JPH09260730A - Thermoelectric module and manufacture thereof - Google Patents

Thermoelectric module and manufacture thereof

Info

Publication number
JPH09260730A
JPH09260730A JP8062422A JP6242296A JPH09260730A JP H09260730 A JPH09260730 A JP H09260730A JP 8062422 A JP8062422 A JP 8062422A JP 6242296 A JP6242296 A JP 6242296A JP H09260730 A JPH09260730 A JP H09260730A
Authority
JP
Japan
Prior art keywords
thermoelectric
type
type thermoelectric
module
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8062422A
Other languages
Japanese (ja)
Inventor
Shuzo Kagawa
修三 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8062422A priority Critical patent/JPH09260730A/en
Publication of JPH09260730A publication Critical patent/JPH09260730A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric module manufacturing method with which a thermoelectric module can be manufactured by a simple process. SOLUTION: A P-type thermoelectric element 16, which is integrally formed with an electrode board on the upper and the lower sides, and an N-type thermoelectric element 18, are arranged alternately with a predetermined gap between them; the P-type thermoelectric element 16 and the N-type thermoelectric element 18 are electrically connected in series, and sub-modules 14 are formed. Then, each sub-module is arranged on parallel in such a manner that P type-to-P type are not adjacently arranged or N-type-to-N type are not arranged adjacently, and sub-modules and are electrically connected in series.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱電モジュール及
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric module and its manufacturing method.

【0002】[0002]

【従来の技術】熱電モジュールとは、p型熱電素子とn
型熱電素子が電極板を介して電気的に直列接続となるよ
うに接合されたもので、pn素子対の接合部間に温度差
を与えると電位差が発生し、また接合部間に電流を流す
と、その電流の向きにより吸熱又は発熱する性質を有す
る。前者の性質はゼーベック効果と呼ばれ、例えばごみ
焼却炉の廃熱による発電の如き熱電発電用に開発されて
おり、後者の性質はペルチェ効果と呼ばれ、例えば半導
体製造プロセスにおける恒温装置、エレクトロニクスデ
バイスの冷却等の熱電冷却に幅広く利用されている。
2. Description of the Related Art A thermoelectric module is composed of a p-type thermoelectric element and an n-type thermoelectric element.
Type thermoelectric elements are joined so as to be electrically connected in series via an electrode plate. When a temperature difference is applied between the junctions of the pn element pair, a potential difference is generated, and a current flows between the junctions. And has the property of absorbing or generating heat depending on the direction of the current. The former property is called the Seebeck effect, which has been developed for thermoelectric power generation, such as power generation by waste heat from refuse incinerators, and the latter property is called the Peltier effect, for example, constant temperature equipment in semiconductor manufacturing processes, electronic devices It is widely used for thermoelectric cooling such as cooling.

【0003】このような熱電モジュールの従来の製造法
を、図11を参照して説明する。まず、p型及びn型熱
電材料を石英アンプル内で一旦溶解し、一方向から徐々
に結晶化したインゴットを、適当な大きさ(例えば、数
ミリ角)に切断加工して、図示の如く、p型熱電材料成
形体(90)とn型熱電材料成形体(91)が得られる。熱電材
料成形体(90)(91)の両面には接合性を高めるためのNi
メッキ層(92)(92)が施され、Niメッキ層の上には半田
メッキ層(94)(94)がさらに施される。次に、電極(98)
は、電気絶縁材としての役割を果たすセラミック基板(9
6)の上にCuのパターニングを直接施して形成される。
セラミック基板(96)のCu電極(98)の上に、そのパター
ニング位置に対応してp型熱電材料成形体(90)とn型熱
電材料成形体(91)が交互に配置された後、熱電材料成形
体(90)(91)の上に、Cu電極(98)のパターニングが施さ
れたセラミック基板(96)が載せられる。これを加熱器の
中に入れて加熱すると、半田(94)(94)が溶融し、成形体
(90)(91)のNiメッキ層(92)(92)と、セラミック基板(9
6)(96)のCu電極(98)(98)とが接合される。なお、図1
1では、熱電材料成形体(90)(91)はp型とn型を1つず
つしか示していないが、通常は、熱電モジュールの要求
性能にもよるが多数存在する。
A conventional method of manufacturing such a thermoelectric module will be described with reference to FIG. First, the p-type and n-type thermoelectric materials are once melted in a quartz ampoule, and the ingot gradually crystallized from one direction is cut into an appropriate size (for example, several mm square), as shown in the figure, A p-type thermoelectric material compact (90) and an n-type thermoelectric material compact (91) are obtained. On both sides of the thermoelectric material molded body (90) (91), Ni for enhancing the bondability is formed.
The plating layers 92, 92 are applied, and the solder plating layers 94, 94 are further applied on the Ni plating layer. Next, the electrodes (98)
Is a ceramic substrate (9
It is formed by directly patterning Cu on 6).
After the p-type thermoelectric material molded body (90) and the n-type thermoelectric material molded body (91) are alternately arranged on the Cu electrode (98) of the ceramic substrate (96) corresponding to the patterning position, the thermoelectric material is molded. The ceramic substrate (96) on which the Cu electrodes (98) are patterned is placed on the material compacts (90) (91). When this is placed in a heater and heated, the solder (94) (94) melts and the molded body
Ni plating layers (92) and (92) of (90) and (91) and the ceramic substrate (9
6) The Cu electrodes (98) and (98) of (96) are joined. FIG.
In No. 1, the thermoelectric material molded bodies (90) and (91) show only one p-type and one n-type, but there are usually many, depending on the required performance of the thermoelectric module.

