JPH09258461A - Production of laminated electrophotographic photreceptor - Google Patents

Production of laminated electrophotographic photreceptor

Info

Publication number
JPH09258461A
JPH09258461A JP6254496A JP6254496A JPH09258461A JP H09258461 A JPH09258461 A JP H09258461A JP 6254496 A JP6254496 A JP 6254496A JP 6254496 A JP6254496 A JP 6254496A JP H09258461 A JPH09258461 A JP H09258461A
Authority
JP
Japan
Prior art keywords
coating
layer
conductive substrate
charge transport
photosensitive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6254496A
Other languages
Japanese (ja)
Inventor
Makoto Kurokawa
誠 黒川
Yoichi Takezawa
洋一 竹沢
Yoshimi Kojima
義己 小島
Tatsuhiro Morita
竜廣 森田
Sayaka Uesugi
さやか 上杉
Rikiya Matsuo
力也 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6254496A priority Critical patent/JPH09258461A/en
Publication of JPH09258461A publication Critical patent/JPH09258461A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable the formation of a uniform photosensitive layer and to attain the compatibility of the strength to chipping of a film with coatability and the perservable stability of a coating liquid by using a binder resin and specifying the moving speed of a conductive substrate in a vapor vessel of a coating vessel after the bottom end of the conductive substrate parts from the coating liquid after application of a photosensitive layer. SOLUTION: The conductive substrate is parted from the coating vessel and the photosensitive layer is formed of a charge generating layer and a charge transfer layer in the coating applying vessel filled with the coating liquid. In such a case, the binder resin for the charge transfer layer having a viscosity average mol.wt. of 30,000 to 60,000 is used. The moving speed of the conductive substrate in the vapor vessel of the coating applying vessel after the bottom end of the conductive substrate parts from the coating liquid after application of the photosensitive layer is set higher than the moving speed of the conductive substrate at the time of applying the photosensitive layer. Then, the formation of the uniform photosensitive layer is made possible by controlling the drying speed of the coating film without receiving the influence of the variable speed. The compatibility of the strength to chipping of the film by the cleaning stage of a copying machine and the coatability with the preservable stability of the coating liquid is attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は積層型電子写真感光
体の製造方法に関し、より詳細には、感光性材料を浸漬
塗布方法により基体に塗布し積層型電子写真感光体を製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated electrophotographic photosensitive member, and more particularly to a method for manufacturing a laminated electrophotographic photosensitive member by applying a photosensitive material to a substrate by a dip coating method.

【0002】[0002]

【従来の技術】現在実用化されている電子写真感光体
は、無機系材料を用いたものと有機系材料を用いたもの
に大別できる。無機系の代表的な感光体としては、アモ
ルファスセレン(a−Se)やアモルファスセレンひ素
(a−As2Se3)等のセレン系のもの、色素増感した
酸化亜鉛(ZnO)あるいは、硫化カドミウム(Cd
S)を結着樹脂中に分散したもの、及びアモルファスシ
リコン(a−Si)を使用したもの等が有る。又有機系
の代表的な感光体としては、2,4,7−トリニトロ−
9−フルオレノン(TNF)とポリ−N−ビニルカルバ
ゾール(PVK)との電荷移動錯体を用いたものなどが
ある。
2. Description of the Related Art Electrophotographic photoreceptors currently in practical use can be roughly classified into those using an inorganic material and those using an organic material. Typical inorganic photoreceptors include selenium-based ones such as amorphous selenium (a-Se) and amorphous selenium arsenic (a-As 2 Se 3 ), dye-sensitized zinc oxide (ZnO), or cadmium sulfide. (Cd
There are those in which S) is dispersed in a binder resin, those in which amorphous silicon (a-Si) is used, and the like. A typical organic photoconductor is 2,4,7-trinitro-
For example, a charge transfer complex of 9-fluorenone (TNF) and poly-N-vinylcarbazole (PVK) is used.

【0003】これらの感光体は、多くの長所を有すると
同時に欠点も有している。例えば、セレン系及びCdS
を使用した感光体は、耐熱性、保存安定性に問題があ
り、また毒性を有するため簡単に廃棄することができず
回収しなければならないという制約がある。ZnO樹脂
分散系感光体は、低感度及び耐久性の無さから現在はほ
とんど使用されなくなりつつある。a−Si感光体は、
高感度、高耐刷性等の優れた長所はもっているものの、
その製造プロセスの複雑さに起因する高製造コスト及び
成膜時の欠陥に起因する画像欠陥等の問題を残してい
る。
These photoreceptors have many advantages as well as drawbacks. For example, selenium and CdS
The photoconductor using is problematic in heat resistance and storage stability, and has a limitation that it cannot be easily discarded because it has toxicity and must be recovered. ZnO resin-dispersed photoreceptors are almost not used at present because of low sensitivity and lack of durability. The a-Si photoreceptor is
Although it has excellent advantages such as high sensitivity and high printing durability,
There remain problems such as high manufacturing cost due to the complexity of the manufacturing process and image defects due to defects during film formation.

【0004】一方有機系の感光体は、有機材料が多種存
在し合成により多様のアレンジも可能なためそれらを適
宜選択することにより保存安定性、毒性等の問題を回避
することができ、また低コストで製造することが可能な
ことから、各社精力的に検討している。しかし、有機感
光体もやはり低感度という問題点を有しており、その改
良が進められている。先に記したPVK−TNF電荷移
動錯体もその改良の一つであったが十分な感度を有する
までには至らなかった。
On the other hand, organic photoreceptors have many kinds of organic materials and can be arranged in various ways by synthesis. Therefore, by appropriately selecting them, problems such as storage stability and toxicity can be avoided and low Since it can be manufactured at cost, each company is energetically considering it. However, the organic photoreceptor also has a problem of low sensitivity, and its improvement is being promoted. The PVK-TNF charge transfer complex described above was one of the improvements, but it did not reach sufficient sensitivity.

