JPH0926042A - Motor-driven three-way valve and air conditioner for cooling and heating to use this motor-driven three-way valve - Google Patents

Motor-driven three-way valve and air conditioner for cooling and heating to use this motor-driven three-way valve

Info

Publication number
JPH0926042A
JPH0926042A JP20985695A JP20985695A JPH0926042A JP H0926042 A JPH0926042 A JP H0926042A JP 20985695 A JP20985695 A JP 20985695A JP 20985695 A JP20985695 A JP 20985695A JP H0926042 A JPH0926042 A JP H0926042A
Authority
JP
Japan
Prior art keywords
valve
passage
electric
valve seat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20985695A
Other languages
Japanese (ja)
Inventor
Hidehiko Kataoka
秀彦 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP20985695A priority Critical patent/JPH0926042A/en
Publication of JPH0926042A publication Critical patent/JPH0926042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of changeover sound and also realize the linear control of refrigerant regulation and in addition to realize space saving. SOLUTION: A valve body 8 ascends due to the rise of a guide pert 16, and a valve part 8a is separated from a first valve seat 6, and a fluid flows from a first passage 2 to a second passage 3. When the guide part 16 is rotated by impressing a power source on a coil 15, the guide part 16 descends, and the first valve seat 6 is gradually closed by means of the valve part 8a. When the guide part 16 is further rotated, although the valve body 8 remains in that state, a check valve 9 furnished slidably to the valve body 8 is pushingly moved downward, so opening control at a second valve seat 7 is conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は電動三方弁、及び
複数の室内ユニットを同時に冷房と暖房とが行なえる電
動三方弁を用いた冷暖用空気調和装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling / heating air conditioner using an electric three-way valve and an electric three-way valve capable of simultaneously cooling and heating a plurality of indoor units.

【0002】[0002]

【従来の技術】複数室(室内ユニット)の全てを同時に
冷房、又は暖房ができ、且つ同時に複数室のいずれかの
室を冷房し、残りの室を暖房できる多室型空気調和装置
の従来例としては、例えば特開平3−55475号公報
が挙げられる。この装置においては、室外ユニットと複
数の室内ユニットとの間を、高圧ガス管、低圧ガス管及
び液管の3本のユニット間配管にて接続している。また
上記高圧ガス管、低圧ガス管には、冷房と暖房とを切り
換えるためにそれぞれ切換弁を介設し、さらに室内ユニ
ット側にはそれぞれ冷媒減圧機構を備えている。かかる
構成の空気調和装置では、室外ユニットと各室内ユニッ
ト間のユニット間配管が3本となるので配管工事が面倒
であり、また室内ユニット側に減圧・開閉機能を必要と
するため、従来の多室用空気調和装置との互換性を失っ
てしまうという問題がある。また切換弁を電磁弁で構成
しているために、切換音が発生したり、あるいは絞り機
構等から冷媒音が発生するという問題があった。
2. Description of the Related Art A conventional multi-room type air conditioner capable of cooling or heating all of a plurality of rooms (indoor units) at the same time, and cooling any one of the plurality of rooms at the same time and heating the remaining rooms. For example, JP-A-3-55475 can be cited. In this apparatus, the outdoor unit and the plurality of indoor units are connected by three unit pipes, which are a high pressure gas pipe, a low pressure gas pipe, and a liquid pipe. A switching valve is provided in each of the high-pressure gas pipe and the low-pressure gas pipe to switch between cooling and heating, and a refrigerant depressurizing mechanism is provided on the indoor unit side. In the air conditioner having such a configuration, there are three unit-to-unit pipes between the outdoor unit and each indoor unit, which makes the piping work troublesome and requires decompression / opening / closing functions on the indoor unit side. There is a problem of losing compatibility with the room air conditioner. Further, since the switching valve is composed of the solenoid valve, there is a problem that switching noise is generated or refrigerant noise is generated from the throttle mechanism or the like.

【0003】[0003]

【発明が解決しようとする課題】そこで上記公報に記載
の技術を改良しようとするのが図4に示す空気調和装置
(冷媒回路)である。図4において、51は室外熱交換
器、52は圧縮機であり、61a、61bは室内熱交換
器である。そして室外熱交換器51の一端を圧縮機52
の吐出管53と吸込管54とに切換弁55a、55bを
介して分岐接続し、また各室内ユニット60a、60b
へのユニット配管のガス管62a、62bを吐出管53
と吸込管54とに切換弁63a、63b及び64a、6
4bを介してそれぞれ分岐接続している。さらに室外熱
交換器51の他端と各ユニット間配管の液管に絞り機構
56、65a、65bを設けている。そしてこれら切換
弁63a、63b及び64a、64b、絞り機構65
a、65bは室外ユニット側に設けている。これにより
室内側にあった減圧・開閉機構を室外ユニットに移すこ
とで従来通り2本での配管接続が可能になると共に、室
内ユニットの互換性が取れるようになる。
Therefore, it is an air conditioner (refrigerant circuit) shown in FIG. 4 that attempts to improve the technique described in the above publication. In FIG. 4, 51 is an outdoor heat exchanger, 52 is a compressor, and 61a and 61b are indoor heat exchangers. Then, one end of the outdoor heat exchanger 51 is connected to the compressor 52.
Of the indoor units 60a, 60b are branched and connected to the discharge pipe 53 and the suction pipe 54 of the respective units via the switching valves 55a, 55b.
The gas pipes 62a and 62b of the unit pipe to the discharge pipe 53
To the suction pipe 54 and the switching valves 63a, 63b and 64a, 6
They are branched and connected via 4b. Further, throttling mechanisms 56, 65a, 65b are provided on the other end of the outdoor heat exchanger 51 and the liquid pipe of the inter-unit piping. Then, the switching valves 63a, 63b and 64a, 64b, the throttle mechanism 65.
a and 65b are provided on the outdoor unit side. As a result, by moving the decompression / opening / closing mechanism on the indoor side to the outdoor unit, two pipes can be connected as before, and the indoor unit can be interchanged.

【0004】図5は図4をさらに改良しようとする冷媒
回路であり、図4に示す一対の切換弁55a・・・の代
わりに三方切換弁71a、71b、71cを用いた例で
ある。これら三方切換弁71a、71b、71cは室外
ユニット側に設けてある。この場合には2個の切換弁を
1個の三方切換弁で代用することができるので、室外ユ
ニットがコンパクト化、省スペース化される。しかしな
がら上記従来の切換弁や、図4に示す切換弁、また図5
に示す三方切換弁は、いずれも電磁弁で構成していたの
で、切り換え時において切換音が発生し、しかも冷媒流
量の制御ができないという問題があった。また従来の切
換弁は高価でもあった。
FIG. 5 shows a refrigerant circuit which is intended to be improved from FIG. 4, and is an example in which three-way switching valves 71a, 71b, 71c are used in place of the pair of switching valves 55a ... Shown in FIG. These three-way switching valves 71a, 71b, 71c are provided on the outdoor unit side. In this case, two switching valves can be replaced by one three-way switching valve, so the outdoor unit can be made compact and space-saving. However, the conventional switching valve described above, the switching valve shown in FIG.
Since the three-way switching valve shown in (1) was composed of solenoid valves, there was a problem that switching noise was generated during switching and the refrigerant flow rate could not be controlled. Further, the conventional switching valve is also expensive.

【0005】この発明は上記従来の欠点を解決するため
になされたものであって、その目的は、切換音の発生を
防止し、冷媒流量の制御を可能とすることが可能な電動
三方弁及びこの電動三方弁を用いた冷暖用空気調和装置
を提供することにある。
The present invention has been made to solve the above-mentioned conventional drawbacks, and an object thereof is to provide an electric three-way valve capable of preventing the generation of switching noise and controlling the flow rate of the refrigerant. An object of the present invention is to provide a cooling / heating air conditioner using this electric three-way valve.