【0004】従来の製造法では、p型及びn型熱電材料
成形体と、電極との接合は、熱電モジュールの組立時に
半田付けにより行なっていたため、小さな熱電材料成形
体をパターニング位置に正しく配置する作業、半田付け
工程等に多大の工数を要していた。
In the conventional manufacturing method, the bonding between the p-type and n-type thermoelectric material compacts and the electrodes is performed by soldering when assembling the thermoelectric module, so that the small thermoelectric material compacts are correctly arranged at the patterning position. A lot of man-hours were required for the work and the soldering process.

【0005】[0005]

【発明が解決しようとする課題】本発明は、熱電モジュ
ールの製造工程の簡素化を図るために、熱電モジュール
の新規な製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel method for manufacturing a thermoelectric module in order to simplify the manufacturing process of the thermoelectric module.

【0006】[0006]

【課題を解決する為の手段】本発明にかかる熱電モジュ
ールの製造方法は、対向する第1及び第2の電極板の間
に熱電部材が接合されたp型とn型の熱電素子を複数個
準備し、隣り合うp型とn型の熱電素子の間に所定の隙
間が形成され、かつ夫々の第1電極板が同一平面、夫々
の第2電極板が同一平面に位置するように、p型熱電素
子とn型熱電素子を交互に配置し、隙間を挟んで隣り合
う第1電極板どうし及び第2電極板どうしを交互にロー
付けして、p型熱電素子とn型熱電素子が電気的に直列
接続することにより形成される。
A method of manufacturing a thermoelectric module according to the present invention comprises preparing a plurality of p-type and n-type thermoelectric elements in which thermoelectric members are bonded between opposing first and second electrode plates. , A p-type thermoelectric element is formed so that a predetermined gap is formed between adjacent p-type and n-type thermoelectric elements, and each first electrode plate is located on the same plane and each second electrode plate is located on the same plane. Elements and n-type thermoelectric elements are alternately arranged, and the first electrode plate and the second electrode plate that are adjacent to each other with a gap therebetween are alternately brazed to electrically connect the p-type thermoelectric element and the n-type thermoelectric element. It is formed by connecting in series.

【0007】熱電モジュール作製後、電気的直列回路の
基端となる電極板と終端となる電極板に、夫々接続用端
子を接続することにより、他の熱電モジュール等と接続
できる。
After the thermoelectric module is manufactured, it is possible to connect to another thermoelectric module or the like by connecting the connecting terminals to the electrode plate which is the base end and the electrode plate which is the end of the electrical series circuit.

【0008】また、熱電素子間の隙間に被覆材を充填す
ることにより、熱電モジュールの強度を高めることがで
きる。被覆材として、樹脂、セラミック、せっこう又は
セメント等を挙げることができる。被覆材の隙間への充
填は、熱電モジュールの全体を被覆することにより行な
うことが望ましい。外周全部を覆った後、所定の厚さに
なるまで電極板を平面研削することにより、精度よくコ
ントロールした平面を出すことができる。これにより複
数の熱電モジュールを接続して使用する際に、熱電モジ
ュールどうしの厚さを一定にそろえることができる。な
お、樹脂、セラミック、せっこう、セメントは電気絶縁
作用を有することから、被覆材を同時に絶縁材として使
用したい場合、被覆層は熱伝達作用に影響を及ぼさない
程度の厚さにして電極表面に存在させることもできる。
被覆材は熱電モジュールの側方に張り出すように成形す
れば、その張出し部に熱交換器取付け用の取付孔等を開
設することができる。
Further, the strength of the thermoelectric module can be increased by filling the gap between the thermoelectric elements with a coating material. Examples of the coating material include resin, ceramic, gypsum, and cement. It is desirable to fill the gap with the coating material by coating the entire thermoelectric module. After covering the entire outer circumference, the electrode plate is surface-ground until it has a predetermined thickness, whereby a precisely controlled flat surface can be obtained. Thus, when connecting and using a plurality of thermoelectric modules, the thickness of the thermoelectric modules can be made uniform. Since resin, ceramics, gypsum and cement have an electrical insulation function, if you want to use the coating material as an insulating material at the same time, the coating layer should have a thickness that does not affect the heat transfer function and should be applied to the electrode surface. It can also be present.
If the covering material is formed so as to project to the side of the thermoelectric module, a mounting hole or the like for mounting the heat exchanger can be formed in the projecting portion.

