of the comparative example 2 can be made smaller than that of the standard inverse F-type microstrip antenna of the comparative example 1, but the resonance peak is similar to that of the comparative example 1. To be one
It is difficult to cover two frequency bands because the VSWR becomes large at the frequency at the lower end of the digital frequency band of the mobile phone and at the frequency at the upper end of the analog frequency band of the mobile phone.

【0019】さらに実施例1は放射導体1,2にスリッ
ト8を設けたマイクロストリップアンテナであり、誘電
体層3の寸法が比較例2と同じ30×20×5mmとな
って、比較例1のマイクロストリップアンテナよりも寸
法を小さくして小型化することができた。また実施例1
のインピーダンス特性を示す図2について検討すると、
図2(a)のスミスチャートは周波数750MHzから
950MHzの間を掃引したときの軌跡を示しており、
図2(a)(b)においてマーカ1は810MHz、マ
ーカ2は826MHz、マーカ3は860MHz、マー
カ4は885MHzを示す。そして図2(b)にみられ
るように、携帯電話のデジタルの周波数帯域の下側の端
の810MHzでVSWRが3.9、上側の端の826
MHzでVSWRが4.2、携帯電話のアナログの周波
数帯域の下側の端の860MHzでVSWRが2.5、
上側の端の885MHzでVSWRが3.1である。こ
のように、実施例1のマイクロストリップアンテナでは
共振のピークが二つであるために、携帯電話のデジタル
の周波数帯域の下側と上側の端の周波数のVSWRや携
帯電話のアナログの周波数帯域の下側と上側の端の周波
数のVSWRがそれぞれ小さくなり、二つの周波数帯域
をカバーすることができるものである。
Further, Example 1 is a microstrip antenna in which the slits 8 are provided in the radiation conductors 1 and 2, and the size of the dielectric layer 3 is 30 × 20 × 5 mm, which is the same as that of Comparative Example 2, and the size of Comparative Example 1 is It was possible to reduce the size and size of the microstrip antenna. Example 1
Considering FIG. 2 showing the impedance characteristic of
The Smith chart of FIG. 2A shows a locus when a frequency is swept from 750 MHz to 950 MHz.
2A and 2B, the marker 1 indicates 810 MHz, the marker 2 indicates 826 MHz, the marker 3 indicates 860 MHz, and the marker 4 indicates 885 MHz. Then, as shown in FIG. 2B, VSWR is 3.9 at the lower end of 810 MHz of the digital frequency band of the mobile phone and 826 at the upper end.
VSWR is 4.2 at MHz, VSWR is 2.5 at 860 MHz at the lower end of the analog frequency band of the mobile phone,
The VSWR is 3.1 at 885 MHz at the upper end. As described above, since the microstrip antenna of the first embodiment has two resonance peaks, the VSWR of the lower and upper end frequencies of the mobile phone digital frequency band and the analog frequency band of the mobile phone The VSWR of the frequencies at the lower end and the upper end becomes smaller, respectively, and it is possible to cover two frequency bands.

【0020】また実施例1のマイクロストリップアンテ
ナについて、給電素子である放射導体1と無給電素子で
ある放射導体2の間隔を変えて、2つの共振周波数のピ
ークの差を測定し、図3に示した。図3にみられるよう
に、給電素子である放射導体1と無給電素子である放射
導体2の間隔が小さいと共振周波数のピークが近くなっ
てそれぞれの共振周波数を独立して調整することが困難
になりことが確認される。そして携帯電話のデジタルの
周波数帯域とアナログの周波数帯域との差(55MH
z)より大きくするには、図3にみられるように給電素
子である放射導体1と無給電素子である放射導体2の間
隔が0.011λ以上であることが必要である。
Further, in the microstrip antenna of the first embodiment, the gap between the radiating conductor 1 which is the feeding element and the radiating conductor 2 which is the non-feeding element is changed, and the difference between the two resonance frequency peaks is measured. Indicated. As shown in FIG. 3, when the distance between the radiation conductor 1 which is a feeding element and the radiation conductor 2 which is a parasitic element is small, the peaks of the resonance frequencies are close to each other, and it is difficult to adjust each resonance frequency independently. It is confirmed that Then, the difference between the digital frequency band of the mobile phone and the analog frequency band (55 MH
In order to be larger than z), it is necessary that the distance between the radiation conductor 1 which is a feeding element and the radiation conductor 2 which is a parasitic element is 0.011λ or more as seen in FIG.

