JPH09260692A - Compound semiconductor wafer and semiconductor device - Google Patents

Compound semiconductor wafer and semiconductor device

Info

Publication number
JPH09260692A
JPH09260692A JP8070439A JP7043996A JPH09260692A JP H09260692 A JPH09260692 A JP H09260692A JP 8070439 A JP8070439 A JP 8070439A JP 7043996 A JP7043996 A JP 7043996A JP H09260692 A JPH09260692 A JP H09260692A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor layer
type compound
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8070439A
Other languages
Japanese (ja)
Inventor
Shigeki Yamada
茂樹 山田
Takeshi Takahashi
高橋  健
Tsunehiro Unno
恒弘 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP8070439A priority Critical patent/JPH09260692A/en
Publication of JPH09260692A publication Critical patent/JPH09260692A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a semiconductor wafer from deteriorating in peak current density, even if it is subjected to a thermal treatment. SOLUTION: An I-type compound semiconductor layer 14 which is different in lattice constant from an N<+> -type compound semiconductor layer 13 and a P<+> -type compound semiconductor layer 15 and high in chemical bonding power is provided between the compound semiconductor layer 13 and 15, whereby N-type impurities and P-type impurities are restrained from being diffused through an interface between the layers 13 and 15, when a thermal treatment is carried out for processing a wafer. So that an impurity concentration gradient is kept steep in a semiconductor wafer of this constitution, and the semiconductor wafer is hardly deteriorated in peak tunnel current density. The I layer 14 is formed of Inx Ga1-x As or Inx Ga1-x Asy P1-y , large in chemical bonding power and different in lattice constant from GaAs, whereby N-type impurities and P-type impurities are restrained from being diffused through lattice defects, and a tunnel peak current is hardly dropped in density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、p型不純物を高濃
度に添加したp+ 型化合物半導体層と、n型不純物を高
濃度に添加したn+ 型化合物半導体層とを接合してトン
ネル接合を形成した化合物半導体ウェハ及び半導体装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tunnel junction formed by joining ap + type compound semiconductor layer containing a high concentration of p type impurities and an n + type compound semiconductor layer containing a high concentration of n type impurities. The invention relates to a compound semiconductor wafer and a semiconductor device.

【0002】[0002]

【従来の技術】図4は従来の半導体装置の断面図であ
る。
2. Description of the Related Art FIG. 4 is a sectional view of a conventional semiconductor device.

【0003】同図に示すように半導体装置は、有機金属
気相成長法、液相成長法又は分子ビーム成長法を用い
て、n型化合物半導体基板1の上に順に、n型不純物を
高濃度に添加した化合物半導体層(n+ 型化合物半導体
層)2と、キャリア濃度の高いp型不純物を高濃度に添
加した化合物半導体(p+ 型化合物半導体層)3とを接
合してトンネル接合(p+ + 接合)を有する化合物半
導体ウェハ4を形成し、化合物半導体ウェハ4を所定の
大きさに切断した後、n型化合物半導体基板1及びp+
型化合物半導体層3に、それぞれ電極5,6を接続した
ものである。
As shown in FIG. 1, the semiconductor device is formed on the n-type compound semiconductor substrate 1 in order by high concentration of n-type impurities by using metal organic vapor phase epitaxy, liquid phase epitaxy or molecular beam epitaxy. To the tunnel junction (p + -type compound semiconductor layer) 2 and the compound semiconductor (p + -type compound semiconductor layer) 3 to which a high-concentration p-type impurity having a high carrier concentration is added. After forming the compound semiconductor wafer 4 having a + n + junction) and cutting the compound semiconductor wafer 4 into a predetermined size, the n-type compound semiconductor substrate 1 and p +
Electrodes 5 and 6 are connected to the type compound semiconductor layer 3, respectively.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した従
来の半導体装置は、各半導体層1〜3の成長過程に配線
等を接続する際に熱処理を行った場合、n+ 型化合物半
導体層2とp+ 型化合物半導体層3との間の界面でドー
パントが拡散することにより、n+ 型化合物半導体層2
とp+ 型化合物半導体層3との間の界面で各ドーパント
の急峻性が悪くなり、それに伴いn+ 型化合物半導体層
2とp+ 型化合物半導体層3との間の界面のキャリア濃
度が低くなることから、I−V(電流−電圧)特性にお
いてトンネルピーク電流密度が低下してしまう。
By the way, in the conventional semiconductor device described above, when the heat treatment is performed when connecting the wirings or the like during the growth process of the respective semiconductor layers 1 to 3, the semiconductor device becomes the n + type compound semiconductor layer 2 The diffusion of the dopant at the interface with the p + type compound semiconductor layer 3 allows the n + type compound semiconductor layer 2 to be diffused.
The interface at deteriorates steepness of the dopant between the p + -type compound semiconductor layer 3, a low carrier concentration at the interface between the n + -type compound semiconductor layer 2 and the p + -type compound semiconductor layer 3 with it Therefore, the tunnel peak current density is reduced in the IV (current-voltage) characteristic.