【0009】本発明にかかる他の熱電モジュールの製造
方法として、対向する細長い第1及び第2の電極板の間
に熱電部材が接合されたp型とn型の熱電素子を同個数
準備し、隣り合うp型とn型の熱電素子の間に所定の隙
間が形成され、かつ夫々の第1電極板が同一平面、夫々
の第2電極板が同一平面に位置するように、p型熱電素
子とn型熱電素子を交互に配置し、隙間を挟んで隣り合
う第1電極板どうし及び第2電極板どうしを交互にロー
付けして、p型熱電素子とn型熱電素子を電気的に直列
接続し、熱電素子を長手方向の所定間隔位置で切断する
ことにより、p型とn型の熱電素子が電気的に直列接続
されたサブモジュールを複数列形成し、サブモジュール
を1列おきに左右位置を入れ替えて、隣り合うサブモジ
ュールが所定の隙間を存するように配置し、複数列のサ
ブモジュールが電気的に直列に接続されるように、隣り
合うサブモジュールの端部位置にあるp型熱電素子とn
型熱電素子の電極板をロー付けすることにより形成する
こともできる。代表的なロー材として、半田を挙げるこ
とができる。
As another method for manufacturing a thermoelectric module according to the present invention, the same number of p-type and n-type thermoelectric elements in which thermoelectric members are joined between opposing elongated first and second electrode plates are prepared and adjacent to each other. A predetermined gap is formed between the p-type and n-type thermoelectric elements, and each first electrode plate is located on the same plane, and each second electrode plate is located on the same plane. Type thermoelectric elements are alternately arranged, and the first electrode plate and the second electrode plate that are adjacent to each other with a gap therebetween are alternately brazed to electrically connect the p-type thermoelectric element and the n-type thermoelectric element in series. By cutting the thermoelectric elements at predetermined intervals in the longitudinal direction, a plurality of sub-modules in which the p-type and n-type thermoelectric elements are electrically connected in series are formed, and the sub-modules are arranged at every left and right positions. Swap the adjacent sub-modules The arranged to lie, as sub-modules of the plurality rows are electrically connected in series, p-type thermoelectric element at an end position of the adjacent sub-module and the n
It can also be formed by brazing the electrode plate of the thermoelectric element. A typical brazing material is solder.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。熱電部材を形成する熱電材料は、特に限定
されるものでなく、公知の材料を用いることができる。
その一例として、p型熱電材料として、(Bi2Te3)
1-x(Sb2Te3)xであってxが0.70〜0.85のもの
を挙げることができ、n型熱電材料として、(Bi2Te
3)1-x(Bi2Se3)xであってxが0.05〜0.15のも
のを挙げることができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. The thermoelectric material forming the thermoelectric member is not particularly limited, and known materials can be used.
As an example, as a p-type thermoelectric material, (Bi 2 Te 3 )
1-x (Sb 2 Te 3 ) x wherein x is 0.70 to 0.85. As an n-type thermoelectric material, (Bi 2 Te 3)
3 ) 1-x (Bi 2 Se 3 ) x wherein x is 0.05 to 0.15.

【0011】p型熱電素子(16)、n型熱電素子(18)は、
図1に示す如く、対向する第1の電極板(26)と第2の電
極板(28)との間に、p型熱電部材(20)、n型熱電部材(2
2)を夫々挟んで接合した素子である。図示の熱電素子
は、細長い角型形状であるが、この形状に限定されるも
のでなく、四角形の板状体、立方体なども勿論可能であ
る。p型及びn型の熱電素子(16)(18)は、予め熱電部材
(20)(22)の成形体を作製し、成形体の両面にNiメッキ
を施した後、各面に第1電極板(26)と第2電極板(28)を
半田等のロー材(図示せず)にて接合することにより得る
ことができる。或はまた、図9に示す如く、金型(50)の
中に、第1電極板(26)、熱電材料粉末(24)、第2電極板
(28)を順に積層した後、熱電材料粉末(24)を積層方向に
加圧焼結する際、熱電材料の両面に電極板(26)(28)を同
時に接合して得ることもできる。この場合、図1に示す
細長い熱電素子を得るには、四角形の板状成形体を形成
した後、図10に示す如く、一の側辺と平行に切断すれ
ばよい。
The p-type thermoelectric element (16) and the n-type thermoelectric element (18) are
As shown in FIG. 1, a p-type thermoelectric member (20) and an n-type thermoelectric member (2) are provided between the opposing first electrode plate (26) and second electrode plate (28).
It is an element in which 2) is sandwiched and bonded. Although the illustrated thermoelectric element has an elongated rectangular shape, it is not limited to this shape, and a square plate-shaped body, a cubic body, or the like can of course be used. The p-type and n-type thermoelectric elements (16) (18) are thermoelectric members in advance.
(20) After forming the molded body of (22) and plating the both surfaces of the molded body with Ni, the first electrode plate (26) and the second electrode plate (28) are provided on each surface with a brazing material such as solder ( It can be obtained by joining (not shown). Alternatively, as shown in FIG. 9, the first electrode plate (26), the thermoelectric material powder (24), and the second electrode plate are placed in the mold (50).
It is also possible to obtain the electrode plates (26) and (28) simultaneously bonded to both surfaces of the thermoelectric material when the thermoelectric material powder (24) is pressure-sintered in the stacking direction after the layers (28) are laminated in order. In this case, in order to obtain the elongated thermoelectric element shown in FIG. 1, after forming a rectangular plate-shaped molded body, as shown in FIG. 10, it may be cut in parallel with one side.

【0012】電極板(26)(28)は、Bi−Te系合金の熱
電材料に対しては、Ni板を使用するか、又はCu板に
Niをメッキした板を使用することが望ましく、Niメ
ッキ層の厚さは約20μm以上にすることが望ましい。
これ以外にも、モリブデン(Mo)或いはチタン(Ti)を
蒸着したCu板を使用してもよい。
As for the electrode plates (26) and (28), it is desirable to use a Ni plate or a Cu plate plated with Ni for the thermoelectric material of Bi-Te alloy. The thickness of the plating layer is preferably about 20 μm or more.
Besides this, a Cu plate on which molybdenum (Mo) or titanium (Ti) is deposited may be used.