【0021】[0021]

【発明の効果】上記のように本発明は、二つの放射導体
を並列配置し、各放射導体を誘電体層を介して接地導体
と対向させると共に各放射導体を接地導体と電気的に短
絡させ、一方の放射導体を給電部を有する給電素子とし
て形成すると共に他方の放射導体を給電部を有しない無
給電素子として形成するようにしたので、給電素子の放
射導体による共振と、給電素子の放射導体からの電磁結
合によって動作する無給電素子の放射導体による共振と
の、2つの共振をつくることができ、2つの周波数帯域
をカバーすることが容易になるものであり、しかも、各
放射導体に複数のスリットを設けるようにしたので、ス
リットの周長分、放射導体の周囲長が長くなって、放射
導体の面積を小さくすることができ、マイクロストリッ
プアンテナを小型化することができるのである。
As described above, according to the present invention, two radiation conductors are arranged in parallel, each radiation conductor is opposed to the ground conductor via the dielectric layer, and each radiation conductor is electrically short-circuited with the ground conductor. , Because one radiation conductor is formed as a feeding element having a feeding portion and the other radiation conductor is formed as a parasitic element having no feeding portion, resonance by the radiation conductor of the feeding element and radiation of the feeding element It is possible to create two resonances, that is, a resonance due to a radiation conductor of a parasitic element that operates by electromagnetic coupling from a conductor, and it is easy to cover two frequency bands. Since multiple slits are provided, the circumference of the radiating conductor is lengthened by the circumference of the slit, and the area of the radiating conductor can be reduced, thus making the microstrip antenna compact. It is possible to be.

【0022】また請求項2の発明は、二つの放射導体を
0.011λ(λ=使用周波数での波長)以上離して配
置するようにしたので、給電素子の放射導体と無給電素
子の放射導体の電磁結合が強くなり過ぎることを未然に
防ぐことができ、給電素子の放射導体により発生する共
振と、無給電素子の放射導体により発生する共振のそれ
ぞれの共振周波数を独立して調整することが容易になる
ものである。
According to the second aspect of the invention, the two radiation conductors are arranged so as to be separated by 0.011λ (λ = wavelength at the working frequency) or more. Therefore, the radiation conductor of the feeding element and the radiation conductor of the parasitic element are arranged. It is possible to prevent the electromagnetic coupling from becoming too strong, and to independently adjust the resonance frequencies of the resonance generated by the radiation conductor of the feed element and the resonance generated by the radiation conductor of the parasitic element. It will be easier.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態(実施例1)を示す斜視図
である。
FIG. 1 is a perspective view showing an embodiment (Example 1) of the present invention.

【図2】実施例1のマイクロストリップアンテナのイン
ピーダンス特性を示すものであり、(a)はスミスチャ
ート、(b)は周波数とVSWRの関係を示すグラフで
ある。
2A and 2B show impedance characteristics of the microstrip antenna of Example 1, where FIG. 2A is a Smith chart and FIG. 2B is a graph showing a relationship between frequency and VSWR.

【図3】実施例1の放射導体間の間隔と共振周波数の二
つのピークの差の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the distance between the radiation conductors of Example 1 and the difference between two peaks of the resonance frequency.

【図4】従来の形態の一例(比較例1)を示す斜視図で
ある。
FIG. 4 is a perspective view showing an example of a conventional form (Comparative Example 1).

【図5】比較例1のマイクロストリップアンテナのイン
ピーダンス特性を示すものであり、(a)はスミスチャ
ート、(b)は周波数とVSWRの関係を示すグラフで
ある。
5A and 5B show impedance characteristics of the microstrip antenna of Comparative Example 1, where FIG. 5A is a Smith chart and FIG. 5B is a graph showing a relationship between frequency and VSWR.

【図6】従来の形態の一例(比較例2)を示す斜視図で
ある。
FIG. 6 is a perspective view showing an example of a conventional form (Comparative Example 2).

【図7】比較例2のマイクロストリップアンテナのイン
ピーダンス特性を示すものであり、(a)はスミスチャ
ート、(b)は周波数とVSWRの関係を示すグラフで
ある。
7A and 7B show impedance characteristics of the microstrip antenna of Comparative Example 2, where FIG. 7A is a Smith chart and FIG. 7B is a graph showing the relationship between frequency and VSWR.