【0006】[0006]

【課題を解決するための手段】そこで請求項1の電動三
方弁は、本体ケーシング1内に、その軸方向に延びる流
路5を形成し、流路5の一端側を第1通路2に、他端側
を第3通路4に、その中途部を第2通路3にそれぞれ接
続すると共に、上記流路5内においては、上記第1通路
2と第2通路3との間に第1弁座6を、上記第2通路3
と第3通路4との間に第2弁座7をそれぞれ設け、上記
流路5内には、その軸方向に沿い、かつ上記第2弁座7
を貫通して第1弁座6側へと延びる弁体8を配置し、弁
体8の先端側には上記第1弁座6に近接、離反して開度
制御を行うための弁部8aを設け、さらに上記弁体8に
は上記第2弁座7よりも先端側の位置に逆止弁9を摺動
自在に嵌挿し、流路5内に作用する流体圧力でもって上
記逆止弁9を押動して上記第2弁座7を閉鎖すべく構成
し、さらに上記弁体8及び逆止弁9を駆動するための電
気的駆動機構13を設け、この電気的駆動機構13によ
り、流路5内の流体圧力によって逆止弁9が第2弁座7
を閉鎖すると共に、上記弁体8の軸方向移動による第1
弁座6での開度制御を行う第1の状態、上記流路5内の
流体圧力によって逆止弁9が第2弁座7を閉鎖すると共
に、上記弁体8で第1弁座6を閉鎖した第2の状態、上
記流路5内の流体圧力に抗して逆止弁9を移動させるこ
とにより第2弁座7での開度制御を行うと共に、弁体8
で第1弁座6を閉鎖した第3の状態をそれぞれ形成すべ
く構成していることを特徴としている。
Therefore, in the electric three-way valve according to the first aspect of the present invention, the flow passage 5 extending in the axial direction of the main body casing 1 is formed, and one end side of the flow passage 5 is set to the first passage 2. The other end side is connected to the third passage 4 and the middle portion thereof is connected to the second passage 3, and in the flow passage 5, the first valve seat is provided between the first passage 2 and the second passage 3. 6 to the second passage 3
A second valve seat 7 is provided between the second valve seat 7 and the third passage 4, and the second valve seat 7 is provided in the flow path 5 along the axial direction thereof.
A valve body 8a is provided for penetrating through the valve body 8 and extending toward the first valve seat 6 side, and a valve portion 8a for controlling the opening degree by approaching or separating from the first valve seat 6 on the tip side of the valve body 8. Further, a check valve 9 is slidably inserted into the valve body 8 at a position closer to the tip end side than the second valve seat 7, and the check valve is actuated by the fluid pressure acting in the flow path 5. 9 is configured to be pushed to close the second valve seat 7, and an electric drive mechanism 13 for driving the valve body 8 and the check valve 9 is further provided. With the electric drive mechanism 13, The check valve 9 is moved to the second valve seat 7 by the fluid pressure in the flow path 5.
Is closed and the first movement of the valve body 8 caused by the axial movement
In the first state in which the opening degree is controlled in the valve seat 6, the check valve 9 closes the second valve seat 7 by the fluid pressure in the flow path 5, and the valve body 8 closes the first valve seat 6. In the closed second state, the check valve 9 is moved against the fluid pressure in the flow path 5 to control the opening degree of the second valve seat 7, and at the same time, to open the valve body 8
It is characterized in that the first valve seat 6 is closed and the third state is formed.

【0007】上記請求項1記載の電動三方弁によれば、
第1の状態では弁部8aと第1弁座6の間の開度制御が
行われているので第1通路2と第2通路3との間の開
閉、及び流量調整が可能になると共に、流路5内の圧力
により第2弁座7は逆止弁9により閉塞されている。こ
の第1の状態から電気駆動機構13により弁体8をその
軸方向に駆動していき第1弁座6及び第2弁座7を共に
閉塞する第2の状態に移行させる。またこの第2の状態
から逆止弁9が弁体8の弁部8a側に駆動されて第2弁
座7での開度制御を行う第3の状態に移行する。また上
記とは逆向きに弁体8等を駆動することで、第2弁座7
のみの開放から、第1弁座6及び第2弁座7共に閉塞さ
せた状態へ、さらに第1弁座6のみが開放した第1の状
態へとスムーズに移行させることができる。
According to the electric three-way valve of claim 1,
In the first state, since the opening degree control between the valve portion 8a and the first valve seat 6 is performed, it is possible to open and close between the first passage 2 and the second passage 3 and adjust the flow rate. The second valve seat 7 is closed by the check valve 9 due to the pressure in the flow path 5. From this first state, the electric drive mechanism 13 drives the valve element 8 in its axial direction to shift to the second state in which both the first valve seat 6 and the second valve seat 7 are closed. Further, the check valve 9 is driven from the second state to the valve portion 8a side of the valve body 8 to shift to the third state in which the opening degree of the second valve seat 7 is controlled. Further, by driving the valve body 8 and the like in the opposite direction to the above, the second valve seat 7
It is possible to smoothly shift from the opening of only the first valve seat 6 and the second valve seat 7 to the closed state, and further to the first state where only the first valve seat 6 is opened.

【0008】また請求項2の電動三方弁は、上記電気的
駆動機構13は、コイル15に流れる電流によって回転
駆動されるガイド部16に軸部18を設けると共に、こ
の軸部18を上記本体ケーシング1に設けられたネジ孔
10に螺合し、上記ガイド部16の回転を直線的な往復
動に変換すべく構成し、上記弁体8は、上記軸部18を
摺動可能に貫通して流路5内に導入されており、さらに
上記弁体8は、上記ガイド部16と連動可能で、かつ上
記ガイド部16が弁体8を第1弁座6を閉鎖する方向に
移動させ、これにより上記弁体8の弁部8aが第1弁座
6に当接した後、さらに上記ガイド部材16を同方向に
移動可能であるようにガイド部材16に支持されてお
り、またガイド部材16の上記同方向への移動により上
記軸部18の先端部が上記逆止弁9を開弁方向に押動す
べく構成していることを特徴としている。
In the electric three-way valve according to the second aspect of the invention, the electric drive mechanism 13 has the guide portion 16 which is rotationally driven by the electric current flowing through the coil 15, and the shaft portion 18 which is provided in the main body casing. 1 is configured to be screwed into a screw hole 10 provided in No. 1 to convert the rotation of the guide portion 16 into a linear reciprocating motion, and the valve body 8 slidably penetrates the shaft portion 18. The valve body 8 is introduced into the flow path 5, and the valve body 8 can be interlocked with the guide portion 16, and the guide portion 16 moves the valve body 8 in a direction of closing the first valve seat 6. Thus, after the valve portion 8a of the valve body 8 contacts the first valve seat 6, the guide member 16 is further supported by the guide member 16 so as to be movable in the same direction. By the movement in the same direction, the tip portion of the shaft portion 18 It is characterized in that it is configured to push the check valve 9 in the opening direction.

【0009】上記請求項2記載の電動三方弁によれば、
上記の第1の状態から第3の状態へ、あるいは第3の状
態から第1の状態への移行においては、ガイド部16を
回転させ、該ガイド部16の軸部18と本体ケーシング
1のネジ孔10との螺合によってガイド部16を直線的
に往復動させているので、弁体8及び逆止弁9の軸方向
における移動をスムーズに行なうことができ、従って簡
素な構成で精度の良い開度制御が行える。
According to the electric three-way valve described in claim 2,
In the transition from the first state to the third state, or from the third state to the first state, the guide portion 16 is rotated, and the shaft portion 18 of the guide portion 16 and the screw of the main body casing 1 are rotated. Since the guide portion 16 is linearly reciprocated by being screwed into the hole 10, the valve body 8 and the check valve 9 can be smoothly moved in the axial direction, and therefore, the structure is simple and the accuracy is high. The opening can be controlled.

【0010】さらに請求項3の電動三方弁を用いた冷暖
用空気調和装置は、圧縮機38と室外熱交換器35とを
有する室外ユニット31と、室内熱交換器26a、26
bを有する複数台の室内ユニット25a、25bとを備
え、全室を冷房または暖房、あるいは所定の室を冷房運
転し、他の室を暖房運転するようにした冷暖用空気調和
装置において、上記室外熱交換器35の一端側に第1の
電動膨張弁32を介設した配管36を分岐させると共
に、各枝管37a、37bを第2の電動膨張弁33a、
33bを介して室内熱交換器26a、26bの一端側に
それぞれ接続し、室外熱交換器35及び各室内熱交換器
26a、26bの他端側には上記請求項1の電動三方弁
、A、Aの第2通路3をそれぞれ接続し、圧縮
機38の吐出管40を室外熱交換器35側の第1電動三
方弁Aの第1通路2に接続すると共に、上記吐出管4
0を分岐して室内熱交換器26a、26b側の第2及び
第3電動三方弁A、Aの第1通路2にそれぞれ接続
し、圧縮機38の吸込側の吸込管41を室外熱交換器3
5側の電動三方弁Aの第3通路4に接続すると共に、
上記吸込管41を分岐して室内熱交換器26a、26b
側の第2及び第3電動三方弁A、Aの第3通路4に
それぞれ接続していることを特徴としている。
Further, the cooling and heating air conditioner using the electric three-way valve according to the third aspect of the present invention is an outdoor unit 31 having a compressor 38 and an outdoor heat exchanger 35, and indoor heat exchangers 26a, 26.
a plurality of indoor units 25a and 25b having b, and cooling or heating all the rooms, or performing a cooling operation of a predetermined room and a heating operation of the other room, the above-mentioned outdoor The pipe 36 having the first electric expansion valve 32 interposed therein is branched at one end of the heat exchanger 35, and the branch pipes 37a and 37b are connected to the second electric expansion valve 33a.
33b is connected to one end sides of the indoor heat exchangers 26a and 26b, respectively, and the outdoor heat exchanger 35 and the other end sides of the indoor heat exchangers 26a and 26b are connected to the electric three-way valve A 1 according to claim 1 , The second passages A 2 and A 3 are connected to each other, the discharge pipe 40 of the compressor 38 is connected to the first passage 2 of the first electric three-way valve A 1 on the outdoor heat exchanger 35 side, and the discharge pipe is Four
0 is branched and connected to the first passages 2 of the second and third electric three-way valves A 2 and A 3 on the indoor heat exchangers 26a and 26b side, respectively, and the suction pipe 41 on the suction side of the compressor 38 is connected to the outdoor heat exchanger. Exchanger 3
While being connected to the third passage 4 of the electric five-way valve A 1 on the 5 side,
The suction pipe 41 is branched to branch the indoor heat exchangers 26a and 26b.
It is characterized in that they are respectively connected to the third passages 4 of the second and third electric three-way valves A 2 and A 3 on the side.