【0013】熱電素子を、図9に示すホットプレス法に
より作製する場合、電極板(26)(28)は、板面を貫く貫通
孔を形成したものを使用することが望ましい。これは、
貫通孔にも熱電材料粉末が充満して加圧焼結されること
により、特に電極板の板面方向の密着強度が高められる
だけでなく、図1に示す如く、例えばp型熱電素子(16)
の電極板は円形孔(30)、n型熱電素子(18)の電極板は四
角孔(32)というように決めておけば、熱電素子の識別マ
ークにもなるからである。
When the thermoelectric element is manufactured by the hot pressing method shown in FIG. 9, it is desirable to use the electrode plates (26) and (28) having through holes penetrating the plate surfaces. this is,
By filling the through-holes with the thermoelectric material powder and performing pressure sintering, not only the adhesion strength in the plate surface direction of the electrode plate is increased, but as shown in FIG. 1, for example, a p-type thermoelectric element (16 )
This is because if the electrode plate of No. 2 is a circular hole (30) and the electrode plate of the n-type thermoelectric element (18) is a square hole (32), it will also be an identification mark of the thermoelectric element.

【0014】作製される熱電モジュールの形態として、
図2又は図3に示す如く、p型熱電素子(16)とn型熱電
素子(18)が電極板を介して電気的に直列接続された一列
構造の熱電モジュール(10)を挙げることができる。ま
た、図5に示す如く、p型熱電素子(16)とn型熱電素子
(18)が電極板を介して電気的に直列接続された一列構造
の熱電モジュールをサブモジュール(14)とし、このサブ
モジュール(14)が複数列に電気的に直列接続された熱電
モジュール(12)を挙げることができる。
As the form of the thermoelectric module to be produced,
As shown in FIG. 2 or FIG. 3, there may be mentioned a single row structure thermoelectric module (10) in which a p-type thermoelectric element (16) and an n-type thermoelectric element (18) are electrically connected in series via an electrode plate. . Moreover, as shown in FIG. 5, a p-type thermoelectric element (16) and an n-type thermoelectric element
The sub-module (14) is a thermoelectric module having a single-row structure in which (18) is electrically connected in series via electrode plates, and the sub-module (14) is a thermoelectric module (12) electrically connected in series in a plurality of rows. ) Can be mentioned.

【0015】まず、図2、図3に示す一列構造の熱電モ
ジュールの製造方法について説明する。対向する細長い
第1及び第2の電極板(26)(28)の間に熱電部材が夫々接
合されたp型とn型熱電素子(16)(18)を、図1に示す如
く、第1の電極板(26)が夫々同一平面に位置し、第2の
電極板(28)が夫々同一平面に位置し、p型とn型の熱電
素子が互い違いとなるように配置する。熱電素子の個数
は、必要に応じて適宜決めればよい。なお、図示の実施
例では、p型熱電素子(16)の電極板(26)(28)には丸孔(3
0)、n型熱電素子(18)の電極板(26)(28)には四角孔(32)
が形成されている。
First, a method for manufacturing the thermoelectric module having the single-row structure shown in FIGS. 2 and 3 will be described. As shown in FIG. 1, first and second p-type and n-type thermoelectric elements (16) and (18), in which thermoelectric members are respectively joined between opposing elongated first and second electrode plates (26) and (28), are provided. The electrode plates (26) are located on the same plane, the second electrode plates (28) are located on the same plane, and the p-type and n-type thermoelectric elements are arranged alternately. The number of thermoelectric elements may be appropriately determined as needed. In the illustrated embodiment, the circular holes (3) are formed in the electrode plates (26) and (28) of the p-type thermoelectric element (16).
0), square holes (32) in the electrode plates (26) (28) of the n-type thermoelectric element (18)
Are formed.

【0016】図4に示す如く、隣り合うp型熱電素子(1
6)とn型熱電素子(18)との間に、エポキシ樹脂等で形成
された板状のスペーサ(36)を挿入し、隣り合う電極板間
に平行な隙間(42)(44)を形成する。スペーサ(36)は、熱
電素子どうしを所定間隔に平行に整列させると共に、電
極どうしのロー付けの際に、ロー材が必要以外の部分に
付着するのを防止する。
As shown in FIG. 4, adjacent p-type thermoelectric elements (1
A plate-like spacer (36) made of epoxy resin or the like is inserted between 6) and the n-type thermoelectric element (18) to form parallel gaps (42) (44) between adjacent electrode plates. To do. The spacer (36) aligns the thermoelectric elements parallel to each other at a predetermined interval and prevents the brazing material from adhering to an unnecessary portion when brazing the electrodes.