【0005】そこで、その他種々の増感方法が提案さ
れ、中でも光を照射したときに電荷担体を発生する物質
(以下「電荷発生物質」と記す。)を含む層(以下[電
荷発生層;CGL」と記す。)と電荷発生層で発生した
電荷担体を受け入れ、それを輸送する物質(以下「電荷
輸送物質」と記す。)を主体とする層(以下「電荷輸送
層;CTL」と記す。)とから成る積層型の感光体(以
下「積層型電子写真感光体」と記す。)が優れた増感性
を示すことから、現在実用化されている有機感光体構成
の大部分を占めてきている。又、近年の耐久性向上から
今後感光体の主流として期待されている。
Therefore, various other sensitizing methods have been proposed, and among them, a layer containing a substance (hereinafter referred to as "charge generating substance") which generates a charge carrier when irradiated with light (hereinafter referred to as "charge generating layer; CGL"). , And a layer mainly composed of a substance that accepts and transports charge carriers generated in the charge generation layer (hereinafter, referred to as “charge transport material”) (hereinafter, referred to as “charge transport layer; CTL”). ) And a laminated type photoconductor (hereinafter referred to as “multilayered electrophotographic photoconductor”) exhibit excellent sensitization property, and therefore, have constituted most of the organic photoconductor constitutions currently put into practical use. There is. Further, it is expected to be the mainstream of photoconductors in the future due to the improvement of durability in recent years.

【0006】上記の有機系材料を用いた電子写真感光体
の製造方法としては、特開昭57−5047号公報に記
載されているような感光体物質を含有する塗布液に導電
性基体を浸漬し、次いで該基体を塗布液から引き抜き、
基体上に感光層を形成する浸漬塗布法が知られており、
装置的にも簡単で生産性に優れていることから、有機感
光体の製造方法の主流となっている。
As a method for producing an electrophotographic photosensitive member using the above organic material, a conductive substrate is dipped in a coating solution containing a photosensitive material as described in JP-A-57-5047. And then withdrawing the substrate from the coating liquid,
A dip coating method for forming a photosensitive layer on a substrate is known,
Since it is simple in terms of equipment and has excellent productivity, it has become the mainstream of the method for producing an organic photoconductor.

【0007】現在、有機感光体も耐久性向上がなされて
いるが無機系と比較した場合劣っており、今後の更なる
耐久性の向上が期待される。
At present, the durability of the organic photoconductor is improved, but it is inferior to that of the inorganic type, and further improvement of the durability is expected in the future.

【0008】有機感光体の耐久性が劣る原因としては、
複写機のクリーニング工程による感光層の膜削れがある
感光体が薄くなることにより、帯電性の低下及び画像上
にスジ状の画像欠陥が発生し、更には感光層の欠陥等が
発生し問題となる。
The cause of the poor durability of the organic photoreceptor is
There is a film scraping of the photosensitive layer due to the cleaning process of the copying machine.As the photoconductor becomes thin, the charging property is reduced and streak-shaped image defects occur on the image, and further defects of the photosensitive layer occur, which causes problems. Become.

【0009】これらの問題を改善する目的で、感光体の
膜厚を厚くし相対的な膜削れ量を小さくする方法が、特
開平3−56966号公報,特開平3−63653号公
報,特開平3−87749号公報,特開平3−1113
53号公報等で提案されている。
For the purpose of improving these problems, a method of increasing the film thickness of the photoconductor to reduce the relative amount of film abrasion is disclosed in JP-A-3-56966, JP-A-3-63653, and JP-A-3-63653. JP-A-3-87749, JP-A-3-1113
No. 53, etc.

【0010】しかし、感光層の膜厚を厚くするために
は、種々の問題が発生する。例えば、感光体上端部の膜
厚の立ち上がり不良による画像ムラの発生、電荷輸送層
用塗布液の使用量が増えコストアップにつながる。厚膜
により従来の乾燥条件では残留溶剤が発生し長期使用に
よる画像欠陥の原因となる。また、残留溶剤を排除する
目的で乾燥温度を上げると有機材料が熱破壊を起こし感
光体特性を失ってしまう。また、均一な厚膜感光体を得
る目的で電荷輸送層用塗布液の固形分濃度を上げること
も考えられるが、この場合、有機材料の溶解不良及び塗
布液の保全安定性の劣化、また、電荷輸送層の膜厚を上
げると電荷輸送層塗布時の風乾の際、溶剤蒸発量が増え
それが原因で塗布膜のブラッシング不良が発生する等の
問題点があげられる。
However, in order to increase the thickness of the photosensitive layer, various problems occur. For example, image unevenness occurs due to defective rising of the film thickness at the upper end of the photoconductor, and the amount of the charge transport layer coating liquid used increases, leading to higher costs. Due to the thick film, residual solvent is generated under the conventional drying conditions, which causes image defects due to long-term use. Further, if the drying temperature is raised for the purpose of eliminating the residual solvent, the organic material will be thermally destroyed and the characteristics of the photoreceptor will be lost. It is also possible to increase the solid content concentration of the charge transport layer coating liquid for the purpose of obtaining a uniform thick film photoreceptor, but in this case, poor dissolution of the organic material and deterioration of the stability of the coating liquid, When the thickness of the charge transport layer is increased, the amount of solvent evaporation increases during air-drying during coating of the charge transport layer, which causes problems such as defective brushing of the coating film.