【0011】請求項3記載の電動三方弁を用いた冷暖用
空気調和装置によれば、室外熱交換器35及び室内熱交
換器26a、26b側にそれぞれ第1〜第3電動三方弁
〜Aを用いているので、冷媒回路を全室暖房、ま
たは全室冷房としたり、あるいは所定の室を冷房し、残
りの室を暖房の同時運転を行なう場合にも、各電動三方
弁A〜Aの各弁座の開閉を行なうだけで良い。
According to the air conditioner for cooling / heating using the electric three-way valve of the third aspect, the first to third electric three-way valves A 1 to 3 are provided on the outdoor heat exchanger 35 and the indoor heat exchangers 26a and 26b, respectively. Since A 3 is used, each electric three-way valve A 1 can be used even when the refrigerant circuit is used for heating all rooms or for cooling all rooms, or when a predetermined room is cooled and the remaining rooms are simultaneously operated for heating. it is only to open and close the respective valve seat to a 3.

【0012】[0012]

【発明の実施の形態】次にこの発明の電動三方弁及びこ
の電動三方弁を用いた冷暖用空気調和装置の具体的な実
施の形態について、図面を参照しつつ詳細に説明する。
図1は電動三方弁Aの動作説明用の断面図を示してい
る。1は筒状の本体ケーシングであり、この本体ケーシ
ング1の下部を第1通路2としている。この第1通路2
の上方には本体ケーシング1より側方に向けて接続され
る第2通路3が形成されており、本体ケーシング1のさ
らにそれよりも上部には側方に向けて接続される第3通
路4が形成されている。上記第1通路2、第2通路3及
び第3通路4は、本体ケーシング1内を軸方向に延びる
流路5によってそれぞれ連通している。第1通路2と第
2通路3との間には第1弁座6が形成され、また第3通
路4の内側、つまり第2通路3と第3通路4との間の位
置には第2弁座7が形成されている。上記流路5内には
円柱状の弁体8が本体ケーシング1の軸方向に沿って移
動自在に設けてある。この弁体8は、上記第2弁座7の
内部を貫通して下方へ延びるものであって、その下端部
の弁部8aが上記第1弁座6に当接、離反して流路5を
開閉するものである。また上記第2弁座7よりも第2通
路3側の流路5内には、略円筒状の逆止弁9が設けられ
ているが、この逆止弁9は上記弁体8に摺動自在に嵌挿
されたものであり、この逆止弁9が上記第2弁座8に当
接離反することで流路5を開閉するようになっている。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of an electric three-way valve of the present invention and a cooling / heating air conditioner using the electric three-way valve will be described in detail with reference to the drawings.
FIG. 1 shows a sectional view for explaining the operation of the electric three-way valve A. Reference numeral 1 denotes a cylindrical main body casing, and a lower portion of the main body casing 1 is used as a first passage 2. This first passage 2
A second passage 3 which is connected to the side of the main body casing 1 is formed above the main casing 1, and a third passage 4 which is connected to the side of the main casing 1 is formed above the main casing 1. Has been formed. The first passage 2, the second passage 3, and the third passage 4 are in communication with each other in the main body casing 1 by a passage 5 extending in the axial direction. A first valve seat 6 is formed between the first passage 2 and the second passage 3, and a second valve seat 6 is formed inside the third passage 4, that is, at a position between the second passage 3 and the third passage 4. A valve seat 7 is formed. A cylindrical valve body 8 is provided in the flow path 5 so as to be movable along the axial direction of the main body casing 1. The valve element 8 penetrates the inside of the second valve seat 7 and extends downward, and the valve portion 8a at the lower end thereof abuts against and separates from the first valve seat 6 so that the flow path 5 is formed. To open and close. A substantially cylindrical check valve 9 is provided in the flow path 5 on the second passage 3 side of the second valve seat 7. The check valve 9 slides on the valve body 8. The check valve 9 is freely inserted and inserted, and the check valve 9 contacts and separates from the second valve seat 8 to open and close the flow path 5.

【0013】次に上記本体ケーシング1内に移動自在に
配設している弁体8及び逆止弁9を軸方向に沿って駆動
制御する電気駆動機構13の構成について説明する。電
気駆動機構13は、そのケース14の下面が本体ケーシ
ング1の上面に固着して配設されており、ケース14の
外周部にはコイル15が配設してある。ケース14の内
部には、内部を空洞としたガイド部16が配設され、こ
のガイド部16の外周面にマグネット17が取着されて
いる。上記ガイド部16の下面中央から円筒状の軸部1
8が一体に垂設されており、この軸部18の外周面には
略全長にわたってネジ部19が螺刻されている。また、
この軸部18のネジ部19と螺合するネジ孔10が本体
ケーシング1の上部に螺刻してある。上記弁体8は、上
記軸部18を貫通した状態でガイド部16に軸方向、つ
まり上下動可能に支持されているが、その上面には、細
径の軸11が一体に突設されていて、この軸11の上端
には平板状の固定金具12が抜止め用として一体的に形
成されている。そしてケース14内に位置している軸1
1にコイル状の拡がりスプリング20が介装されてお
り、該スプリング20の上端面がケース14の天井面に
弾接すると共に、スプリング20の下端面が弁体8の上
端面を下方へと押圧している。
Next, the structure of the electric drive mechanism 13 for driving and controlling the valve body 8 and the check valve 9 movably arranged in the main body casing 1 along the axial direction will be described. The electric drive mechanism 13 is arranged such that the lower surface of the case 14 is fixed to the upper surface of the main body casing 1, and the coil 15 is arranged on the outer peripheral portion of the case 14. A guide portion 16 having a hollow inside is disposed inside the case 14, and a magnet 17 is attached to the outer peripheral surface of the guide portion 16. From the center of the lower surface of the guide portion 16 to the cylindrical shaft portion 1
8 is integrally provided vertically, and a screw portion 19 is screwed on the outer peripheral surface of the shaft portion 18 over substantially the entire length. Also,
A screw hole 10 that is screwed into the screw portion 19 of the shaft portion 18 is threaded on the upper portion of the main body casing 1. The valve body 8 is axially, that is, vertically movable, supported by the guide portion 16 while penetrating the shaft portion 18, and a small-diameter shaft 11 is integrally provided on the upper surface of the valve body 8. A flat plate-like fixing member 12 is integrally formed on the upper end of the shaft 11 so as to prevent the shaft from coming off. And the shaft 1 located in the case 14
1, a coil-shaped spreading spring 20 is interposed. The upper end surface of the spring 20 makes elastic contact with the ceiling surface of the case 14, and the lower end surface of the spring 20 presses the upper end surface of the valve body 8 downward. ing.

【0014】次に図1を参照しつつ上記電動三方弁Aの
動作を説明する。ここで第1通路2には流体の高圧(H
P)が作用し、第2通路3には上記第1通路2の圧力よ
りも低い中圧(MP)が作用し、さらに第3通路4には
第2通路3よりも低い低圧(LP)が作用するようにな
っている。いま仮に図1(a)の状態を初期状態とする
と、(a)の状態では弁体8は最も上部の位置となり弁
体8の弁部8aが第1弁座6より最も離れて第1弁座6
における開度が最大となる。そのため、第1通路2から
第1弁座6及び流路5を介して流体が第2通路3へと流
れる。またこのとき逆止弁9は高圧の流体により上方に
付勢されるために逆止弁9が第2弁座7を閉じ、流体が
逆止弁により阻止されて第3通路4へは流れない。
Next, the operation of the electric three-way valve A will be described with reference to FIG. Here, the high pressure (H
P) acts, an intermediate pressure (MP) lower than the pressure of the first passage 2 acts on the second passage 3, and a low pressure (LP) lower than the second passage 3 acts on the third passage 4. It is supposed to work. If the state of FIG. 1A is assumed to be the initial state, the valve body 8 is at the uppermost position in the state of FIG. 1A, and the valve portion 8a of the valve body 8 is farthest from the first valve seat 6 and the first valve Seat 6
The maximum opening is at. Therefore, the fluid flows from the first passage 2 to the second passage 3 via the first valve seat 6 and the passage 5. At this time, the check valve 9 is biased upward by the high-pressure fluid, so that the check valve 9 closes the second valve seat 7, and the fluid is blocked by the check valve and does not flow to the third passage 4. .