【0017】次に、スペーサ(36)によって形成された奇
数番目の隙間を挟んで隣り合う第1電極板(26)(26)どう
し、偶数番目の隙間を挟んで隣り合う第2電極板(28)(2
8)どうしを交互に半田等のロー材(34)にて接合し、電極
板どうしを電気的に接続する。図4を参照してより具体
的に説明すると、図4の最も左側(奇数番目)の隙間(42)
を挟む第1電極板(26)(26)どうしをロー付けした場合、
次は、その隣(偶数番目)の隙間(44)を挟む電極板(28)(2
8)どうしをロー付けする。その次は、左側から3番目
(奇数番目)の隙間(42)を挟む第1の電極板(26)(26)どう
し、という順にロー付けを繰り返すのである。なお、ロ
ー付けは、端から交互に行なってもよいし、片面ずつま
たは両面同時に処理してもよい。作業性の観点からは、
一方の面を処理した後、裏返して他方の面を処理するこ
とが望ましい。スペーサ(36)を取り除くと、図2に示す
如く、p型熱電素子(16)とn型熱電素子(18)が電気的に
直列接続された熱電モジュールが形成される。
Next, the first electrode plates (26) and (26) adjacent to each other with the odd-numbered gaps formed by the spacers (36) interposed therebetween, and the second electrode plates (28) adjacent to each other with the even-numbered gap interposed therebetween. ) (2
8) Join the electrodes alternately with a brazing material (34) such as solder to electrically connect the electrode plates. More specifically, referring to FIG. 4, the leftmost (odd number) gap (42) in FIG.
When the first electrode plates (26) and (26) sandwiching between are brazed together,
Next, the electrode plates (28) (2
8) Braze each other. Next is the third from the left
The brazing is repeated in the order of the first electrode plates (26) and (26) sandwiching the (odd number) gap (42). The brazing may be performed alternately from the ends, or may be performed on one side or on both sides simultaneously. From the viewpoint of workability,
After treating one side, it is desirable to turn it over and treat the other side. When the spacer (36) is removed, a thermoelectric module in which the p-type thermoelectric element (16) and the n-type thermoelectric element (18) are electrically connected in series is formed as shown in FIG.

【0018】ロー材(34)によって接続された熱電素子
を、図4の一点鎖線(51)(52)に示す如く、熱電素子の長
手方向の所定間隔位置で切断した後、スペーサ(36)を取
り除くと、図3に示す如き、細長い熱電モジュール(10)
を作製することができる。熱電モジュール(10)には、電
気的直列回路の基端となる電極板(27)と、終端となる電
極板(29)に、夫々端子(40a)(40b)が取り付けられる。
The thermoelectric elements connected by the brazing material (34) are cut at predetermined intervals in the longitudinal direction of the thermoelectric elements as shown by the alternate long and short dash lines (51) and (52) in FIG. Once removed, the elongated thermoelectric module (10) as shown in FIG.
Can be produced. In the thermoelectric module (10), terminals (40a) and (40b) are attached to an electrode plate (27) serving as a base end of an electrical series circuit and an electrode plate (29) serving as a terminal end, respectively.

【0019】上記熱電モジュール(10)を補強するため
に、スペーサ(36)を取り除いた後の空間に樹脂(38)を充
満させることが望ましい。また、樹脂(38)は、電極板の
表面に被覆されると、熱電モジュール(10)の電気絶縁材
として機能することもできる。このため、スペーサ(36)
を取り除き、端子(40)を取り付けた後、図5に示すよう
に、樹脂(38)を流し込んで熱電モジュール(10)の全体を
被覆する。樹脂(38)で熱電モジュール(10)を被覆する場
合、スペーサ(36)は必ずしも取り除く必要はなく、スペ
ーサの上から樹脂を流し込んでも構わない。この後、平
面研削又は切削により、図5の二点鎖線(52)(52)で示す
ように、電極板表面が露出するまで樹脂(38)を取り除
く。この工程により熱電モジュールの平滑度を上げ、熱
電モジュールの厚さを精度よく調整することができる。
樹脂(38)に絶縁材として作用させる必要がある場合に
は、熱伝達作用に悪影響を及ぼさない厚さまで、必要に
応じて、樹脂表面の平面研削又は切削を行なう。また樹
脂は、熱電モジュールの側方に張り出すように成形すれ
ば、その張出し部に熱交換器取付け用の取付孔(39)(図
5及び図8参照)を開設することができる。樹脂に代え
て、セラミックを使用することもできる。この場合、セ
ラミックの粉末を溶剤に溶かしたものを熱電モジュール
の型に流し込んだ後、乾燥させればよい。熱電モジュー
ルを高温で使用する場合、耐熱性にすぐれるセラミック
を用いるのが望ましい。
In order to reinforce the thermoelectric module (10), it is desirable to fill the space after removing the spacer (36) with the resin (38). Further, when the surface of the electrode plate is covered with the resin (38), it can also function as an electric insulating material of the thermoelectric module (10). For this reason, spacers (36)
After removing and removing the terminal (40), as shown in FIG. 5, a resin (38) is poured to cover the entire thermoelectric module (10). When the thermoelectric module (10) is covered with the resin (38), the spacer (36) does not necessarily have to be removed, and the resin may be poured over the spacer. After that, the resin (38) is removed by surface grinding or cutting until the surface of the electrode plate is exposed as shown by the chain double-dashed lines (52) and (52) in FIG. By this step, the smoothness of the thermoelectric module can be increased and the thickness of the thermoelectric module can be adjusted with high accuracy.
When it is necessary to make the resin (38) act as an insulating material, the surface of the resin is ground or cut as necessary to a thickness that does not adversely affect the heat transfer function. If the resin is molded so as to project laterally of the thermoelectric module, a mounting hole (39) (see FIGS. 5 and 8) for mounting the heat exchanger can be formed in the projecting portion. Ceramic can be used instead of resin. In this case, a ceramic powder dissolved in a solvent may be poured into a thermoelectric module mold and then dried. When the thermoelectric module is used at a high temperature, it is desirable to use a ceramic having excellent heat resistance.