【0011】[0011]

【発明が解決しようとする課題】従来の浸漬塗布の場合
塗布液の沈殿防止及び導電性基体の浸漬長さを常に一定
にするなどの理由から、オーバーフロー装置を設ける必
要がある。しかし、オーバーフロー塗布の場合、オーバ
ーフローしながらの塗布は塗布液の乱流が原因で塗膜に
ムラが発生する。そこで上記の条件を満足させるために
は、基体の浸漬時のみオーバーフローさせ塗布時はオー
バーフローを止める方法が考えられる。ところがこの方
法によれば塗布液の乱流による塗膜ムラは、解消できた
ものの塗布膜乾燥過程のタレの影響で感光体の塗布方向
の上部と下部で膜厚に差が生じてしまう。
In the case of the conventional dip coating, it is necessary to provide an overflow device for the purpose of preventing the precipitation of the coating solution and keeping the dipping length of the conductive substrate constant. However, in the case of overflow coating, uneven coating occurs due to the turbulent flow of the coating liquid during coating while overflowing. Therefore, in order to satisfy the above conditions, a method of overflowing only when the substrate is immersed and stopping the overflow during coating can be considered. However, according to this method, the unevenness of the coating film due to the turbulent flow of the coating liquid can be eliminated, but due to the sagging during the drying process of the coating film, a difference in film thickness occurs between the upper and lower portions of the photoreceptor in the coating direction.

【0012】これら問題を改善する目的で塗布液中での
塗布速度をコントロールする方法が、特開昭57−50
48号公報,特開昭59−46171号公報,特開昭6
0−146244号公報,特開昭60−158455号
公報等で提案されている。
A method of controlling the coating speed in a coating solution for the purpose of improving these problems is disclosed in JP-A-57-50.
48, JP-A-59-46171, JP-A-6
No. 0-146244, JP-A No. 60-158455, etc. are proposed.

【0013】しかし、塗布液中で基体を変速した場合、
変速点で極端に膜厚が変化し均一な塗布膜を得ることが
困難である。また、図22,図23で示すように(ここ
で、51は溶剤蒸気層、52は塗布槽、53は塗布液の
液面、54は塗布槽塗工蓋、55は塗布液、56はオー
バーフロー受け槽、57は塗布液供給口、58は塗布液
戻し口、59は塗布済み基体、60は塗布槽塗工蓋開口
部である。)塗布槽を円錐形にし液面低下速度をコント
ロールする方法は速度コントロールのアレンジが困難で
多機種の対応が不可能である。また、塗布槽の容量が大
きくなり、塗布液が大量に必要となることから、塗布液
のロスが多くなり、ひいてはコストが高くなるという問
題が発生する。
However, when the substrate is changed in speed in the coating liquid,
It is difficult to obtain a uniform coating film because the film thickness changes extremely at the shift point. Further, as shown in FIGS. 22 and 23 (where 51 is a solvent vapor layer, 52 is a coating tank, 53 is a liquid surface of a coating solution, 54 is a coating tank coating lid, 55 is a coating solution, and 56 is an overflow. A receiving tank, 57 is a coating liquid supply port, 58 is a coating liquid returning port, 59 is a coated substrate, and 60 is a coating tank coating lid opening.) A method of controlling the liquid level lowering speed by making the coating tank into a conical shape It is difficult to arrange speed control and it is impossible to support multiple models. Further, since the capacity of the coating tank is large and a large amount of coating liquid is required, there is a problem that the loss of the coating liquid is large and the cost is high.

【0014】[0014]

【課題を解決するための手段】請求項1記載の積層型電
子写真感光体の製造方法は、塗布液を満たした塗布槽に
導電性基体を浸漬した後、前記導電性基体を前記塗布槽
から離間させ、電荷発生層,電荷輸送層から感光層を形
成する積層型電子写真感光体の製造方法において、粘度
平均分子量が30,000〜60,000の電荷輸送層
用の結着剤樹脂を用い、感光層塗布後前記導電性基体の
下端部が前記塗布液から離間した後の前記塗布槽の蒸気
槽中での前記導電性基体の移動速度を感光層塗布時の前
記導電性基体の移動速度より速くする。
According to a first aspect of the present invention, there is provided a method of manufacturing a laminated electrophotographic photosensitive member, wherein a conductive substrate is immersed in a coating tank filled with a coating solution, and then the conductive substrate is removed from the coating tank. In a method for producing a laminated electrophotographic photoreceptor in which a photosensitive layer is formed from a charge generation layer and a charge transport layer which are separated from each other, a binder resin for a charge transport layer having a viscosity average molecular weight of 30,000 to 60,000 is used. The moving speed of the conductive substrate in the vapor tank of the coating tank after the lower end of the conductive substrate is separated from the coating liquid after coating the photosensitive layer is the moving speed of the conductive substrate during coating of the photosensitive layer. Make it faster.