【符号の説明】[Explanation of symbols]

1 放射導体 2 放射導体 3 接地導体 4 給電部 5 スリット 1 radiating conductor 2 radiating conductor 3 grounding conductor 4 feeding part 5 slit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二つの放射導体を並列配置し、各放射導
体を誘電体層を介して接地導体と対向させると共に各放
射導体を接地導体と電気的に短絡させ、一方の放射導体
を給電部を有する給電素子として形成すると共に他方の
放射導体を給電部を有しない無給電素子として形成し、
各放射導体に複数のスリットを設けて成ることを特徴と
するマイクロストリップアンテナ。
1. Two radiation conductors are arranged in parallel, each radiation conductor is opposed to a ground conductor via a dielectric layer, and each radiation conductor is electrically short-circuited with the ground conductor, and one radiation conductor is fed. And the other radiation conductor is formed as a parasitic element having no feeding part,
A microstrip antenna comprising a plurality of slits provided on each radiation conductor.
【請求項2】 二つの放射導体を0.011λ(λ=使
用周波数での波長)以上離して配置して成ることを特徴
とする請求項1に記載のマイクロストリップアンテナ。
2. The microstrip antenna according to claim 1, wherein the two radiation conductors are arranged at a distance of 0.011λ (λ = wavelength at a used frequency) or more.
JP7073096A 1996-03-26 1996-03-26 Microstrip antenna Withdrawn JPH09260934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7073096A JPH09260934A (en) 1996-03-26 1996-03-26 Microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7073096A JPH09260934A (en) 1996-03-26 1996-03-26 Microstrip antenna

Publications (1)

Publication Number Publication Date
JPH09260934A true JPH09260934A (en) 1997-10-03

Family

ID=13439952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7073096A Withdrawn JPH09260934A (en) 1996-03-26 1996-03-26 Microstrip antenna

Country Status (1)

Country Link
JP (1) JPH09260934A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063722A2 (en) * 1999-06-25 2000-12-27 Murata Manufacturing Co., Ltd. Antenna device and communication apparatus using the same
WO2001018909A1 (en) * 1999-09-09 2001-03-15 Murata Manufacturing Co., Ltd. Surface-mount antenna and communication device with surface-mount antenna
WO2001063690A2 (en) * 2000-02-22 2001-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Small-size broad-band printed antenna with parasitic element
EP1146590A2 (en) * 2000-04-11 2001-10-17 Murata Manufacturing Co., Ltd. Surface-mounted antenna and wireless device incorporating the same
US6326921B1 (en) 2000-03-14 2001-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Low profile built-in multi-band antenna
EP1162688A1 (en) * 1999-09-30 2001-12-12 Murata Manufacturing Co., Ltd. Surface-mount antenna and communication device with surface-mount antenna
EP1189304A2 (en) * 2000-09-19 2002-03-20 Sony Corporation Antenna device and radio communication card module having antenna device
WO2002063719A1 (en) * 2001-02-05 2002-08-15 Sony Corporation Low profile small antenna and constructing method therefor
EP1306923A1 (en) * 2000-08-04 2003-05-02 Matsushita Electric Industrial Co., Ltd. Antenna device and radio communication device comprising the same
KR100413190B1 (en) * 1999-12-14 2003-12-31 가부시키가이샤 무라타 세이사쿠쇼 Antenna unit and communication device using the same
JP2005191705A (en) * 2003-12-24 2005-07-14 Sharp Corp Wireless tag and rfid system employing the same
JP2007053722A (en) * 2005-07-22 2007-03-01 Brother Ind Ltd Antenna and wireless ic tag
JP2010157872A (en) * 2008-12-26 2010-07-15 Toshiba Corp Antenna device
US7928911B2 (en) * 2008-04-15 2011-04-19 Avermedia Technologies, Inc. Digital television (DTV) antenna apparatus
JP2011182199A (en) * 2010-03-01 2011-09-15 Nec Corp Antenna apparatus
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9203154B2 (en) 2011-01-25 2015-12-01 Pulse Finland Oy Multi-resonance antenna, antenna module, radio device and methods
US9246210B2 (en) 2010-02-18 2016-01-26 Pulse Finland Oy Antenna with cover radiator and methods
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9461371B2 (en) 2009-11-27 2016-10-04 Pulse Finland Oy MIMO antenna and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
US9761951B2 (en) 2009-11-03 2017-09-12 Pulse Finland Oy Adjustable antenna apparatus and methods
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods
US9917346B2 (en) 2011-02-11 2018-03-13 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US10069209B2 (en) 2012-11-06 2018-09-04 Pulse Finland Oy Capacitively coupled antenna apparatus and methods
US10079428B2 (en) 2013-03-11 2018-09-18 Pulse Finland Oy Coupled antenna structure and methods