【0020】次に、図6に示す複数列構造の熱電モジュ
ール(12)の製造方法について説明する。図4に示すよう
に、半田付けされた細長いp型とn型の熱電素子を一点
鎖線(51)に沿って複数列に切断する。切断された各列の
熱電モジュールを、以下では「サブモジュール(14)」と
称する。1個のサブモジュール(14)は、図3に示す熱電
モジュール(10)において端子(40a)(40b)を取り付ける前
の形状と同じである。
Next, a method of manufacturing the thermoelectric module (12) having a multi-row structure shown in FIG. 6 will be described. As shown in FIG. 4, the soldered elongated p-type and n-type thermoelectric elements are cut into a plurality of rows along the alternate long and short dash line (51). The cut thermoelectric modules in each row are hereinafter referred to as "submodules (14)". One sub-module (14) has the same shape as the thermoelectric module (10) shown in FIG. 3 before the terminals (40a) and (40b) are attached.

【0021】図6を参照すると、複数列に並べられたサ
ブモジュール(14)のうち、偶数列に位置するサブモジュ
ールの左右位置を入れ替える。隣り合うサブモジュール
とサブモジュールの間に、前記と同様、樹脂等で形成さ
れた板状のスペーサを挿入し、隣り合うサブモジュール
の間に平行な隙間(46)を存するように配置する。サブモ
ジュール(14)は、奇数列を入れ替えるようにしてもよ
い。
Referring to FIG. 6, among the submodules (14) arranged in a plurality of rows, the left and right positions of the submodules located in an even row are interchanged. Similar to the above, a plate-like spacer made of resin or the like is inserted between adjacent sub-modules, and arranged so that a parallel gap (46) exists between the adjacent sub-modules. The sub-module (14) may replace the odd columns.

【0022】次に、隣り合うサブモジュール(14)(14)の
一端の電極板どうしを半田(34)により電気的に直列に接
続して、全体として全てのサブモジュール(14)を電気的
に直列接続することにより、図6に示す複数列構造の熱
電モジュール(12)を作製することができる。隣り合うサ
ブモジュールの半田(34)による接続位置をより具体的に
説明すると、前方から第1列と第2列は右側端部(図6
参照)、第2列と第3列は左側端部(図8参照)で接続さ
れ、第3列と第4列は再び右側端部(図6参照)で接続さ
れ、このように右側と左側の交互の端部で接続される。
このようにして熱電モジュール(12)が作製されると、図
2又は図3の熱電モジュールの製造方法の場合と同じよ
うに、電気的直列回路の基端となる電極板(27)(図7及
び図8参照)と、終端となる電極板(29)(図8参照)に夫
々、端子(40a)(40b)を取り付け、樹脂(38)またはセラミ
ックで熱電モジュール全体を被覆するのが望ましい。被
覆後は、適宜の切断加工と、必要に応じて電極板表面の
露出加工を行ない、図7及び図8に示す如く複数列の熱
電モジュールが得られる。また、樹脂(38)の張出し部に
は、前記の実施例と同様、熱交換器への取付孔(39)を適
宜設けることができる。
Next, the electrode plates at one end of the adjacent sub-modules (14) (14) are electrically connected in series by the solder (34) to electrically connect all the sub-modules (14) as a whole. By connecting in series, the thermoelectric module (12) having a multi-row structure shown in FIG. 6 can be manufactured. More specifically, the connection position of the adjacent sub-modules by the solder (34) will be described in more detail.
The second and third rows are connected at the left end (see FIG. 8), the third and fourth rows are again connected at the right end (see FIG. 6), thus the right and left Connected at alternating ends of.
When the thermoelectric module (12) is manufactured in this manner, as in the case of the method of manufacturing the thermoelectric module of FIG. 2 or 3, the electrode plate (27) (FIG. It is desirable to attach terminals (40a) and (40b) to the terminal electrode plate (29) (see FIG. 8), respectively, and to cover the entire thermoelectric module with resin (38) or ceramic. After coating, appropriate cutting processing and, if necessary, exposure processing of the electrode plate surface are performed to obtain a plurality of rows of thermoelectric modules as shown in FIGS. 7 and 8. Further, the protruding portion of the resin (38) can be appropriately provided with a mounting hole (39) to the heat exchanger, as in the above-mentioned embodiment.

【0023】[0023]

【発明の効果】本発明の熱電モジュールの製法によれ
ば、工程の簡素化を図ることができる。特に、図7及び
図8に示すいわゆる複数列構造の熱電モジュールを作製
する場合、最終組立ての完了まで、熱電素子を細長い形
状のまま取り扱うことができるため、作業性が極めて良
好である。
According to the method for manufacturing a thermoelectric module of the present invention, the steps can be simplified. In particular, when the thermoelectric module having a so-called multi-row structure shown in FIGS. 7 and 8 is manufactured, the thermoelectric element can be handled in the elongated shape until the final assembly is completed, so that the workability is extremely good.

【図面の簡単な説明】[Brief description of drawings]

【図1】p型熱電素子とn型熱電素子を交互に配置した
ときの斜視図である。
FIG. 1 is a perspective view when p-type thermoelectric elements and n-type thermoelectric elements are alternately arranged.

【図2】隣接する熱電素子にスペーサを挟んで、ロー付
けを行なったときの斜視図である。
FIG. 2 is a perspective view when brazing is performed with a spacer sandwiched between adjacent thermoelectric elements.