【0005】図5は従来の半導体装置を約700℃で2
時間熱処理を行う前と熱処理を行った後のI−V特性を
示す図である。同図において横軸は電圧(V)を示し、
横軸は電流密度(A/cm2 )を示している。実線L3
は熱処理前の測定結果を示し、破線L4 は熱処理後の測
定結果を示している。
FIG. 5 shows a conventional semiconductor device at about 700.degree.
It is a figure which shows the IV characteristic before heat-processing and after heat-processing. In the figure, the horizontal axis represents voltage (V),
The horizontal axis represents the current density (A / cm 2 ). Solid line L 3
Indicates the measurement result before the heat treatment, and the broken line L 4 indicates the measurement result after the heat treatment.

【0006】同図より熱処理前のピーク電流密度は2.
8A/cm2 であり、熱処理後ではわずか0.8A/c
2 と熱処理前の30%程度に減少してしまうのが分か
る。
From the figure, the peak current density before heat treatment is 2.
8 A / cm 2 and only 0.8 A / c after heat treatment
It can be seen that m 2 is reduced to about 30% before the heat treatment.

【0007】そこで、本発明の目的は、上記課題を解決
し、熱処理を行ってもピーク電流密度が低下しない化合
物半導体ウェハ及び半導体装置を提供することにある。
Therefore, an object of the present invention is to solve the above problems and provide a compound semiconductor wafer and a semiconductor device in which the peak current density does not decrease even if heat treatment is performed.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明の化合物半導体ウェハは、p型不純物を高濃度
に添加したp+ 型化合物半導体層と、n型不純物を高濃
度に添加したn+ 型化合物半導体層とを接合してトンネ
ル接合を形成した化合物半導体ウェハにおいて、p+
化合物半導体層とn+ 型化合物半導体層との間に、p+
型化合物半導体層とn+ 型化合物半導体層とは格子定数
が異なり、かつ、化学結合力が強く不純物を添加してい
ないi型化合物半導体層を形成したものである。
In order to achieve the above object, the compound semiconductor wafer of the present invention has a p + -type compound semiconductor layer containing a high concentration of p-type impurities and a high concentration of an n-type impurity. in the compound semiconductor wafers by joining a n + -type compound semiconductor layer to form a tunnel junction, between the p + -type compound semiconductor layer and the n + -type compound semiconductor layer, p +
The i-type compound semiconductor layer is formed by differentiating the lattice constant between the type compound semiconductor layer and the n + type compound semiconductor layer, and having a strong chemical bonding force and no added impurities.

【0009】上記構成に加え本発明の化合物半導体ウェ
ハは、p+ 型化合物半導体層及びn+ 型化合物半導体層
にGaAsを用い、i型化合物半導体層にInx Ga
1-x Asを用いたものである。
In addition to the above structure, in the compound semiconductor wafer of the present invention, GaAs is used for the p + type compound semiconductor layer and the n + type compound semiconductor layer, and In x Ga is used for the i type compound semiconductor layer.
1-x As is used.

【0010】上記構成に加え本発明の化合物半導体ウェ
ハは、p+ 型化合物半導体層及びn+ 型化合物半導体層
にGaAsを用い、i型化合物半導体層にInx Ga
1-x Asy 1-y を用いたものである。
In addition to the above structure, in the compound semiconductor wafer of the present invention, GaAs is used for the p + type compound semiconductor layer and the n + type compound semiconductor layer, and In x Ga is used for the i type compound semiconductor layer.
1-x As y P 1-y is used.