【0015】上記の製造方法によれば、感光層塗布後、
電荷輸送層の下部膜厚が薄くなる溶剤蒸気層中での基体
の移動速度を塗布中の基体の移動速度よりも速くするこ
とで、塗布膜の乾燥速度をコントロールすることで変速
の影響を受けることなく均一な感光層を形成することが
でき、また、電荷輸送層用結着剤樹脂の粘度平均分子量
を30,000以上60,000以下にすることで、複
写機のクリーニング工程による膜削れ強度、及び、塗工
性と塗布液の保存安定性とを両立することができる。
According to the above manufacturing method, after coating the photosensitive layer,
The lower film thickness of the charge transport layer is thinned. By making the moving speed of the substrate in the solvent vapor layer faster than the moving speed of the substrate during coating, the drying speed of the coating film is controlled to affect the shift. It is possible to form a uniform photosensitive layer without a charge-transporting layer. Also, by setting the viscosity average molecular weight of the binder resin for the charge transport layer to 30,000 or more and 60,000 or less, the film scraping strength in the cleaning process of the copying machine can be improved. In addition, it is possible to achieve both coatability and storage stability of the coating liquid.

【0016】請求項2記載の積層型電子写真感光体の製
造方法は、前記感光層形成時において導電性基体と塗布
槽とを離間せしめる際に、前記塗布槽内の塗布液面を低
下させることにより感光層の形成を行う。
According to a second aspect of the present invention, there is provided a method of manufacturing a multi-layer electrophotographic photosensitive member, which comprises lowering a coating liquid level in the coating tank when the conductive substrate and the coating tank are separated from each other when the photosensitive layer is formed. To form a photosensitive layer.

【0017】上記の製造方法によれば、感光層塗布中の
塗布液供給を止め、塗布槽内の液面を低下させることに
より、溶剤蒸気層を長くし当該溶剤蒸気層中での移動速
度をコントロールすることで蒸気層を有効に活用できる
ため、より一層均一な感光層を形成することができる。
According to the above manufacturing method, by stopping the supply of the coating liquid during the coating of the photosensitive layer and lowering the liquid level in the coating tank, the solvent vapor layer is lengthened and the moving speed in the solvent vapor layer is increased. Since the vapor layer can be effectively used by controlling, a more uniform photosensitive layer can be formed.

【0018】請求項3記載の積層型電子写真感光体の製
造方法は、前記塗布槽の塗工蓋開口部と感光層形成後の
前記塗布液の液面との距離を30mm〜500mmにす
る。
According to a third aspect of the present invention, the distance between the opening of the coating lid of the coating tank and the surface of the coating liquid after the photosensitive layer is formed is 30 mm to 500 mm.

【0019】上記の製造方法によれば、塗布槽塗工蓋開
口部と塗布液の液面との距離を30mm以上にすること
により感光体の画像領域内の塗布ムラの抑制を、500
mm以下にすることにより、溶剤上記すの悪影響による
電界発生層の塗布膜欠陥の発生を抑制することができ
る。
According to the above manufacturing method, by suppressing the distance between the opening of the coating tank coating lid and the surface of the coating liquid to be 30 mm or more, it is possible to suppress the coating unevenness in the image area of the photoconductor by 500.
When the thickness is less than or equal to mm, it is possible to suppress the occurrence of coating film defects in the electric field generation layer due to the adverse effect of the solvent.

【0020】請求項4記載の積層型電子写真感光体の製
造方法は、前記感光層の電荷輸送層の浸漬塗布時の導電
性基体の移動速度を0.8mm/sec〜4.0mm/
secとする。
According to a fourth aspect of the present invention, there is provided a method for producing a laminated electrophotographic photosensitive member, wherein the moving speed of the conductive substrate at the time of dip coating the charge transport layer of the photosensitive layer is 0.8 mm / sec to 4.0 mm /.
sec.

【0021】上記の製造方法によれば、電荷輸送層用塗
布液を使用し、感光層塗布時の基体移動速度を0.8m
m/sec〜4.0mm/secにすることで、電荷輸
送層のと膜均一化及びと膜乾燥工程におけるブラッシン
グ等のと膜欠陥を抑制することができる。
According to the above-mentioned manufacturing method, the coating liquid for the charge transport layer is used, and the substrate moving speed at the time of coating the photosensitive layer is 0.8 m.
By setting m / sec to 4.0 mm / sec, it is possible to make the charge transport layer uniform and to suppress film defects such as brushing in the film drying step.

【0022】請求項5記載の積層型電子写真感光体の製
造方法は、前記感光層の電荷輸送層用の塗布液に全固形
分濃度が10重量部〜20重量部であり、且つ、粘度を
100mpa.s〜400mpa.sとする。
According to a fifth aspect of the present invention, in the method for producing a laminated electrophotographic photoreceptor, the coating solution for the charge transport layer of the photosensitive layer has a total solid content of 10 to 20 parts by weight and a viscosity of 10 to 20 parts by weight. 100 mpa. s-400 mpa. s.

【0023】上記の製造方法によれば、電荷輸送層用の
塗布液に全固形分濃度が10重量部〜20重量部とし、
且つ、粘度を100mpa.s〜400mpa.sにす
ることで、電荷輸送層の塗工性、電荷輸送層用塗布液の
増粘、難溶解性の抑制及び保存安定性の確保を行うこと
ができる。
According to the above manufacturing method, the coating solution for the charge transport layer has a total solid content of 10 to 20 parts by weight,
Moreover, the viscosity is 100 mpa. s-400 mpa. When it is set to s, coatability of the charge transport layer, thickening of the coating solution for the charge transport layer, suppression of poor solubility, and storage stability can be ensured.

【0024】請求項6記載の積層型電子写真感光体の製
造方法は、前記電荷輸送層の乾燥膜厚を10μm〜25
μmとする。
In the method of manufacturing a laminated electrophotographic photosensitive member according to claim 6, the dry film thickness of the charge transport layer is 10 μm to 25 μm.
μm.