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063722A3 (en) * 1999-06-25 2002-08-14 Murata Manufacturing Co., Ltd. Antenna device and communication apparatus using the same
EP1063722A2 (en) * 1999-06-25 2000-12-27 Murata Manufacturing Co., Ltd. Antenna device and communication apparatus using the same
KR100343103B1 (en) * 1999-06-25 2002-07-05 무라타 야스타카 Antenna Device and Communication Apparatus using the Same
WO2001018909A1 (en) * 1999-09-09 2001-03-15 Murata Manufacturing Co., Ltd. Surface-mount antenna and communication device with surface-mount antenna
JP3596526B2 (en) * 1999-09-09 2004-12-02 株式会社村田製作所 Surface mounted antenna and communication device provided with the antenna
US6501425B1 (en) 1999-09-09 2002-12-31 Murrata Manufacturing Co., Ltd. Surface-mounted type antenna and communication device including the same
EP1162688A4 (en) * 1999-09-30 2005-04-13 Murata Manufacturing Co Surface-mount antenna and communication device with surface-mount antenna
EP1162688A1 (en) * 1999-09-30 2001-12-12 Murata Manufacturing Co., Ltd. Surface-mount antenna and communication device with surface-mount antenna
KR100413190B1 (en) * 1999-12-14 2003-12-31 가부시키가이샤 무라타 세이사쿠쇼 Antenna unit and communication device using the same
WO2001063690A3 (en) * 2000-02-22 2002-01-31 Ericsson Telefon Ab L M Small-size broad-band printed antenna with parasitic element
WO2001063690A2 (en) * 2000-02-22 2001-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Small-size broad-band printed antenna with parasitic element
US6326921B1 (en) 2000-03-14 2001-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Low profile built-in multi-band antenna
EP1146590A3 (en) * 2000-04-11 2003-09-03 Murata Manufacturing Co., Ltd. Surface-mounted antenna and wireless device incorporating the same
KR100414634B1 (en) * 2000-04-11 2004-01-07 가부시키가이샤 무라타 세이사쿠쇼 Surface-mounted antenna and wireless device incorporating the same
EP1146590A2 (en) * 2000-04-11 2001-10-17 Murata Manufacturing Co., Ltd. Surface-mounted antenna and wireless device incorporating the same
EP1306923A4 (en) * 2000-08-04 2005-04-13 Matsushita Electric Ind Co Ltd Antenna device and radio communication device comprising the same
EP1306923A1 (en) * 2000-08-04 2003-05-02 Matsushita Electric Industrial Co., Ltd. Antenna device and radio communication device comprising the same
EP1189304A2 (en) * 2000-09-19 2002-03-20 Sony Corporation Antenna device and radio communication card module having antenna device
EP1189304A3 (en) * 2000-09-19 2004-01-14 Sony Corporation Antenna device and radio communication card module having antenna device
CN1293674C (en) * 2001-02-05 2007-01-03 索尼公司 Low profile small antenna and construction method thereof
US6798383B2 (en) 2001-02-05 2004-09-28 Sony Corporation Low profile small antenna and constructing method therefor
WO2002063719A1 (en) * 2001-02-05 2002-08-15 Sony Corporation Low profile small antenna and constructing method therefor
KR100848428B1 (en) * 2001-02-05 2008-07-28 소니 가부시끼 가이샤 Low profile small antenna, constructing method therefor and wireless communications apparatus
JP2005191705A (en) * 2003-12-24 2005-07-14 Sharp Corp Wireless tag and rfid system employing the same
JP2007053722A (en) * 2005-07-22 2007-03-01 Brother Ind Ltd Antenna and wireless ic tag
US7928911B2 (en) * 2008-04-15 2011-04-19 Avermedia Technologies, Inc. Digital television (DTV) antenna apparatus
JP2010157872A (en) * 2008-12-26 2010-07-15 Toshiba Corp Antenna device
US9761951B2 (en) 2009-11-03 2017-09-12 Pulse Finland Oy Adjustable antenna apparatus and methods
US9461371B2 (en) 2009-11-27 2016-10-04 Pulse Finland Oy MIMO antenna and methods
US9246210B2 (en) 2010-02-18 2016-01-26 Pulse Finland Oy Antenna with cover radiator and methods
JP2011182199A (en) * 2010-03-01 2011-09-15 Nec Corp Antenna apparatus
US9203154B2 (en) 2011-01-25 2015-12-01 Pulse Finland Oy Multi-resonance antenna, antenna module, radio device and methods
US9673507B2 (en) 2011-02-11 2017-06-06 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US9917346B2 (en) 2011-02-11 2018-03-13 Pulse Finland Oy Chassis-excited antenna apparatus and methods
US8866689B2 (en) 2011-07-07 2014-10-21 Pulse Finland Oy Multi-band antenna and methods for long term evolution wireless system
US9123990B2 (en) 2011-10-07 2015-09-01 Pulse Finland Oy Multi-feed antenna apparatus and methods
US9531058B2 (en) 2011-12-20 2016-12-27 Pulse Finland Oy Loosely-coupled radio antenna apparatus and methods
US9484619B2 (en) 2011-12-21 2016-11-01 Pulse Finland Oy Switchable diversity antenna apparatus and methods
US9509054B2 (en) 2012-04-04 2016-11-29 Pulse Finland Oy Compact polarized antenna and methods
US8988296B2 (en) 2012-04-04 2015-03-24 Pulse Finland Oy Compact polarized antenna and methods
US9979078B2 (en) 2012-10-25 2018-05-22 Pulse Finland Oy Modular cell antenna apparatus and methods
US10069209B2 (en) 2012-11-06 2018-09-04 Pulse Finland Oy Capacitively coupled antenna apparatus and methods
US9647338B2 (en) 2013-03-11 2017-05-09 Pulse Finland Oy Coupled antenna structure and methods
US10079428B2 (en) 2013-03-11 2018-09-18 Pulse Finland Oy Coupled antenna structure and methods
US9634383B2 (en) 2013-06-26 2017-04-25 Pulse Finland Oy Galvanically separated non-interacting antenna sector apparatus and methods
US9680212B2 (en) 2013-11-20 2017-06-13 Pulse Finland Oy Capacitive grounding methods and apparatus for mobile devices
US9590308B2 (en) 2013-12-03 2017-03-07 Pulse Electronics, Inc. Reduced surface area antenna apparatus and mobile communications devices incorporating the same
US9350081B2 (en) 2014-01-14 2016-05-24 Pulse Finland Oy Switchable multi-radiator high band antenna apparatus
US9973228B2 (en) 2014-08-26 2018-05-15 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9948002B2 (en) 2014-08-26 2018-04-17 Pulse Finland Oy Antenna apparatus with an integrated proximity sensor and methods
US9722308B2 (en) 2014-08-28 2017-08-01 Pulse Finland Oy Low passive intermodulation distributed antenna system for multiple-input multiple-output systems and methods of use
US9906260B2 (en) 2015-07-30 2018-02-27 Pulse Finland Oy Sensor-based closed loop antenna swapping apparatus and methods