【0011】上記目的を達成するために本発明の半導体
装置は、p型不純物を高濃度に添加したp+ 型化合物半
導体層と、n型不純物を高濃度に添加したn+ 型化合物
半導体層とを接合してトンネル接合を形成した半導体装
置において、p+ 型化合物半導体層と上記n+ 型化合物
半導体層との間に、p+ 型化合物半導体層とn+ 型化合
物半導体層とは格子定数が異なり、かつ、化学結合力が
強く不純物を添加していないi型化合物半導体層を形成
したものである。
In order to achieve the above object, a semiconductor device of the present invention comprises a p + type compound semiconductor layer doped with a high concentration of p type impurities and an n + type compound semiconductor layer doped with a high concentration of n type impurities. in the bonded semiconductor device forming the tunnel junction, between the p + -type compound semiconductor layer and the n + -type compound semiconductor layer, the lattice constant a p + -type compound semiconductor layer and the n + -type compound semiconductor layer The i-type compound semiconductor layer is different and has a strong chemical bonding force and no impurities are added.

【0012】上記構成に加え本発明の半導体装置は、p
+ 型化合物半導体層及びn+ 型化合物半導体層にGaA
sを用い、i型化合物半導体層にInx Ga1-x Asを
用いたものである。
In addition to the above structure, the semiconductor device of the present invention has p
+ -Type compound GaA the semiconductor layer and the n + -type compound semiconductor layer
s, and In x Ga 1-x As is used for the i-type compound semiconductor layer.

【0013】上記構成に加え本発明の半導体装置は、p
+ 型化合物半導体層及びn+ 型化合物半導体層にGaA
sを用い、i型化合物半導体層にInx Ga1-x Asy
1-y を用いたものである。
In addition to the above structure, the semiconductor device of the present invention has p
+ -Type compound GaA the semiconductor layer and the n + -type compound semiconductor layer
In x Ga 1-x As y on the i-type compound semiconductor layer
P 1-y is used.

【0014】上記構成によって、p+ 型化合物半導体層
とn+ 型化合物半導体層との間の界面におけるウェハ加
工時の熱処理によるp型不純物及びn型不純物の拡散が
抑止され、不純物濃度の変化の急峻性が保たれることで
トンネルピーク電流密度の低下が生じない。また、i型
化合物半導体層に、化学結合力が強く、かつ、GaAs
とは格子定数の異なるInx Ga1-x As或いはInx
Ga1-x Asy 1- y を用いることにより、格子欠陥を
介して拡散するn型不純物及びp型不純物の拡散を抑止
すると共にトンネルピーク電流密度の低下が生じない。
With the above structure, diffusion of p-type impurities and n-type impurities due to heat treatment during wafer processing at the interface between the p + -type compound semiconductor layer and the n + -type compound semiconductor layer is suppressed, and the change in impurity concentration is suppressed. Since the steepness is maintained, the tunnel peak current density does not decrease. Further, the i-type compound semiconductor layer has a strong chemical bonding force and is made of GaAs.
And In x Ga 1-x As or In x with different lattice constants
By using Ga 1-x As y P 1- y , the diffusion of n-type impurities and p-type impurities diffused through lattice defects is suppressed and the tunnel peak current density is not reduced.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて詳述する。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】図1は本発明の化合物半導体ウェハを用い
た半導体装置の一実施の形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a semiconductor device using the compound semiconductor wafer of the present invention.

【0017】化合物半導体ウェハ10は、n型GaAs
化合物半導体基板11の上に、n型不純物を添加したG
aAs化合物半導体層(以下「n層」という)12、n
型不純物を高濃度に添加したn+ 型GaAs化合物半導
体層(以下「n+ 層」という)13、不純物を添加しな
いi型化合物半導体層としてのInx Ga1-x As化合
物半導体層(以下「i層」という)14、p型不純物を
高濃度に添加したp+型GaAs化合物半導体層(以下
「p+ 層」という)15及びp型不純物を添加したGa
As化合物半導体層(以下「p層」という)16を順に
積層したものである。
The compound semiconductor wafer 10 is made of n-type GaAs.
On the compound semiconductor substrate 11, G added with an n-type impurity
aAs compound semiconductor layer (hereinafter referred to as “n layer”) 12, n
+ Type GaAs compound semiconductor layer (hereinafter referred to as “n + layer”) 13 in which a type impurity is added at a high concentration, and an In x Ga 1 -x As compound semiconductor layer (hereinafter, referred to as “n + layer”) as an i-type compound semiconductor layer in which no impurity is added. 14), a p + type GaAs compound semiconductor layer (hereinafter referred to as “p + layer”) 15 to which a p-type impurity is added at a high concentration, and a Ga to which a p-type impurity is added.
As compound semiconductor layers (hereinafter referred to as “p layers”) 16 are sequentially stacked.