【図3】図2の一点鎖線に沿って切断して得られた熱電
モジュールの斜視図である。
3 is a perspective view of a thermoelectric module obtained by cutting along the alternate long and short dash line in FIG.

【図4】図2及び図3に示す熱電モジュールの製造方法
の説明図である。
FIG. 4 is an explanatory view of a method for manufacturing the thermoelectric module shown in FIGS. 2 and 3.

【図5】樹脂で被覆された熱電モジュールの断面図であ
る。
FIG. 5 is a cross-sectional view of a thermoelectric module coated with resin.

【図6】サブモジュールを並べて配置し、ロー付けした
複数列構造の熱電モジュールの斜視図である。
FIG. 6 is a perspective view of a thermoelectric module having a multi-row structure in which sub-modules are arranged side by side and brazed.

【図7】樹脂で被覆した後、余分箇所の切断及び、電極
板上面の研削又は切削を行なった複数列構造の熱電モジ
ュールの斜視図である。
FIG. 7 is a perspective view of a thermoelectric module having a multi-row structure in which, after being coated with resin, excess portions are cut and the upper surface of the electrode plate is ground or cut.

【図8】図7に示す熱電モジュールを、図7とは異なる
位置から観察したときの斜視図である。
8 is a perspective view of the thermoelectric module shown in FIG. 7 when observed from a position different from FIG.

【図9】電極板と熱電材料粉末を収容したホットプレス
用金型の断面図である。
FIG. 9 is a cross-sectional view of a hot pressing mold that contains an electrode plate and thermoelectric material powder.

【図10】ホットプレスにより焼結された熱電素子の斜
視図である。
FIG. 10 is a perspective view of a thermoelectric element sintered by hot pressing.

【図11】従来の熱電モジュールのpn素子対を示す断
面図である。
FIG. 11 is a cross-sectional view showing a pn element pair of a conventional thermoelectric module.

【符号の説明】[Explanation of symbols]

(10) 一列構造の熱電モジュール (12) 複数列構造の熱電モジュール (14) サブモジュール (16) p型熱電素子 (18) n型熱電素子 (10) Thermoelectric module with single-row structure (12) Thermoelectric module with multi-row structure (14) Sub-module (16) P-type thermoelectric element (18) N-type thermoelectric element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 p型熱電素子とn型熱電素子とが電気的
に直列接続された熱電モジュールを製造する方法であっ
て、 対向する第1及び第2の電極板の間に熱電部材が接合さ
れたp型とn型の熱電素子を複数個準備し、隣り合うp
型とn型の熱電素子の間に所定の隙間が形成され、かつ
夫々の第1電極板が同一平面、夫々の第2電極板が同一
平面に位置するように、p型熱電素子とn型熱電素子を
交互に平行に配置し、 隙間を挟んで隣り合う第1電極板どうし及び第2電極板
どうしを交互にロー付けして、p型熱電素子とn型熱電
素子が電気的に直列接続された熱電モジュールを形成す
ることを特徴とする、熱電モジュールの製造方法。
1. A method of manufacturing a thermoelectric module in which a p-type thermoelectric element and an n-type thermoelectric element are electrically connected in series, wherein a thermoelectric member is bonded between opposing first and second electrode plates. Prepare a plurality of p-type and n-type thermoelectric elements,
A p-type thermoelectric element and an n-type thermoelectric element so that a predetermined gap is formed between the mold and the n-type thermoelectric element, and each first electrode plate is located on the same plane and each second electrode plate is located on the same plane. The thermoelectric elements are alternately arranged in parallel, and the first electrode plate and the second electrode plate that are adjacent to each other with a gap therebetween are alternately brazed, and the p-type thermoelectric element and the n-type thermoelectric element are electrically connected in series. A thermoelectric module manufacturing method comprising: forming a thermoelectric module.
【請求項2】 p型熱電素子とn型熱電素子とが電気的
に直列接続された熱電モジュールを製造する方法であっ
て、 対向する細長い第1及び第2の電極板の間に熱電部材が
接合されたp型とn型の熱電素子を同個数準備し、隣り
合うp型とn型の熱電素子の間に所定の隙間が形成さ
れ、かつ夫々の第1電極板が同一平面、夫々の第2電極
板が同一平面に位置するように、p型熱電素子とn型熱
電素子を交互に平行に配置し、 隙間を挟んで隣り合う第1電極板どうし及び第2電極板
どうしを交互にロー付けして、p型熱電素子とn型熱電
素子を電気的に直列接続し、 熱電素子を長手方向の所定間隔位置で切断することによ
り、p型とn型の熱電素子が電気的に直列接続されたサ
ブモジュールを複数列形成し、 サブモジュールを1列おきに左右位置を入れ替えて、隣
り合うサブモジュールが所定の隙間を存するように配置
し、 複数列のサブモジュールが電気的に直列に接続されるよ
うに、隣り合うサブモジュールの端部位置にあるp型熱
電素子とn型熱電素子の電極板をロー付けして熱電モジ
ュールを形成することを特徴とする、熱電モジュールの
製造方法。
2. A method of manufacturing a thermoelectric module in which a p-type thermoelectric element and an n-type thermoelectric element are electrically connected in series, wherein a thermoelectric member is bonded between opposing elongated first and second electrode plates. The same number of p-type and n-type thermoelectric elements are prepared, a predetermined gap is formed between adjacent p-type and n-type thermoelectric elements, and each first electrode plate is on the same plane, and each second electrode The p-type thermoelectric elements and the n-type thermoelectric elements are alternately arranged in parallel so that the electrode plates are located on the same plane, and the first electrode plate and the second electrode plate that are adjacent to each other with a gap therebetween are alternately brazed. Then, the p-type thermoelectric element and the n-type thermoelectric element are electrically connected in series, and the p-type thermoelectric element and the n-type thermoelectric element are electrically connected in series by cutting the thermoelectric element at predetermined intervals in the longitudinal direction. Multiple sub-modules are formed, and every other sub-module is The sub-modules are arranged so that adjacent sub-modules have a predetermined gap, and the p-type thermoelectric elements located at the end positions of the adjacent sub-modules are electrically connected in series. A method of manufacturing a thermoelectric module, characterized in that a thermoelectric module is formed by brazing an element and an electrode plate of an n-type thermoelectric element.
【請求項3】 熱電モジュールを、被覆材で被覆するこ
とを特徴とする請求項1または請求項2に記載の熱電モ
ジュールの製造方法。
3. The method of manufacturing a thermoelectric module according to claim 1, wherein the thermoelectric module is coated with a coating material.
【請求項4】 熱電モジュールを被覆材で被覆した後、
電極板が臨出し、熱電モジュールが所定の厚さとなるま
で平面研削を行なうことを特徴とする請求項3に記載の
熱電モジュールの製造方法。
4. After coating the thermoelectric module with a coating material,
4. The method of manufacturing a thermoelectric module according to claim 3, wherein surface grinding is performed until the electrode plate is exposed and the thermoelectric module has a predetermined thickness.
【請求項5】 対向する第1及び第2の電極板の間に熱
電部材が接合された1対または複数対のp型とn型の熱
電素子が、p型とn型の熱電素子の夫々の第1電極板が
同一平面、夫々の第2電極板が同一平面に位置するよう
に交互に平行に配置され、p型熱電素子とn型熱電素子
が電気的に直列接続されるように、隣り合う第1電極板
どうし及び第2電極板どうしが交互にロー材で接合され
た熱電モジュール。
5. A pair or a plurality of pairs of p-type and n-type thermoelectric elements in which a thermoelectric member is bonded between opposing first and second electrode plates are provided for each of the p-type and n-type thermoelectric elements. One electrode plate is arranged in parallel so that the second electrode plates are located on the same plane and the respective second electrode plates are located on the same plane, and the p-type thermoelectric element and the n-type thermoelectric element are adjacent to each other so that they are electrically connected in series. A thermoelectric module in which first electrode plates and second electrode plates are alternately joined with a brazing material.
JP8062422A 1996-03-19 1996-03-19 Thermoelectric module and manufacture thereof Withdrawn JPH09260730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8062422A JPH09260730A (en) 1996-03-19 1996-03-19 Thermoelectric module and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8062422A JPH09260730A (en) 1996-03-19 1996-03-19 Thermoelectric module and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH09260730A true JPH09260730A (en) 1997-10-03