Similar Documents

Publication Publication Date Title
JPH09260934A (en) Microstrip antenna
US7339528B2 (en) Antenna for mobile communication terminals
JP3132664B2 (en) Microstrip antenna device
JP3340374B2 (en) Multi-frequency antenna
US7564413B2 (en) Multi-band antenna and mobile communication terminal having the same
US6337667B1 (en) Multiband, single feed antenna
US6268831B1 (en) Inverted-f antennas with multiple planar radiating elements and wireless communicators incorporating same
US6429819B1 (en) Dual band patch bowtie slot antenna structure
JP3580654B2 (en) Common antenna and portable radio using the same
EP1202382B1 (en) Antenna
US20040027298A1 (en) Antenna device and communication equipment using the device
WO1996027219A1 (en) Meandering inverted-f antenna
JPH11243318A (en) Antenna
KR101489182B1 (en) Infinite wavelength antenna apparatus
JP2004088218A (en) Planar antenna
JPH11150415A (en) Multiple frequency antenna
US6864854B2 (en) Multi-band antenna
KR100616545B1 (en) Multi-band laminated chip antenna using double coupling feeding
JP4823433B2 (en) Integrated antenna for mobile phone
US6288681B1 (en) Dual-band antenna for mobile telecommunication units
EP0828310B1 (en) Antenna device
JPH07303005A (en) Antenna system for vehicle
JP4565305B2 (en) Portable wireless terminal device
KR20040035581A (en) Independently Tunable Multiband Meanderline Loaded Antenna
JPH10190344A (en) Antenna

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603