【0018】n型GaAs化合物半導体基板11の裏面
にはn型GaAs化合物半導体用電極17が形成され、
p層16の表面にはp型GaAs用化合物半導体用電極
18が形成されている。
An n-type GaAs compound semiconductor electrode 17 is formed on the back surface of the n-type GaAs compound semiconductor substrate 11,
A p-type GaAs compound semiconductor electrode 18 is formed on the surface of the p-layer 16.

【0019】図2は、図1に示した半導体装置を約70
0℃で2時間熱処理を行う前と熱処理を行った後のI−
V特性を示す図である。同図において横軸は電圧(V)
を示し、縦軸は電流密度(A/cm2 )を示している。
FIG. 2 shows the semiconductor device shown in FIG.
I-before heat treatment at 0 ° C. for 2 hours and after heat treatment
It is a figure which shows a V characteristic. In the figure, the horizontal axis is voltage (V)
And the vertical axis represents the current density (A / cm 2 ).

【0020】同図より700℃で2時間の熱処理を行っ
た後でもピーク電流密度が10%低下しただけであり、
図5に示した従来技術と比較すると熱処理による電流密
度の低下を抑止する効果を確認することができた。
From the figure, even after the heat treatment at 700 ° C. for 2 hours, the peak current density was reduced by 10%.
As compared with the conventional technique shown in FIG. 5, the effect of suppressing the decrease in current density due to heat treatment could be confirmed.

【0021】次に最適条件について述べる。Next, the optimum conditions will be described.

【0022】図3は、Inx Ga1-x As化合物半導体
の混晶比xと格子定数(オングストローム)の大きさと
の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the mixed crystal ratio x of the In x Ga 1 -x As compound semiconductor and the magnitude of the lattice constant (angstrom).

【0023】GaAsの格子定数は5.654オングス
トロームであり、混晶比xが0.4以上になるとGaA
s化合物半導体とInx Ga1-x As化合物半導体の格
子長が異なり、異種半導体間の界面で格子欠陥が発生
し、大きなトンネル電流密度が得られなくなる。
The lattice constant of GaAs is 5.654 Å, and when the mixed crystal ratio x becomes 0.4 or more, GaA
Since the s compound semiconductor and the In x Ga 1-x As compound semiconductor have different lattice lengths, lattice defects occur at the interface between different semiconductors, and a large tunnel current density cannot be obtained.

【0024】そこでi型化合物半導体層の混晶比xを
0.1〜0.4とし、Inx Ga1- x Asの厚さを0.
8nm〜3nmとすることにより、格子定数の不整合が
GaAsの界面から徐々に緩和されて格子欠陥の発生が
抑止される。このため格子欠陥を介して拡散するGaA
s内のn型不純物及びp型不純物の拡散が抑止され、ト
ンネルピーク電流密度の低下が生じることがなく、大き
なトンネル電流密度が得られる。
Therefore, the mixed crystal ratio x of the i-type compound semiconductor layer is set to 0.1 to 0.4, and the thickness of In x Ga 1- x As is set to 0.
By setting the thickness to 8 nm to 3 nm, the mismatch of the lattice constant is gradually relaxed from the interface of GaAs, and the generation of lattice defects is suppressed. Therefore, GaA diffuses through lattice defects.
The diffusion of the n-type impurities and the p-type impurities in s is suppressed, the tunnel peak current density is not reduced, and a large tunnel current density is obtained.

【0025】次に本実施の形態の使用方法について説明
する。
Next, a method of using this embodiment will be described.