【0025】上記の製造方法によれば、電荷輸送層の乾
燥膜厚を10μm〜25μmとすることで、塗布膜の均
一化、塗布膜内の残留溶剤の発生等を抑制することがで
きる。
According to the above-described manufacturing method, by setting the dry film thickness of the charge transport layer to 10 μm to 25 μm, it is possible to make the coating film uniform and suppress the generation of residual solvent in the coating film.

【0026】[0026]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)本発明の実施の形態を図1〜図4に基づい
て説明する。
(Example 1) An embodiment of the present invention will be described with reference to FIGS.

【0027】図1は、塗布液の液面を下げずに感光層を
塗布し基体が塗布液面から離脱した瞬間を表わす概略断
面図であり、同図において1は、溶剤蒸気層,2は、塗
布槽,3は、塗布液面,4は、塗布槽塗工蓋,5は、塗
布液,6は、オーバーフロー受け槽,7は、塗布液供給
口,8は、塗布液戻し口,9は、塗布済み基体,10
は、塗布槽塗工蓋開口部である。図2は、塗布液の液面
を下げながら感光層を塗布し基体が塗布液の液面から離
脱した瞬間である。図3は、本実施例の塗布装置であ
り、11、は撹拌タンク,12、は送液ポンプ,13は
オーバーフロー式塗布槽,14は導電性基体保持部,1
5は導電性基体昇降用ボールネジ,16はボールネジ駆
動用モーター,17は塗布速度コントロール装置であ
る。
FIG. 1 is a schematic cross-sectional view showing the moment when the photosensitive layer is applied without lowering the liquid level of the coating liquid and the substrate is separated from the liquid level. In FIG. 1, 1 is a solvent vapor layer and 2 is a solvent vapor layer. , Coating tank, 3 coating surface, 4 coating tank coating lid, 5 coating solution, 6 overflow receiving tank, 7 coating solution supply port, 8 coating solution return port, 9 Is a coated substrate, 10
Is the opening of the coating tank coating lid. FIG. 2 shows the moment when the photosensitive layer was applied while lowering the liquid level of the coating liquid and the substrate was separated from the liquid level of the coating liquid. FIG. 3 shows a coating apparatus of the present embodiment, 11 is a stirring tank, 12 is a liquid feed pump, 13 is an overflow coating tank, 14 is a conductive substrate holding section, 1
Reference numeral 5 is a ball screw for raising and lowering the conductive substrate, 16 is a ball screw driving motor, and 17 is a coating speed control device.

【0028】図1に示す様な塗布槽に例えば下記構造式
(化1)のビスアゾ顔料(クロロダイアシブルー)1.
5重量部とブチラール樹脂(ユニオンカーバイト社製:
XYGS)1.5重量部とメチルイソブチルケトン98
重量部とを混合したものをペイントシェーカーで8時間
分散し作製した電荷発生層用塗布液を満した。次いでア
ルミニウム製の円筒状導電性基体の上端部を密閉保持し
たものを上記塗布槽に浸漬し塗布液をオーバーフローさ
せる。基体が所望の深さに達すると浸漬を止め、次に基
体を5.0mm/secの一定速度で図1に示す様な状
態まで引き抜き塗布する。この際塗布液から引き抜かれ
る基体の体積以上の塗布液を塗布槽下部の供給口から送
液し、塗布液の液面が低下しない様コントロールし塗布
する。次いで基体が塗布液面から離脱した後、基体の引
き上げ速度を2.0mm/secに変速し基体が蒸気槽
から出るまで一定速度で引き抜き導電性基体上に電荷発
生層を設けた。この様にして作製した電荷発生層の膜厚
の測定を段差計(Taylor Hobson社製:タリサーフ)に
て行ったところ、塗布層の上部と下部で膜厚の差が少な
い塗布膜が得られた。さらに該電荷発生層の上に、下記
構造式(化2)のヒドラゾン系化合物(4.−ジエチル
アミノベンブアルデヒド−N.N−ジフェニルヒドラゾ
ン)1重量部とポリカーボネート樹脂(三菱ガス化学社
製:ユーピロン)1重量部とジクロルメタン8重量部と
を混合したものを撹拌溶解し、作製した電荷輸送層用塗
布液を塗布槽に満たし、塗布速度6.0mm/sec,
蒸気層中の基体移動速度を2.5mm/secの条件に
し、電荷発生層;CGLの上に電荷発生層と同様の方法
にて浸漬塗布を行い電荷輸送層;CTLを設けた。次い
で塗布済み感光体を80℃の乾燥温度で1時間の熱風乾
燥を行い機能分離型電子写真感光体を作製した。
In a coating tank as shown in FIG. 1, for example, a bisazo pigment (chlorodiasi blue) of the following structural formula (Formula 1) 1.
5 parts by weight and butyral resin (made by Union Carbide:
XYGS) 1.5 parts by weight and methyl isobutyl ketone 98
A mixture of 1 part by weight and 8 parts by weight was dispersed with a paint shaker for 8 hours to fill the prepared charge generation layer coating solution. Next, a cylindrical conductive base made of aluminum, whose upper end is hermetically held, is immersed in the coating tank to overflow the coating liquid. When the substrate reaches the desired depth, the immersion is stopped, and then the substrate is drawn out and coated at a constant speed of 5.0 mm / sec to the state shown in FIG. At this time, the coating liquid having a volume larger than that of the substrate to be drawn out from the coating liquid is fed from the supply port at the lower part of the coating tank, and the coating is performed while controlling the liquid level of the coating liquid so as not to decrease. Then, after the substrate was separated from the surface of the coating liquid, the withdrawing speed of the substrate was changed to 2.0 mm / sec, and the substrate was drawn out at a constant speed until the substrate came out of the steam tank to form a charge generation layer on the conductive substrate. When the film thickness of the charge generation layer thus produced was measured with a profilometer (Taylor Hobson: Talysurf), a coating film having a small difference in film thickness between the upper part and the lower part of the coating layer was obtained. . Further, on the charge generation layer, 1 part by weight of a hydrazone compound (4.-diethylaminobenzaldehyde-NN-diphenylhydrazone) represented by the following structural formula (Formula 2) and a polycarbonate resin (supplied by Mitsubishi Gas Chemical Company: Iupilon) ) A mixture of 1 part by weight and 8 parts by weight of dichloromethane was stirred and dissolved, and the prepared coating solution for the charge transport layer was filled in a coating tank at a coating speed of 6.0 mm / sec.
Under the condition that the substrate moving speed in the vapor layer was 2.5 mm / sec, dip coating was performed on the charge generation layer; CGL by the same method as for the charge generation layer to provide the charge transport layer; CTL. Then, the coated photoreceptor was dried with hot air at a drying temperature of 80 ° C. for 1 hour to prepare a function-separated electrophotographic photoreceptor.