【0015】上記の図1(a)の状態でコイル15に電
流を流すとフレミングの左手の法則によりガイド部16
に回転力が発生し、マグネット17と共にガイド部16
が回転することになる。ガイド部16が回転すると、該
ガイド部16の軸部18のネジ部19と本体ケーシング
1のネジ孔10との螺合しているためにガイド部16は
図中下方に螺進し、ガイド部16は下降する。このとき
ガイド部16が下降するとスプリング20の下端が弁体
8の上面を付勢しているので、スプリング20によりガ
イド部16の下降に伴って弁体8を下降させていく。そ
して図1(a)の状態から図1(b)の状態まで、つま
り弁体8の下降により弁部8aが第1弁座6を完全に閉
塞するまで弁体8は下方に駆動される。ここでガイド部
16の回転によりガイド部16及び弁体8が次第に下降
(移動)していくので、弁体8による第1弁座6の開度
制御が精度良く行なえる。この図1(b)の状態におい
てガイド部16の軸部18の下端面と逆止弁9の上端面
とは非接触の状態となっており、逆止弁9はガイド部1
6の軸部18により下方へは押圧されず、流路5内の流
体の圧力により上方へと付勢されており、そのため逆止
弁9により第2弁座は完全に閉塞された状態となってい
る。すなわち、図1(b)の状態は第1弁座6及び第2
弁座7ともに閉じた状態となっており、各通路2〜4に
おいて流体の流れが阻止されて電動三方弁Aは閉の状態
となっている。
When an electric current is applied to the coil 15 in the state shown in FIG. 1A, the guide portion 16 is produced by Fleming's left-hand rule.
A rotating force is generated in the guide part 16 together with the magnet 17.
Will rotate. When the guide portion 16 rotates, the screw portion 19 of the shaft portion 18 of the guide portion 16 and the screw hole 10 of the main body casing 1 are screwed together. 16 descends. At this time, when the guide portion 16 descends, the lower end of the spring 20 biases the upper surface of the valve body 8, so that the spring 20 causes the valve body 8 to descend as the guide portion 16 descends. The valve body 8 is driven downward from the state shown in FIG. 1A to the state shown in FIG. 1B, that is, until the valve portion 8a completely closes the first valve seat 6 due to the lowering of the valve body 8. Here, since the guide portion 16 and the valve body 8 are gradually lowered (moved) by the rotation of the guide portion 16, the opening degree control of the first valve seat 6 by the valve body 8 can be accurately performed. In the state of FIG. 1B, the lower end surface of the shaft portion 18 of the guide portion 16 and the upper end surface of the check valve 9 are in non-contact with each other, and the check valve 9 is the guide portion 1.
It is not pressed downward by the shaft portion 18 of 6 and is urged upward by the pressure of the fluid in the flow path 5, and therefore the second valve seat is completely closed by the check valve 9. ing. That is, the state of FIG. 1B is the same as the first valve seat 6 and the second valve seat 6.
The valve seat 7 is in a closed state, the flow of fluid is blocked in each of the passages 2 to 4, and the electric three-way valve A is in a closed state.

【0016】この図1(b)の状態においてさらにガイ
ド部16を回転させていくと、今度はガイド部16のみ
が回転により下降していく。つまりスプリング20の弾
発力により弁体8を下方に押圧しても弁体8は第1弁座
6により下方への移動を阻止されて、スプリング20が
収縮するだけで、それ以上弁体8は下降しない。その一
方、ガイド部16の下降により該ガイド部16の軸部1
8の下端面が逆止弁9の上端面を押接するので、ガイド
部16の下降により逆止弁9は弁体8の外面を摺動しな
がら次第に下降していく。逆止弁9の下降に伴い第2弁
座7の開度量が大きくなり、ガイド部16の下降による
逆止弁9の動作により第2弁座7での開度制御を行なう
ことができる。この逆止弁9の開制御により第2通路3
から流路5及び第2弁座7を介して流体が第3通路4へ
と流れていく。そしてガイド部16を最も下降させた状
態が図1(c)に示す状態である。
When the guide portion 16 is further rotated in the state of FIG. 1 (b), only the guide portion 16 is lowered by the rotation this time. That is, even if the valve body 8 is pressed downward by the elastic force of the spring 20, the valve body 8 is prevented from moving downward by the first valve seat 6, and the spring 20 only contracts. Does not descend. On the other hand, the lowering of the guide portion 16 causes the shaft portion 1 of the guide portion 16 to move.
Since the lower end surface of 8 presses against the upper end surface of the check valve 9, the check valve 9 gradually descends while sliding on the outer surface of the valve body 8 due to the lowering of the guide portion 16. The amount of opening of the second valve seat 7 increases as the check valve 9 descends, and the opening of the second valve seat 7 can be controlled by the operation of the check valve 9 due to the lowering of the guide portion 16. By controlling the opening of the check valve 9, the second passage 3
From the above, the fluid flows to the third passage 4 via the flow path 5 and the second valve seat 7. The state in which the guide portion 16 is most lowered is the state shown in FIG.

【0017】次に、図1(c)の状態から(b)及び
(a)へと上記の逆の動作を行なわしめる場合には、
(c)の状態からコイル15に流す電流の向きが逆にな
るように電圧を印加することで、ガイド部16を上記と
は逆向きに回転させる。図1(c)の状態からガイド部
16が上昇していくとそれに伴い逆止弁9は流路5内に
流れる流体の圧力により弁体8上を上方へ摺動しながら
上昇していく。逆止弁9が上昇していくと逆止弁9の太
径となっている基部の外面が第2弁座7に当接して第2
弁座7は閉塞する。この状態が図1(b)の状態であ
る。ガイド部16がさらに上昇していくと、ガイド部1
6の上昇に伴いガイド部16により弁体8を引き上げら
れるような形で弁体8が上昇していく。弁体8が上昇し
ていくと弁体8の弁部8aが第1弁座6から離れていく
ので、第1弁座6は開度が大きくなる方向に制御される
ことになる。
Next, when performing the reverse operation from the state of FIG. 1 (c) to (b) and (a),
By applying a voltage so that the direction of the current flowing through the coil 15 is reversed from the state of (c), the guide portion 16 is rotated in the opposite direction to the above. As the guide portion 16 rises from the state of FIG. 1C, the check valve 9 rises while sliding upward on the valve body 8 due to the pressure of the fluid flowing in the flow path 5. As the check valve 9 rises, the outer surface of the base portion having the larger diameter of the check valve 9 comes into contact with the second valve seat 7 and the second
The valve seat 7 is closed. This state is the state shown in FIG. When the guide portion 16 further rises, the guide portion 1
As the valve 6 is lifted, the valve 8 is lifted in such a manner that the valve 8 can be pulled up by the guide portion 16. As the valve body 8 rises, the valve portion 8a of the valve body 8 moves away from the first valve seat 6, so that the first valve seat 6 is controlled in the direction in which the opening degree increases.

【0018】このように弁体8による第1弁座6の開度
制御及び逆止弁9による第2弁座7の開度制御は閉じる
方向、開く方向共に行なうことができる。したがって流
路切換機能に加えて、流量調整機能を有し、しかも流路
5の開閉の切り換え時における大きな切換音が発生しな
いという利点が生じる。また電動三方弁Aの構成も簡単
なので、安価に形成できると共に小型化を図ることがで
きる。したがって電動三方弁Aを空気調和機の冷媒回路
に適用した場合には、冷媒調整もリニア制御が可能とな
り、さらに省スペース化を図ることができる。
As described above, the opening control of the first valve seat 6 by the valve body 8 and the opening control of the second valve seat 7 by the check valve 9 can be performed both in the closing direction and the opening direction. Therefore, in addition to the flow path switching function, there is an advantage that it has a flow rate adjusting function and does not generate a large switching noise when switching the opening and closing of the flow path 5. Further, since the electric three-way valve A has a simple structure, it can be formed at low cost and can be downsized. Therefore, when the electric three-way valve A is applied to the refrigerant circuit of the air conditioner, the refrigerant adjustment can be linearly controlled, and the space can be further saved.