【0026】化合物半導体太陽電池の上に異種の化合物
半導体を成長させる場合や太陽電池同士を接続する場合
に、電気抵抗を小さくする方法としてトンネル接合が用
いられる。ところで、トンネル接合の上に太陽電池を成
長させるために、その成長温度によってトンネル特性が
現れにくくなっていた。しかし、本発明の化合物半導体
ウェハ或いは半導体装置を用いることにより、ピーク電
流密度の低下を抑止することができ、太陽電池同士の接
続における電気抵抗を小さくすることが可能である。従
って太陽電池を直列に接続することにより出力電圧の高
い太陽電池を得ることができる。
A tunnel junction is used as a method of reducing the electric resistance when growing different kinds of compound semiconductors on a compound semiconductor solar cell or when connecting solar cells. By the way, in order to grow a solar cell on a tunnel junction, tunnel characteristics are difficult to appear depending on the growth temperature. However, by using the compound semiconductor wafer or the semiconductor device of the present invention, it is possible to suppress the decrease of the peak current density, and it is possible to reduce the electric resistance in the connection between the solar cells. Therefore, a solar cell with a high output voltage can be obtained by connecting the solar cells in series.

【0027】以上において本実施の形態によれば、p+
層とn+ 層との間に、p+ 層とn+ 層とは格子定数が異
なり、かつ、化学結合力が強く不純物を添加していない
i層を形成したので、熱処理を行ってもピーク電流密度
が低下しない化合物半導体ウェハ及び半導体装置の提供
を実現することができる。
As described above, according to the present embodiment, p +
Between the layer and the n + layer, different lattice constant from the p + layer and the n + layer, and, since the form i-layer chemical bond strength without added strong impurities, even when the heat treatment peak It is possible to provide a compound semiconductor wafer and a semiconductor device in which the current density does not decrease.

【0028】尚、本実施の形態ではn型化合物半導体基
板上に、n+ 型、i型、p+ 型化合物半導体を順に形成
した場合で説明したが、これに限定されずp型化合物半
導体基板上に、p+ 型、i型、n+ 型化合物半導体を順
に形成してもよい。また、本実施の形態ではi層にIn
x Ga1-x Asを用いた場合で説明したが、これに限定
されずInx Ga1-x Asy 1-y を用いてもよい。
In this embodiment, the n + type, i type, and p + type compound semiconductors are sequentially formed on the n type compound semiconductor substrate, but the present invention is not limited to this. A p + -type, an i-type, and an n + -type compound semiconductor may be sequentially formed thereon. Further, in the present embodiment, In is formed in the i layer.
Although the case of using x Ga 1-x As has been described, the present invention is not limited to this, and In x Ga 1-x As y P 1-y may be used.

【0029】Inx Ga1-x Asy 1-y は、0<x<
0.5、かつ、y=2xのときにGaAsと格子整合す
る。膜厚は0.5nm〜2.5nmが最適である。In
GaAsPは混晶比の選択範囲が広いため、トンネル電
流の制御を行うことができる。
In x Ga 1-x As y P 1-y is 0 <x <
It is lattice-matched with GaAs when 0.5 and y = 2x. The optimum film thickness is 0.5 nm to 2.5 nm. In
Since GaAsP has a wide selection range of the mixed crystal ratio, it is possible to control the tunnel current.

【0030】[0030]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を発揮する。
In summary, according to the present invention, the following excellent effects are exhibited.

【0031】p+ 型化合物半導体層とn+ 型化合物半導
体層との間にi型化合物半導体層を形成したので、熱処
理を行ってもピーク電流密度が低下しない化合物半導体
ウェハ及び半導体装置の提供を実現することができる。
Since the i-type compound semiconductor layer is formed between the p + -type compound semiconductor layer and the n + -type compound semiconductor layer, it is possible to provide a compound semiconductor wafer and a semiconductor device in which the peak current density does not decrease even if heat treatment is performed. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物半導体ウェハを用いた半導体装
置の一実施の形態を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a semiconductor device using a compound semiconductor wafer of the present invention.

【図2】図1に示した半導体装置を約700℃で2時間
熱処理を行う前と熱処理を行った後のI−V特性を示す
図である。
FIG. 2 is a diagram showing IV characteristics before and after heat treatment of the semiconductor device shown in FIG. 1 at about 700 ° C. for 2 hours.