【0029】この様にして作製した感光体の膜厚測定を
渦電流式膜厚計(フィッシャースコープEDDY36
0)にて行ったところ、電荷発生層同様、感光体上部と
下部とで膜厚差の少ない感光体が得られた。この様にし
て得られた感光体を実際の機器(シャープ(株)製:S
F7370)に搭載し画像確認を行ったところ、画像ム
ラの無い良好な画像特性が得られた。
An eddy current type film thickness meter (Fisherscope EDDY36
In the same manner as the charge generation layer, a photoreceptor having a small film thickness difference between the upper and lower portions of the photoreceptor was obtained. The photoconductor thus obtained is used as an actual device (S: Sharp Corp .: S).
When it was mounted on F7370) and the image was confirmed, good image characteristics without image unevenness were obtained.

【0030】[0030]

【化1】 Embedded image

【0031】[0031]

【化2】 Embedded image

【0032】本実施例で行った膜厚測定の結果を図4に
示す(図の横軸は感光体の長手方向(mm)、縦軸は、
各塗布膜の膜厚(μm)を表わす。)。
The results of the film thickness measurement carried out in this example are shown in FIG. 4 (the horizontal axis in the figure is the longitudinal direction (mm) of the photoreceptor, and the vertical axis is
The film thickness (μm) of each coating film is shown. ).

【0033】(実施例2)実施例2の製造方法は、実施
例1の電荷輸送層塗布時の塗布液供給を止め、塗布槽内
の液面を下げながら塗布を行い、それ以外は実施例1と
同様の方法にて積層型電子写真感光体を作成したもの
で、実施例2で形成した膜厚の測定結果を図5で示す。
(Example 2) The manufacturing method of Example 2 is the same as Example 1 except that the supply of the coating solution at the time of coating the charge transport layer is stopped and the liquid level in the coating tank is lowered. A laminated electrophotographic photosensitive member was prepared by the same method as in Example 1. The measurement result of the film thickness formed in Example 2 is shown in FIG.

【0034】このようにして得られた積層型電子写真感
光体を実施例1と同様の画像確認及び膜厚確認を行った
ところ画像ムラのない良好な画像特性が得られた。
When the laminated electrophotographic photosensitive member thus obtained was subjected to the same image confirmation and film thickness confirmation as in Example 1, good image characteristics without image unevenness were obtained.

【0035】(実施例3)実施例3の製造方法は、実施
例2で行った電荷輸送層塗布後の変速を下記の数1で求
められる速度で行い、それ以外は実施例2と同様の方法
にて積層型電子写真感光体を作成したもので、実施例3
で形成した膜厚の測定結果を図6で示す。
(Embodiment 3) In the manufacturing method of Embodiment 3, the speed change after coating the charge transport layer in Embodiment 2 is performed at the speed obtained by the following mathematical formula 1, and otherwise the same as Embodiment 2. A laminated electrophotographic photosensitive member was prepared by the method described in Example 3
FIG. 6 shows the measurement result of the film thickness formed in.

【0036】 X = Yexp(Zt) 数1 X:蒸気層中での基体の移動速度(変速) Y:塗布速度 Z:0.013 このようにして得られた積層型電子写真感光体を実施例
1と同様の画像確認及び膜厚確認を行ったところ画像ム
ラのない良好な画像特性が得られた。
X = Yexp (Zt) number 1 X: moving speed (shift) of the substrate in the vapor layer Y: coating speed Z: 0.013 The laminated electrophotographic photosensitive member thus obtained was used as an example. When the same image confirmation and film thickness confirmation as in 1 were performed, good image characteristics without image unevenness were obtained.

【0037】(実施例4)実施例4の製造方法は、実施
例2の塗布槽工蓋開口部と感光層塗布後の液面との距離
を30mmにし、それ以外は実施例2と同様の方法にて
積層型電子写真感光体を作成したもので、実施例4で形
成した膜厚の測定結果を図7で示す。
Example 4 The manufacturing method of Example 4 is the same as that of Example 2 except that the distance between the opening of the coating tank cover of Example 2 and the liquid surface after coating the photosensitive layer is 30 mm. A laminated electrophotographic photosensitive member was prepared by the method, and the measurement results of the film thickness formed in Example 4 are shown in FIG.