【0019】図2は上記の電動三方弁Aを空気調和装置
の冷媒回路に適用した実施の形態を示している。この形
態では室内ユニット25a、25bの2室としている
が、2室以上にも適用できる。なお説明の便宜上、2室
の場合について説明する。室内ユニット25a、25b
にはそれぞれ室内熱交換器26a、26bと、室内ファ
ン27a、27bとが設けられている。さらに室内熱交
換器26a、26bの温度を検出する温度センサー28
a、28bが配設してある。これら以外の後述する部材
はすべて室外ユニット31側に配設され、室外ユニット
31と複数の室内ユニット25a、25bとは2本配管
としている。
FIG. 2 shows an embodiment in which the above electric three-way valve A is applied to a refrigerant circuit of an air conditioner. In this embodiment, the indoor units 25a and 25b have two chambers, but the invention can be applied to two or more chambers. For convenience of explanation, the case of two chambers will be described. Indoor units 25a, 25b
The indoor heat exchangers 26a and 26b and the indoor fans 27a and 27b are provided therein, respectively. Further, a temperature sensor 28 for detecting the temperature of the indoor heat exchangers 26a, 26b.
a and 28b are provided. All other members to be described later are provided on the outdoor unit 31 side, and the outdoor unit 31 and the plurality of indoor units 25a and 25b are two pipes.

【0020】室外ユニット31のファン34を付設して
いる室外熱交換器35の一端は電動膨張弁32を介設し
た配管36が接続されており、この配管36は枝管37
a、37bに分岐接続されている。この枝管37a、3
7bは電動膨張弁33a、33bを介設して室内ユニッ
ト25a、25bの室内熱交換器26a、26bの一端
に接続されている。室外熱交換器35の他端は第1電動
三方弁Aの第2通路3に接続され、該電動三方弁A
の第1通路2は圧縮機38からの吐出管40が接続され
ている。また第1電動三方弁Aの第3通路4は吸込管
41を介してアキュムレータ39に接続されている。さ
らに室内ユニット25a、25bの室内熱交換器26
a、26bの他端は枝管42a、42bを介して第2及
び第3電動三方弁A、Aの第2通路3にそれぞれ接
続されている。また各電動三方弁A、Aの第1通路
2は吐出管40に、第3通路4は吸込管41にそれぞれ
接続されている。なお、43は吐出管40の温度を検出
する温度センサーで、44は中間圧サーミスタと呼ばれ
る温度センサーである。
A pipe 36 having an electrically driven expansion valve 32 is connected to one end of an outdoor heat exchanger 35 provided with a fan 34 of the outdoor unit 31, and this pipe 36 is a branch pipe 37.
It is branched and connected to a and 37b. This branch pipe 37a, 3
7b is connected to one end of the indoor heat exchangers 26a, 26b of the indoor units 25a, 25b via the electrically driven expansion valves 33a, 33b. The other end of the outdoor heat exchanger 35 is connected to the second passage 3 of the first electric three-way valve A 1 and the electric three-way valve A 1
A discharge pipe 40 from the compressor 38 is connected to the first passage 2. The third passage 4 of the first electric three-way valve A 1 is connected to the accumulator 39 via the suction pipe 41. Further, the indoor heat exchanger 26 of the indoor units 25a and 25b
The other ends of a and 26b are connected to the second passages 3 of the second and third electric three-way valves A 2 and A 3 via branch pipes 42a and 42b, respectively. Further, the first passage 2 of each electric three-way valve A 2 , A 3 is connected to the discharge pipe 40, and the third passage 4 is connected to the suction pipe 41. Incidentally, 43 is a temperature sensor for detecting the temperature of the discharge pipe 40, and 44 is a temperature sensor called an intermediate pressure thermistor.

【0021】次に図2に示す冷媒回路による冷房、暖房
運転の動作について説明する。まず冷房運転の場合であ
るが、室外熱交換器35側の第1電動三方弁Aの流体
(冷媒)の流れは実線の矢印に示すように第1通路2か
ら第2通路3に切り換え制御し、室内熱交換器26a、
26b側の第2及び第3電動三方弁A、Aは実線矢
印に示すように第2通路3から第3通路4に流れるよう
に切り換え制御する。また電動膨張弁32は全開とし、
電動膨張弁33a及び33bは目標吐出管温度制御及び
ガス管等温制御を行なうようにしている。圧縮機38か
ら吐出された冷媒は、吐出管40、第1電動三方弁A
の第1通路2から第2通路3、室外熱交換器35へと順
次流れて凝縮液化した後、配管36を介して枝管37
a、37bへと分配され電動膨張弁33a、33bで減
圧され、室内熱交換器26a、26bで蒸発気化されて
冷風を室内に送る。そして室内熱交換器26a、26b
を出た冷媒は枝管42a、42b、第2及び第3電動三
方弁A、Aの第2通路3から第3通路4、吸込管4
1、アキュムレータ39を順次経て圧縮機38に吸入さ
れる。このようにして蒸発器として作用する各室内熱交
換器26a、26bで全室(この場合は2室)が同時に
冷房されることになる。
Next, the operation of cooling and heating operation by the refrigerant circuit shown in FIG. 2 will be described. First, in the case of cooling operation, the flow of the fluid (refrigerant) of the first electric three-way valve A 1 on the outdoor heat exchanger 35 side is switched from the first passage 2 to the second passage 3 as indicated by the solid arrow. The indoor heat exchanger 26a,
The second and third electric three-way valves A 2 and A 3 on the 26b side are switched and controlled so as to flow from the second passage 3 to the third passage 4 as indicated by the solid arrow. Also, the electric expansion valve 32 is fully opened,
The electric expansion valves 33a and 33b are configured to perform target discharge pipe temperature control and gas pipe isothermal control. The refrigerant discharged from the compressor 38 is discharged from the discharge pipe 40 and the first electric three-way valve A 1
From the first passage 2 to the second passage 3 and the outdoor heat exchanger 35 in order to condense and liquefy, and then to the branch pipe 37 via the pipe 36.
a, 37b, the electric expansion valves 33a, 33b reduce the pressure, and the indoor heat exchangers 26a, 26b evaporate and vaporize the cold air. And the indoor heat exchangers 26a and 26b
The refrigerant flowing out of the branch pipes 42a, 42b, the second and third electric three-way valves A 2 , A 3 from the second passage 3 to the third passage 4, the suction pipe 4
1, and is sequentially sucked into the compressor 38 through the accumulator 39. In this way, all the chambers (two chambers in this case) are cooled at the same time in each of the indoor heat exchangers 26a and 26b acting as the evaporator.

【0022】今度は逆に全室を同時に暖房する場合に
は、各電動三方弁A〜Aを次のように切り換え制御
する。まず第1電動三方弁Aでは破線矢印に示すよう
に第2通路3から第3通路4へと冷媒が流れるように切
換制御し、第2及び第3電動三方弁A、Aは破線矢
印に示すように第1通路2から第2通路3へと冷媒が流
れるようにそれぞれ切換制御する。また、電動膨張弁3
2は全開とし、電動膨張弁33a、33bは目標吐出管
温度制御及びSC制御等を行なうようにしている。圧縮
機38から吐出された冷媒は吐出管40、この吐出管4
0から枝管42a、42b側に分配されて第2及び第3
電動三方弁A、Aの第1通路2から第2通路3、室
内熱交換器26a、26bへと流れ、冷媒はこの室内熱
交換器26a、26bでそれぞれ凝縮液化した後、電動
膨張弁33a、33bで減圧され、枝管37a、37b
を経て配管36で合流され、電動膨張弁32を経て室外
熱交換器35で蒸発気化した後、第1電動三方弁A
第2通路3から第3通路4、アキュムレータ39を介し
て圧縮機38に吸入される。このように凝縮器として作
用する各室内熱交換器26a、26bで全室が同時に暖
房されることになる。
On the contrary, when heating all the rooms at the same time, the electric three-way valves A 1 to A 3 are switched and controlled as follows. First, in the first electric three-way valve A 1 , switching control is performed so that the refrigerant flows from the second passage 3 to the third passage 4 as indicated by a dashed arrow, and the second and third electric three-way valves A 2 and A 3 are indicated by broken lines. Switching control is performed so that the refrigerant flows from the first passage 2 to the second passage 3 as indicated by the arrow. In addition, the electric expansion valve 3
2 is fully opened, and the electric expansion valves 33a and 33b are configured to perform target discharge pipe temperature control, SC control, and the like. The refrigerant discharged from the compressor 38 is the discharge pipe 40 and the discharge pipe 4
0 to the side of the branch pipes 42a, 42b, and the second and third
The electric three-way valves A 2 and A 3 flow from the first passage 2 to the second passage 3 and the indoor heat exchangers 26 a and 26 b, and the refrigerant is condensed and liquefied in the indoor heat exchangers 26 a and 26 b, respectively, and then the electric expansion valve. Decompressed by 33a, 33b, branch pipes 37a, 37b
Via the electric expansion valve 32 and evaporatively vaporized in the outdoor heat exchanger 35, and then through the second passage 3 to the third passage 4 and the accumulator 39 of the first electric three-way valve A 1 to the compressor. Inhaled at 38. In this way, all the indoor heat exchangers 26a and 26b acting as condensers simultaneously heat all the rooms.