【図3】Inx Ga1-x As化合物半導体の混晶比xと
格子定数の大きさとの関係を示す図である。
FIG. 3 is a diagram showing a relationship between a mixed crystal ratio x of an In x Ga 1-x As compound semiconductor and a magnitude of a lattice constant.

【図4】従来の半導体装置の断面図である。FIG. 4 is a cross-sectional view of a conventional semiconductor device.

【図5】従来の半導体装置を約700℃で2時間熱処理
を行う前と熱処理を行った後のI−V特性を示す図であ
る。
FIG. 5 is a diagram showing IV characteristics before and after heat treatment of a conventional semiconductor device at about 700 ° C. for 2 hours.

【符号の説明】[Explanation of symbols]

10 化合物半導体ウェハ 11 n型GaAs化合物半導体基板 12 GaAs化合物半導体層(n層) 13 n+ 型GaAs化合物半導体層(n+ 層) 14 Inx Ga1-x As化合物半導体層(i層) 15 p+ GaAs型化合物半導体層(p+ 層) 16 GaAs化合物半導体層(p層) 17 n型GaAs化合物半導体用電極 18 p型GaAs用化合物半導体用電極10 compound semiconductor wafer 11 n-type GaAs compound semiconductor substrate 12 GaAs compound semiconductor layer (n layer) 13 n + type GaAs compound semiconductor layer (n + layer) 14 In x Ga 1-x As compound semiconductor layer (i layer) 15 p + GaAs type compound semiconductor layer (p + layer) 16 GaAs compound semiconductor layer (p layer) 17 n-type GaAs compound semiconductor electrode 18 p-type GaAs compound semiconductor electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 p型不純物を高濃度に添加したp+ 型化
合物半導体層と、n型不純物を高濃度に添加したn+
化合物半導体層とを接合してトンネル接合を形成した化
合物半導体ウェハにおいて、上記p+ 型化合物半導体層
と上記n+ 型化合物半導体層との間に、上記p+ 型化合
物半導体層と上記n+ 型化合物半導体層とは格子定数が
異なり、かつ、化学結合力が強く不純物を添加していな
いi型化合物半導体層を形成したことを特徴とする化合
物半導体ウェハ。
1. A compound semiconductor wafer having a tunnel junction formed by joining a p + -type compound semiconductor layer containing a high concentration of p-type impurities and an n + -type compound semiconductor layer containing a high concentration of an n-type impurity. In the above, the p + type compound semiconductor layer and the n + type compound semiconductor layer have different lattice constants from each other and a chemical bonding force between the p + type compound semiconductor layer and the n + type compound semiconductor layer. A compound semiconductor wafer having an i-type compound semiconductor layer which is not strongly doped.
【請求項2】 上記p+ 型化合物半導体層及び上記n+
型化合物半導体層にGaAsを用い、上記i型化合物半
導体層にInx Ga1-x Asを用いた請求項1記載の化
合物半導体ウェハ。
2. The p + type compound semiconductor layer and the n +
Using GaAs on type compound semiconductor layer, a compound semiconductor wafer according to claim 1, wherein using the In x Ga 1-x As in the i-type compound semiconductor layer.
【請求項3】 上記p+ 型化合物半導体層及び上記n+
型化合物半導体層にGaAsを用い、上記i型化合物半
導体層にInx Ga1-x Asy 1-y を用いた請求項1
記載の化合物半導体ウェハ。
3. The p + type compound semiconductor layer and the n +
Using GaAs on type compound semiconductor layer, according to claim 1 using the In x Ga 1-x As y P 1-y in the i-type compound semiconductor layer
The compound semiconductor wafer described.
【請求項4】 p型不純物を高濃度に添加したp+ 型化
合物半導体層と、n型不純物を高濃度に添加したn+
化合物半導体層とを接合してトンネル接合を形成した半
導体装置において、上記p+ 型化合物半導体層と上記n
+ 型化合物半導体層との間に、上記p+ 型化合物半導体
層と上記n+ 型化合物半導体層とは格子定数が異なり、
かつ、化学結合力が強く不純物を添加していないi型化
合物半導体層を形成したことを特徴とする半導体装置。
4. A semiconductor device in which a tunnel junction is formed by joining a p + -type compound semiconductor layer containing a high concentration of p-type impurities and an n + -type compound semiconductor layer containing a high concentration of an n-type impurity. , The p + type compound semiconductor layer and the n
+ Between the mold compound semiconductor layer different in lattice constant between the p + -type compound semiconductor layer and the n + -type compound semiconductor layer,
A semiconductor device having an i-type compound semiconductor layer having a strong chemical bond and no added impurities.
【請求項5】 上記p+ 型化合物半導体層及び上記n+
型化合物半導体層にGaAsを用い、上記i型化合物半
導体層にInx Ga1-x Asを用いた請求項4記載の半
導体装置。
5. The p + type compound semiconductor layer and the n +
The semiconductor device according to claim 4, wherein GaAs is used for the type compound semiconductor layer, and In x Ga 1-x As is used for the i type compound semiconductor layer.
【請求項6】 上記p+ 型化合物半導体層及び上記n+
型化合物半導体層にGaAsを用い、上記i型化合物半
導体層にInx Ga1-x Asy 1-y を用いた請求項4
記載の半導体装置。
6. The p + type compound semiconductor layer and the n + type compound semiconductor layer.
Using GaAs on type compound semiconductor layer, according to claim 4 using In x Ga 1-x As y P 1-y in the i-type compound semiconductor layer
13. The semiconductor device according to claim 1.
JP8070439A 1996-03-26 1996-03-26 Compound semiconductor wafer and semiconductor device Pending JPH09260692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070439A JPH09260692A (en) 1996-03-26 1996-03-26 Compound semiconductor wafer and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070439A JPH09260692A (en) 1996-03-26 1996-03-26 Compound semiconductor wafer and semiconductor device