【0038】このようにして得られた積層型電子写真感
光体を実施例1と同様の画像確認及び膜厚確認を行った
ところ画像ムラのない良好な画像特性が得られた。
When the laminated electrophotographic photosensitive member thus obtained was subjected to the same image confirmation and film thickness confirmation as in Example 1, good image characteristics without image unevenness were obtained.

【0039】(実施例5)実施例5の製造方法は、実施
例2の塗布槽工蓋開口部と感光層塗布後の液面との距離
を500mmにし、それ以外は実施例2と同様の方法に
て積層型電子写真感光体を作成したもので、実施例5で
形成した膜厚の測定結果を図8で示す。
(Example 5) The manufacturing method of Example 5 is the same as that of Example 2 except that the distance between the opening of the coating tank cover of Example 2 and the liquid surface after coating the photosensitive layer is 500 mm. A laminated electrophotographic photosensitive member was prepared by the method, and the measurement result of the film thickness formed in Example 5 is shown in FIG.

【0040】このようにして得られた積層型電子写真感
光体を実施例1と同様の画像確認及び膜厚確認を行った
ところ画像ムラのない良好な画像特性が得られた。
The laminated electrophotographic photosensitive member thus obtained was subjected to the same image confirmation and film thickness confirmation as in Example 1, and good image characteristics without image unevenness were obtained.

【0041】(実施例6)実施例6の製造方法は、実施
例1の電荷輸送層の塗布速度を3.0mm/secに
し、それ以外は実施例1と同様の方法にて積層型電子写
真感光体を作成したもので、実施例6で形成した膜厚の
測定結果を図9で示す。
(Example 6) In the manufacturing method of Example 6, the coating speed of the charge transport layer of Example 1 was set to 3.0 mm / sec, and otherwise the same method as in Example 1 was used. FIG. 9 shows the measurement results of the film thickness of the photoconductor prepared in Example 6.

【0042】このようにして得られた積層型電子写真感
光体を実施例1と同様の画像確認及び膜厚確認を行った
ところ画像ムラのない良好な画像特性が得られた。
The laminated electrophotographic photosensitive member thus obtained was subjected to the same image confirmation and film thickness confirmation as in Example 1, and good image characteristics without image unevenness were obtained.

【0043】(実施例7)実施例7の製造方法は、実施
例1の電荷輸送層の塗布速度を0.8mm/secに
し、それ以外は実施例1と同様の方法にて積層型電子写
真感光体を作成し電荷輸送層の膜厚が10μmの積層型
電子写真感光体を得たもので、実施例7で形成した膜厚
の測定結果を図10で示す。
(Example 7) In the manufacturing method of Example 7, the coating speed of the charge transporting layer of Example 1 was set to 0.8 mm / sec, and otherwise the same method as in Example 1 was used. A photoconductor was prepared to obtain a multi-layer electrophotographic photoconductor having a charge transport layer having a thickness of 10 μm. The measurement result of the film thickness formed in Example 7 is shown in FIG.

【0044】このようにして得られた積層型電子写真感
光体を実施例1と同様の画像確認及び膜厚確認を行った
ところ画像ムラのない良好な画像特性が得られた。
When the laminated electrophotographic photosensitive member thus obtained was subjected to the same image confirmation and film thickness confirmation as in Example 1, good image characteristics without image unevenness were obtained.

【0045】(実施例8)実施例8の製造方法は、実施
例1の電荷輸送層塗布液の電荷輸送物質を5.0重量部
及びジクロルメタン90重量部にし、粘度が100mp
a.sの電荷輸送層用塗布液を使用し、それ以外は実施
例1と同様の方法にて積層型電子写真感光体を作成した
もので、実施例8で形成した膜厚の測定結果を図11で
示す。
(Embodiment 8) The manufacturing method of Embodiment 8 uses the charge transport material of the charge transport layer coating liquid of Embodiment 1 with 5.0 parts by weight of charge transport material and 90 parts by weight of dichloromethane, and a viscosity of 100 mp.
a. A multilayer electrophotographic photosensitive member was prepared in the same manner as in Example 1 except that the charge transporting layer coating solution of s was used, and the measurement results of the film thickness formed in Example 8 are shown in FIG. Indicate.

【0046】(実施例9)実施例9の製造方法は、電荷
輸送層用塗布の結着剤樹脂の粘度平均分子量を60,0
00、塗布液粘度を400mpa.sにし、電荷輸送層
の塗布を0.8mm/secの塗布速度で行い、電荷輸
送層塗布後の蒸気層中の基体の移動速度を4.5mm/
secにし、それ以外は実施例1と同様の方法にて積層
型電子写真感光体を作成したもので、実施例9で形成し
た膜厚の測定結果を図12で示す。
(Example 9) In the manufacturing method of Example 9, the viscosity average molecular weight of the binder resin for coating the charge transport layer was 60,0.
00, the coating liquid viscosity is 400 mpa. s, the charge transport layer is coated at a coating speed of 0.8 mm / sec, and the moving speed of the substrate in the vapor layer after coating the charge transport layer is 4.5 mm / sec.
A laminated electrophotographic photosensitive member was produced by the same method as in Example 1 except that the time was set to sec, and the measurement result of the film thickness formed in Example 9 is shown in FIG.

【0047】このようにして得られた積層型電子写真感
光体を実施例1と同様の画像確認及び膜厚確認を行った
ところ画像ムラのない良好な画像特性が得られた。
The laminated electrophotographic photosensitive member thus obtained was subjected to the same image confirmation and film thickness confirmation as in Example 1, and good image characteristics without image unevenness were obtained.