【0023】次に1室を冷房、残りの1室を暖房する場
合、例えば、第1室内ユニット25aを冷房、第2室内
ユニット25bを暖房とする場合について説明する。こ
のとき第1電動三方弁Aは実線矢印に示す第1通路2
から第2通路3に冷媒が流れるように切換制御し、第2
電動三方弁Aは実線矢印に示すように第2通路3から
第3通路4に冷媒が流れるように切換制御し、第3電動
三方弁Aは破線矢印に示すように第1通路2から第2
通路3に冷媒が流れるように切換制御する。そして電動
膨張弁32は微少開度とし、余剰冷媒の調整を行なう。
また電動膨張弁33a、33bは目標吐出管温度制御及
びSC制御を行いつつ、温度センサー44での検出温度
が外気温度よりも5℃程度低くなるように制御する。ま
た、電動膨張弁32及び第1電動三方弁Aは流通冷媒
量を温度センサー28a、28bにより判断して開度制
御を行なうようにしている。圧縮機38から吐出された
冷媒の一部が吐出管40、第1電動三方弁Aの第1通
路2から第2通路3を経て室外熱交換器35に流れると
共に、圧縮機38からの冷媒の残りは吐出管40、第3
電動三方弁Aの第1通路2から第2通路3を経て第2
室内熱交換器26bへと流れ、この第2室内熱交換器2
6bと室外熱交換器35とでそれぞれ凝縮液化される。
そしてこれらの熱交換器26b、35で凝縮液化された
冷媒は電動膨張弁32、33bで減圧され、枝管37a
で合流し、電動膨張弁33aを介して第1室内熱交換器
26aへと流れる。そしてこの第1室内熱交換器26a
にて蒸発気化され、第2電動三方弁Aの第2通路3か
ら第3通路4、吸込管41及びアキュムレータ39を介
して圧縮機38に吸入される。このようにして、凝縮器
として作用する第2室内熱交換器26bで一室が暖房さ
れ、蒸発器として作用する第1室内熱交換器26aで他
室が冷房される。
Next, a case where one room is cooled and the remaining one room is heated, for example, when the first indoor unit 25a is cooled and the second indoor unit 25b is heated will be described. At this time, the first electric three-way valve A 1 is connected to the first passage 2 indicated by the solid arrow.
Switching control is performed so that the refrigerant flows from the second passage 3 to the second passage 3.
The electric three-way valve A 2 is switch-controlled so that the refrigerant flows from the second passage 3 to the third passage 4 as indicated by the solid arrow, and the third electric three-way valve A 3 is changed from the first passage 2 as indicated by the dashed arrow. Second
Switching control is performed so that the refrigerant flows through the passage 3. Then, the electric expansion valve 32 is set to a small opening degree to adjust the excess refrigerant.
The electric expansion valves 33a and 33b perform target discharge pipe temperature control and SC control while controlling the temperature detected by the temperature sensor 44 to be about 5 ° C. lower than the outside air temperature. Further, the electric expansion valve 32 and the first electric three-way valve A 1 are configured to control the opening degree by determining the amount of circulating refrigerant by the temperature sensors 28a and 28b. A part of the refrigerant discharged from the compressor 38 flows into the outdoor heat exchanger 35 through the discharge pipe 40, the first passage 2 of the first electric three-way valve A 1 and the second passage 3, and at the same time, the refrigerant from the compressor 38 is discharged. The rest of the discharge pipe 40, the third
From the first passage 2 of the electric three-way valve A 3 through the second passage 3 to the second passage 3
The second indoor heat exchanger 2 flows to the indoor heat exchanger 26b.
6b and the outdoor heat exchanger 35 are condensed and liquefied.
The refrigerant condensed and liquefied in the heat exchangers 26b and 35 is decompressed by the electric expansion valves 32 and 33b, and the branch pipe 37a.
At the first indoor heat exchanger 26a through the electric expansion valve 33a. And this first indoor heat exchanger 26a
Is evaporated and vaporized, and is sucked into the compressor 38 from the second passage 3 of the second electric three-way valve A 2 through the third passage 4, the suction pipe 41 and the accumulator 39. In this way, one room is heated by the second indoor heat exchanger 26b acting as a condenser, and the other room is cooled by the first indoor heat exchanger 26a acting as an evaporator.

【0024】ここで一室を冷房、他室を暖房といった冷
暖同時運転においては、室外熱交換器35に余剰冷媒が
溜まるように運転される。ところで室外熱交換器35は
外気温度とほぼ同じ温度になる訳であるが、配管36に
設けた温度センサー44により該配管36の温度が外気
温度より高くなると配管36の圧力が室外熱交換器35
より高くなり、室内熱交換器26a、26bから室外熱
交換器35へ冷媒が逆流することになる。そこで室内熱
交換器26a、26bから室外熱交換器35へ冷媒が逆
流して冷媒不足になるのを防止するために、配管36の
温度を温度センサー44で検出し、温度センサー44で
の検出温度が外気温度より5℃程度低くなるように電動
膨張弁33a、33bを調整している。つまり検出温度
が高くなると、電動膨張弁33aを開くように制御する
と共に、電動膨張弁33bを閉じるように制御すること
で、配管36の温度が下がり、室外熱交換器35へ冷媒
が逆流するのを防止することができる。つまり、冷暖同
時運転の場合には、室内熱交換器26a、26b間で循
環している冷媒量を確保する必要があるので、冷媒が室
外熱交換器35へ逆流するのを防止するものである。ま
た、各室内熱交換器26a、26bの温度DCA、DC
Bを温度センサー28a、28bでそれぞれ検出してい
るが、各室内熱交換器26a、26bの温度DCA、D
CBが高くなると、冷媒循環量が過剰であることから、
冷媒を室外熱交換器35へ溜める方向に制御を行なう。
また、各室内熱交換器26a、26bの温度DCA、D
CBが低くなると、冷媒循環量が不足気味であることか
ら、室外熱交換器35から冷媒を放出する方向に制御を
行なう。これらの制御の仕方を表しているのが図3であ
る。図3は圧縮機38の運転周波数も同時に変化させて
いる。つまり、室内熱交換器26a、26bの温度DC
A、DCBが高くなると、電動膨張弁32を閉じると共
に、第1電動三方弁Aを開く方向にそれぞれ制御す
る。また、室内熱交換器26a、26bの温度DCA、
DCBが低くなると、電動膨張弁32を開くと共に、第
1電動三方弁Aを閉じる方向にそれぞれ制御する。ま
た温度DCAが高く、温度DCBが低いときには圧縮機
38の運転周波数を上昇させ、上記とは逆の場合には運
転周波数を低下させる。
Here, in the simultaneous cooling and heating operation such as cooling one room and heating the other room, the outdoor heat exchanger 35 is operated so that excess refrigerant accumulates. By the way, the outdoor heat exchanger 35 has almost the same temperature as the outside air temperature. However, when the temperature of the pipe 36 becomes higher than the outside air temperature by the temperature sensor 44 provided in the pipe 36, the pressure of the pipe 36 is changed to the outdoor heat exchanger 35.
It becomes higher, and the refrigerant flows backward from the indoor heat exchangers 26a and 26b to the outdoor heat exchanger 35. Therefore, in order to prevent the refrigerant from flowing backward from the indoor heat exchangers 26a and 26b to the outdoor heat exchanger 35 and becoming insufficient, the temperature of the pipe 36 is detected by the temperature sensor 44, and the temperature detected by the temperature sensor 44 is detected. The electric expansion valves 33a and 33b are adjusted so that the temperature becomes lower than the outside air temperature by about 5 ° C. That is, when the detected temperature rises, the electric expansion valve 33a is controlled to open and the electric expansion valve 33b is controlled to close, so that the temperature of the pipe 36 decreases and the refrigerant flows back to the outdoor heat exchanger 35. Can be prevented. That is, in the simultaneous cooling / heating operation, it is necessary to secure the amount of the refrigerant circulating between the indoor heat exchangers 26a and 26b, so that the refrigerant is prevented from flowing back to the outdoor heat exchanger 35. . In addition, the temperatures DCA and DC of the indoor heat exchangers 26a and 26b, respectively.
Although B is detected by the temperature sensors 28a and 28b, respectively, the temperatures DCA and D of the indoor heat exchangers 26a and 26b are detected.
When CB becomes high, the refrigerant circulation amount becomes excessive,
The control is performed so that the refrigerant is stored in the outdoor heat exchanger 35.
In addition, the temperatures DCA and D of the indoor heat exchangers 26a and 26b, respectively.
When the CB becomes low, the circulation amount of the refrigerant tends to be insufficient, so control is performed in the direction of discharging the refrigerant from the outdoor heat exchanger 35. FIG. 3 shows how to control these. In FIG. 3, the operating frequency of the compressor 38 is also changed at the same time. That is, the temperature DC of the indoor heat exchangers 26a and 26b
When A and DCB increase, the electric expansion valve 32 is closed and the first electric three-way valve A 1 is controlled to open. Further, the temperature DCA of the indoor heat exchangers 26a and 26b,
When DCB becomes low, the electric expansion valve 32 is opened and the first electric three-way valve A 1 is controlled to be closed. When the temperature DCA is high and the temperature DCB is low, the operating frequency of the compressor 38 is increased, and in the opposite case, the operating frequency is decreased.