Publications (1)

Publication Number Publication Date
JPH09260692A true JPH09260692A (en) 1997-10-03

Family

ID=13431529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070439A Pending JPH09260692A (en) 1996-03-26 1996-03-26 Compound semiconductor wafer and semiconductor device

Country Status (1)

Country Link
JP (1) JPH09260692A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503823A (en) * 2005-07-29 2009-01-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor chip
US8841191B2 (en) 2012-08-23 2014-09-23 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009503823A (en) * 2005-07-29 2009-01-29 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optoelectronic semiconductor chip
JP2013009013A (en) * 2005-07-29 2013-01-10 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip, optoelectronic module, and method for producing optoelectronic semiconductor chip
US8994000B2 (en) 2005-07-29 2015-03-31 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
US8841191B2 (en) 2012-08-23 2014-09-23 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP4064592B2 (en) Photoelectric conversion device
US4876210A (en) Solution growth of lattice mismatched and solubility mismatched heterostructures
US4885614A (en) Semiconductor device with crystalline silicon-germanium-carbon alloy
JP3318658B2 (en) High efficiency solar cell and its manufacturing method
US4159354A (en) Method for making thin film III-V compound semiconductors for solar cells involving the use of a molten intermediate layer
Soga et al. High efficiency AlGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition
US4591654A (en) Solar cells based on indium phosphide
Miller et al. GaAs‐AlGaAs tunnel junctions for multigap cascade solar cells
EP0414844A1 (en) High efficiency solar cell
US20150034159A1 (en) Hole-blocking TiO2/Silicon Heterojunction for Silicon Photovoltaics
US4925810A (en) Compound semiconductor device and a method of manufacturing the same
WO2014026293A1 (en) Built-in vertical doping structures for the monolithic integration of tunnel junctions in photovoltaic structures
US20120073658A1 (en) Solar Cell and Method for Fabricating the Same
JP3250425B2 (en) Compound semiconductor wafer and solar cell
CN105355668A (en) In(0.3)Ga(0.7)As cell with amorphous buffer layer structure and preparation method thereof
Kurtz et al. Requirements for a 20%-efficient polycrystalline GaAs solar cell
JPH09260692A (en) Compound semiconductor wafer and semiconductor device
JP3312506B2 (en) Compound semiconductor wafer and semiconductor device
JP3227083B2 (en) Method for manufacturing bipolar transistor
JPH0955522A (en) Tunnel diode
Hutchby et al. Material aspects of the fabrication of multijunction solar cells
JPS63261882A (en) Semiconductor element
JPH06291341A (en) Solar cell
JPS62224089A (en) Solar cell
JP2547967B2 (en) Semiconductor laminated structure, manufacturing method thereof, and semiconductor device using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309