Family

ID=13199710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8062422A Withdrawn JPH09260730A (en) 1996-03-19 1996-03-19 Thermoelectric module and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH09260730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187124A (en) * 2013-03-22 2014-10-02 Fujitsu Ltd Thermoelectric element mounting module and process of manufacturing the same
KR20190064923A (en) * 2017-12-01 2019-06-11 현대자동차주식회사 Manufacturing method for a thermoelectric moduel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187124A (en) * 2013-03-22 2014-10-02 Fujitsu Ltd Thermoelectric element mounting module and process of manufacturing the same
KR20190064923A (en) * 2017-12-01 2019-06-11 현대자동차주식회사 Manufacturing method for a thermoelectric moduel

Similar Documents

Publication Publication Date Title
US5952728A (en) Thermoelectric conversion module having channels filled with semiconducting material and insulating fillers
JP5241928B2 (en) Thermoelectric element module and method of manufacturing thermoelectric element
TWI569482B (en) Method for manufacturing thermoelectric conversion device
US4687879A (en) Tiered thermoelectric unit and method of fabricating same
US5705434A (en) Method of manufacturing thermoelectric conversion module
JP2009111137A (en) Method of arranging electrothermal conversion member
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
JPH10313134A (en) Manufacture of thermoelectric module
JP4383056B2 (en) Method for manufacturing thermoelectric module
US3449173A (en) Thermoelectric couple with soft solder electrically connecting semi-conductors and method of making same
JPH09260730A (en) Thermoelectric module and manufacture thereof
JP2008098197A (en) Thermoelectric conversion element and its fabrication process
US10833237B2 (en) Thermoelectric module
JPH0897472A (en) Thermoelectric transducer and its manufacture
JP6471241B2 (en) Thermoelectric module
JP4362303B2 (en) Thermoelectric element and manufacturing method thereof
JPH1187787A (en) Production of thermoelectrtc module
JP4280064B2 (en) Method for manufacturing thermoelectric conversion module
JP3549426B2 (en) Thermoelectric element and method for manufacturing the same
JPH11163424A (en) Manufacture of thermoelectric module
JP2004281930A (en) Method for producing thermoelectric conversion element
JPH1117235A (en) Manufacture of electrothermal module
JPH11135845A (en) Thermoionic module
JP4346332B2 (en) Thermoelectric element and manufacturing method thereof
JP2003234515A (en) Thermoelectric module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603