【0025】このように上記実施の形態では電動三方弁
Aを従来の切換弁や三方弁の代わりに用いることで、全
室暖房または全室冷房の場合や、あるいは複数の室の冷
暖同時運転を行なう場合でも、電動三方弁Aの第1弁座
6及び第2弁座7の開閉を行なうだけでシステムを容易
に構築することが可能となる。また、電動三方弁Aによ
り従来のように切換音が発生せず、高品質、高効率化を
達成でき、冷媒調整もリニア制御が可能となり、さらに
省スペース化を図ることができる。
As described above, in the above-described embodiment, the electric three-way valve A is used instead of the conventional switching valve or three-way valve, so that heating or cooling of all rooms or simultaneous operation of cooling and heating of a plurality of rooms is possible. Even when it is performed, the system can be easily constructed only by opening and closing the first valve seat 6 and the second valve seat 7 of the electric three-way valve A. Further, the electric three-way valve A does not generate switching noise as in the conventional case, high quality and high efficiency can be achieved, linear control of refrigerant adjustment is possible, and further space saving can be achieved.

【0026】[0026]

【発明の効果】この発明の請求項1記載の電動三方弁に
よれば、切換機能に加えて流量調整が可能であり、さら
に従来のような切換音の発生を抑制できる。しかも製品
を安価で且つ省スペース化、高品質、高効率に提供する
ことができる。
According to the electrically operated three-way valve of the first aspect of the present invention, the flow rate can be adjusted in addition to the switching function, and the generation of switching noise as in the prior art can be suppressed. In addition, the product can be provided at low cost, space saving, high quality, and high efficiency.

【0027】また請求項2記載の電動三方弁によれば、
弁体及び逆止弁の軸方向における移動をスムーズに行な
うことができる。したがって流体量制御を容易、かつ精
度良く行うことができる。
According to the electric three-way valve of the second aspect,
It is possible to smoothly move the valve element and the check valve in the axial direction. Therefore, the fluid amount can be controlled easily and accurately.

【0028】請求項3記載の電動三方弁を用いた冷暖用
空気調和装置によれば、室外熱交換器及び室内熱交換器
側にそれぞれ電動三方弁を用いているので、冷媒回路を
全室暖房、または全室冷房としたり、あるいは所定の室
を冷房し、残りの室を暖房の同時運転を行なう場合に
も、電動三方弁の各弁座の開閉を行なうだけで良い。し
たがってこのようなシステム構築が容易となる。また、
電動三方弁により従来のように切換音が発生せず、高品
質、高効率化を達成でき、冷媒調整もリニア制御が可能
となり、さらに省スペース化を図ることができる。
According to the cooling / heating air conditioner using the electric three-way valve according to the third aspect, since the electric three-way valves are used on the outdoor heat exchanger side and the indoor heat exchanger side, respectively, the refrigerant circuit is heated in all rooms. Alternatively, when all the rooms are cooled, or when a predetermined room is cooled and the remaining rooms are simultaneously operated for heating, it is sufficient to open and close each valve seat of the electric three-way valve. Therefore, it becomes easy to construct such a system. Also,
The electric three-way valve does not generate switching noise as in the conventional case, high quality and high efficiency can be achieved, linear control of refrigerant adjustment is possible, and further space saving can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の一形態の電動三方弁の動作説
明図である。
FIG. 1 is an operation explanatory diagram of an electric three-way valve according to an embodiment of the present invention.

【図2】上記電動三方弁を用いた冷媒回路図である。FIG. 2 is a refrigerant circuit diagram using the electric three-way valve.

【図3】上記冷媒回路の動作説明図である。FIG. 3 is an operation explanatory view of the refrigerant circuit.

【図4】従来例の冷暖同時運転用の冷媒回路図である。FIG. 4 is a refrigerant circuit diagram for a conventional cooling / heating simultaneous operation.

【図5】他の従来例の冷暖同時運転用の冷媒回路図であ
る。
FIG. 5 is a refrigerant circuit diagram for another conventional cooling / heating simultaneous operation.

【符号の説明】[Explanation of symbols]

1 本体ケーシング 2 第1通路 3 第2通路 4 第3通路 5 流路 6 第1弁座 7 第2弁座 8 弁体 8a 弁部 9 逆止弁 10 第1のネジ孔 13 電気駆動機構 15 コイル 16 ガイド部 18 軸部 20 スプリング 25a、25b 室内ユニット 26a、26b 室内熱交換器 31 室外ユニット 32 第1の電動膨張弁 33a、33b 第2の電動膨張弁 35 室外熱交換器 36 配管 37a、37b 枝管 38 圧縮機 40 吐出管 41 吸込管 A 電動三方弁 A〜A 電動三方弁DESCRIPTION OF SYMBOLS 1 Main body casing 2 1st passage 3 2nd passage 4 3rd passage 5 Flow passage 6 1st valve seat 7 2nd valve seat 8 Valve body 8a Valve part 9 Check valve 10 1st screw hole 13 Electric drive mechanism 15 Coil 16 Guide portion 18 Shaft portion 20 Spring 25a, 25b Indoor unit 26a, 26b Indoor heat exchanger 31 Outdoor unit 32 First electric expansion valve 33a, 33b Second electric expansion valve 35 Outdoor heat exchanger 36 Piping 37a, 37b Branch tube 38 compressor 40 discharge pipe 41 the suction pipe A motorized three-way valve A 1 to A 3 electrically-driven three-way valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 本体ケーシング(1)内に、その軸方向
に延びる流路(5)を形成し、流路(5)の一端側を第
1通路(2)に、他端側を第3通路(4)に、その中途
部を第2通路(3)にそれぞれ接続すると共に、上記流
路(5)内においては、上記第1通路(2)と第2通路
(3)との間に第1弁座(6)を、上記第2通路(3)
と第3通路(4)との間に第2弁座(7)をそれぞれ設
け、上記流路(5)内には、その軸方向に沿い、かつ上
記第2弁座(7)を貫通して第1弁座(6)側へと延び
る弁体(8)を配置し、弁体(8)の先端側には上記第
1弁座(6)に近接、離反して開度制御を行うための弁
部(8a)を設け、さらに上記弁体(8)には上記第2
弁座(7)よりも先端側の位置に逆止弁(9)を摺動自
在に嵌挿し、流路(5)内に作用する流体圧力でもって
上記逆止弁(9)を押動して上記第2弁座(7)を閉鎖
すべく構成し、さらに上記弁体(8)及び逆止弁(9)
を駆動するための電気的駆動機構(13)を設け、この
電気的駆動機構(13)により、流路(5)内の流体圧
力によって逆止弁(9)が第2弁座(7)を閉鎖すると
共に、上記弁体(8)の軸方向移動による第1弁座
(6)での開度制御を行う第1の状態、上記流路(5)
内の流体圧力によって逆止弁(9)が第2弁座(7)を
閉鎖すると共に、上記弁体(8)で第1弁座(6)を閉
鎖した第2の状態、上記流路(5)内の流体圧力に抗し
て逆止弁(9)を移動させることにより第2弁座(7)
での開度制御を行うと共に、弁体(8)で第1弁座
(6)を閉鎖した第3の状態をそれぞれ形成すべく構成
していることを特徴とする電動三方弁。
1. A flow passage (5) extending in the axial direction is formed in a main body casing (1), one end side of the flow passage (5) is a first passage (2), and the other end side is a third. The passage (4) is connected to the second passage (3) at an intermediate portion thereof, and in the passage (5), between the first passage (2) and the second passage (3). Connect the first valve seat (6) to the second passage (3)
A second valve seat (7) is provided between the second valve seat (7) and the third passage (4), and penetrates the second valve seat (7) in the flow path (5) along its axial direction. A valve body (8) extending toward the first valve seat (6) side, and the opening degree is controlled by approaching or separating from the first valve seat (6) on the tip side of the valve body (8). A valve portion (8a) for the second valve is provided on the valve body (8).
A check valve (9) is slidably inserted into a position closer to the tip side than the valve seat (7), and the check valve (9) is pushed by the fluid pressure acting in the flow path (5). Is configured to close the second valve seat (7), and further the valve body (8) and the check valve (9).
An electric drive mechanism (13) for driving the valve is provided, and by this electric drive mechanism (13), the check valve (9) opens the second valve seat (7) by the fluid pressure in the flow path (5). The first state in which the opening degree is controlled in the first valve seat (6) by the axial movement of the valve body (8) while being closed, the flow path (5)
The second state in which the check valve (9) closes the second valve seat (7) by the fluid pressure inside and the first valve seat (6) is closed by the valve body (8), the flow path ( 5) By moving the check valve (9) against the fluid pressure in the second valve seat (7)
The electric three-way valve is characterized in that it is configured to form a third state in which the first valve seat (6) is closed by the valve body (8) while controlling the opening degree in 1.
【請求項2】 上記電気的駆動機構(13)は、コイル
(15)に流れる電流によって回転駆動されるガイド部
(16)に軸部(18)を設けると共に、この軸部(1
8)を上記本体ケーシング(1)に設けられたネジ孔
(10)に螺合し、上記ガイド部(16)の回転を直線
的な往復動に変換すべく構成し、上記弁体(8)は、上
記軸部(18)を摺動可能に貫通して流路(5)内に導
入されており、さらに上記弁体(8)は、上記ガイド部
(16)と連動可能で、かつ上記ガイド部(16)が弁
体(8)を第1弁座(6)を閉鎖する方向に移動させ、
これにより上記弁体(8)の弁部(8a)が第1弁座
(6)に当接した後、さらに上記ガイド部材(16)を
同方向に移動可能であるようにガイド部材(16)に支
持されており、またガイド部材(16)の上記同方向へ
の移動により上記軸部(18)の先端部が上記逆止弁
(9)を開弁方向に押動すべく構成していることを特徴
とする請求項1の電動三方弁。
2. The electric drive mechanism (13) is provided with a shaft portion (18) on a guide portion (16) which is rotationally driven by an electric current flowing through a coil (15), and the shaft portion (1).
8) is screwed into a screw hole (10) provided in the main body casing (1) to convert the rotation of the guide portion (16) into a linear reciprocating motion. Is introduced into the flow channel (5) slidably through the shaft portion (18), and the valve body (8) is interlockable with the guide portion (16) and The guide portion (16) moves the valve body (8) in the direction of closing the first valve seat (6),
As a result, after the valve portion (8a) of the valve body (8) contacts the first valve seat (6), the guide member (16) can be further moved in the same direction so that the guide member (16) can move in the same direction. The guide member (16) is moved in the same direction so that the tip of the shaft portion (18) pushes the check valve (9) in the valve opening direction. The electric three-way valve according to claim 1, wherein
【請求項3】 圧縮機(38)と室外熱交換器(35)
とを有する室外ユニット(31)と、室内熱交換器(2
6a)(26b)を有する複数台の室内ユニット(25
a)(25b)とを備え、全室を冷房または暖房、ある
いは所定の室を冷房運転し、他の室を暖房運転するよう
にした冷暖用空気調和装置において、上記室外熱交換器
(35)の一端側に第1の電動膨張弁(32)を介設し
た配管(36)を分岐させると共に、各枝管(37a)
(37b)を第2の電動膨張弁(33a)(33b)を
介して室内熱交換器(26a)(26b)の一端側にそ
れぞれ接続し、室外熱交換器(35)及び各室内熱交換
器(26a)(26b)の他端側にはそれぞれ上記請求
項1の電動三方弁(A)(A)(A)の第2通路
(3)を接続し、圧縮機(38)の吐出管(40)を室
外熱交換器(35)側の第1電動三方弁(A)の第1
通路(2)に接続すると共に、上記吐出管(40)を分
岐して室内熱交換器(26a)(26b)側の第2及び
第3電動三方弁(A)(A)の第1通路(2)にそ
れぞれ接続し、圧縮機(38)の吸込側の吸込管(4
1)を室外熱交換器(35)側の第1電動三方弁
(A)の第3通路(4)に接続すると共に、上記吸込
管(41)を分岐して室内熱交換器(26a)(26
b)側の第2及び第3電動三方弁(A)(A)の第
3通路(4)にそれぞれ接続していることを特徴とする
電動三方弁を用いた冷暖用空気調和装置。
3. A compressor (38) and an outdoor heat exchanger (35)
An outdoor unit (31) having an indoor heat exchanger (2)
6a) and (26b) a plurality of indoor units (25
a) (25b), wherein all the rooms are cooled or heated, or a predetermined room is cooled and the other rooms are heated, the outdoor heat exchanger (35) A pipe (36) having a first electric expansion valve (32) interposed at one end side of each of the branch pipes (37a)
(37b) is connected to one end sides of the indoor heat exchangers (26a) (26b) via the second electric expansion valves (33a) (33b), and the outdoor heat exchanger (35) and each indoor heat exchanger are connected. The second passages (3) of the electric three-way valves (A 1 ) (A 2 ) (A 3 ) according to claim 1 are connected to the other ends of the (26a) and (26b), respectively, and are connected to the compressor (38). The discharge pipe (40) is the first of the first electric three-way valve (A 1 ) on the outdoor heat exchanger (35) side.
The first of the second and third electric three-way valves (A 2 ) (A 3 ) on the indoor heat exchanger (26a) (26b) side is connected to the passage (2) and the discharge pipe (40) is branched. The suction pipe (4) on the suction side of the compressor (38) is connected to the passage (2).
1) is connected to the third passage (4) of the first electric three-way valve (A 1 ) on the side of the outdoor heat exchanger (35), and the suction pipe (41) is branched so that the indoor heat exchanger (26 a). (26
A cooling / heating air conditioner using an electric three-way valve, which is connected to the third passages (4) of the second and third electric three-way valves (A 2 ) (A 3 ) on the b) side, respectively.
JP20985695A 1995-07-14 1995-07-14 Motor-driven three-way valve and air conditioner for cooling and heating to use this motor-driven three-way valve Pending JPH0926042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20985695A JPH0926042A (en) 1995-07-14 1995-07-14 Motor-driven three-way valve and air conditioner for cooling and heating to use this motor-driven three-way valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20985695A JPH0926042A (en) 1995-07-14 1995-07-14 Motor-driven three-way valve and air conditioner for cooling and heating to use this motor-driven three-way valve

Publications (1)

Publication Number Publication Date
JPH0926042A true JPH0926042A (en) 1997-01-28

Family

ID=16579763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20985695A Pending JPH0926042A (en) 1995-07-14 1995-07-14 Motor-driven three-way valve and air conditioner for cooling and heating to use this motor-driven three-way valve

Country Status (1)

Country Link
JP (1) JPH0926042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340436A (en) * 2001-05-18 2002-11-27 Fujitsu General Ltd Multi-chamber air conditioner
JP2011245978A (en) * 2010-05-27 2011-12-08 Tgk Co Ltd Control valve and air conditioner for vehicle
WO2012144137A1 (en) * 2011-04-20 2012-10-26 株式会社テージーケー Control valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340436A (en) * 2001-05-18 2002-11-27 Fujitsu General Ltd Multi-chamber air conditioner
JP2011245978A (en) * 2010-05-27 2011-12-08 Tgk Co Ltd Control valve and air conditioner for vehicle
WO2012144137A1 (en) * 2011-04-20 2012-10-26 株式会社テージーケー Control valve
JP2012225438A (en) * 2011-04-20 2012-11-15 Tgk Co Ltd Control valve

Similar Documents

Publication Publication Date Title
KR100388675B1 (en) Air conditioner having pressure controlling unit and its control method
JP6758500B2 (en) Air conditioner
US20060150667A1 (en) Heat exchanger and air conditioner using the same
KR100332773B1 (en) Evaporator flow distribution device for heat pump
AU2003246248A1 (en) Refrigeration equipment
JP6671491B2 (en) Heat exchanger and refrigeration cycle equipment
JPH0926042A (en) Motor-driven three-way valve and air conditioner for cooling and heating to use this motor-driven three-way valve
JP6628864B2 (en) Refrigeration cycle device
JP7350888B2 (en) Refrigeration cycle equipment
JP2008051464A (en) Air conditioner
JP2516626B2 (en) Two-stage pressure reducing valve
WO2019181244A1 (en) Compressor and heat pump system
JPS6025706B2 (en) Refrigerator control device
KR100332778B1 (en) Flow control device for heat pump
KR100329923B1 (en) Apparatus for selecting directional refrigerant passage of a cooling and heat pump type air-conditioner
JP2006145129A (en) Four way valve, and outdoor unit using it
JP2005016890A (en) Refrigeration device
KR20040023314A (en) Refrigerant contral apparatus for air conditioner
KR100339400B1 (en) The heat pump and control method of operation
KR20010065565A (en) Four Valve Structure For Cooling And Heating Type Air Conditioner
JP2009127733A (en) Motor operated valve and refrigerator
JP2643708B2 (en) Air conditioner
JP6485625B2 (en) Air conditioner
JP2003028537A (en) Air conditioner
JP2011106702A (en) Flow control valve