【0048】(比較例1)実施例1で行った蒸気層中で
の速度コントロールを行わずに塗布速度を同じ速度で導
電性基体の引き抜きを行い電子写真感光体を作製した。
この様にして得られた感光体を実施例1と同様画像確認
及び膜厚確認を行ったところ、感光体下部で塗布膜の膜
厚が薄くなっており、それが原因で画像ムラが発生し良
好な感光体特性が得られなかった。本比較例1で行った
膜厚の測定結果を図13に示す。
Comparative Example 1 An electrophotographic photosensitive member was produced by pulling out the conductive substrate at the same coating speed without controlling the speed in the vapor layer as in Example 1.
The image and the film thickness of the thus obtained photoconductor were checked in the same manner as in Example 1. As a result, the film thickness of the coating film was thin below the photoconductor, which caused image unevenness. Good photoconductor characteristics could not be obtained. FIG. 13 shows the measurement result of the film thickness performed in Comparative Example 1.

【0049】(比較例2)実施例4の塗布槽工蓋開口部
と感光層塗布後の塗布液の液面との距離が30mmであ
ったものに対し、20mmにし、それ以外は実施例4と
同様の方法にて積層型電子写真感光体を作成し、この様
にして得られた感光体を実施例1と同様画像確認及び膜
厚確認を行ったところ、感光体下部の画像領域内の膜厚
制御が不十分で画像の一部で濃度ムラが発生し良好な画
像特性が得られなかった。本比較例2で行った膜厚の測
定結果を図14に示す。
(Comparative Example 2) The distance between the opening of the coating tank coating lid of Example 4 and the liquid level of the coating liquid after coating the photosensitive layer was 30 mm, but it was set to 20 mm, and other than that, Example 4 was used. A laminated electrophotographic photosensitive member was prepared in the same manner as in 1. and the thus-obtained photosensitive member was subjected to image confirmation and film thickness confirmation in the same manner as in Example 1. Due to insufficient control of the film thickness, uneven density occurred in a part of the image, and good image characteristics could not be obtained. FIG. 14 shows the measurement result of the film thickness performed in this Comparative Example 2.

【0050】(比較例3)実施例5の塗布槽工蓋開口部
と感光層塗布後の塗布液の液面との距離が500mmで
あったものに対し、600mmにし、それ以外は実施例
5と同様の方法にて積層型電子写真感光体を作成し、こ
の様にして得られた感光体を実施例1と同様画像確認及
び膜厚確認を行ったところ、溶剤蒸気の悪影響により電
荷発生層が粗れ粗い画像となり、また電荷輸送層の上部
と下部で膜厚が薄くなり、濃度ムラが発生し良好な画像
特性が得られなかった。本比較例3で行った膜厚の測定
結果を図15に示す。
(Comparative Example 3) The distance between the opening of the coating tank coating lid of Example 5 and the liquid level of the coating liquid after coating the photosensitive layer was 500 mm, but was 600 mm, and other than that, Example 5 was used. A laminated electrophotographic photosensitive member was prepared in the same manner as in 1. and the thus obtained photosensitive member was subjected to image confirmation and film thickness confirmation in the same manner as in Example 1. The charge generation layer was adversely affected by solvent vapor. Results in a rough and rough image, and the film thickness becomes thin at the upper and lower portions of the charge transport layer, resulting in uneven density, and good image characteristics cannot be obtained. FIG. 15 shows the measurement result of the film thickness performed in Comparative Example 3.

【0051】(比較例4)実施例1で行った電荷輸送層
の塗布速度が4.0mm/secであったものに対し塗
布速度を0.7mm/secにし、それ以外は実施例1
と同様の方法にて積層型電子写真感光体を作成し、この
様にして得られた感光体を実施例1と同様画像確認及び
膜厚確認を行ったところ、溶剤蒸気の悪影響により電荷
発生層が粗れ粗い画像となり、また電荷輸送層の平均膜
厚が9μmと薄くコントラストのない画像となり良好な
画像特性が得られなかった。本比較例4で行った膜厚の
測定結果を図16に示す。
(Comparative Example 4) The coating speed of the charge transport layer of Example 1 was 4.0 mm / sec, but the coating speed was 0.7 mm / sec.
A laminated electrophotographic photosensitive member was prepared in the same manner as in 1. and the thus obtained photosensitive member was subjected to image confirmation and film thickness confirmation in the same manner as in Example 1. The charge generation layer was adversely affected by solvent vapor. Was a rough and rough image, and the average film thickness of the charge transport layer was as thin as 9 μm and there was no contrast, and good image characteristics could not be obtained. FIG. 16 shows the measurement result of the film thickness performed in Comparative Example 4.

【0052】(比較例5)実施例1で行った電荷輸送層
の塗布速度が4.0mm/secであったものに対し塗
布速度を4.2mm/secにし、それ以外は実施例1
と同様の方法にて積層型電子写真感光体を作成し、この
様にして得られた感光体を実施例1と同様画像確認及び
膜厚確認を行ったところ、乾燥後の電荷輸送層の上部と
下部で膜厚が薄くなり、画像に濃度ムラの発生及び下部
にはブラッシングも発生し、それが原因で画像ムラとな
り良好な画像特性が得られなかった。本比較例5で行っ
た膜厚の測定結果を図17に示す。
(Comparative Example 5) The coating speed of the charge transport layer in Example 1 was 4.0 mm / sec, while the coating speed was 4.2 mm / sec.
A laminated electrophotographic photosensitive member was prepared by the same method as described in (1), and the thus obtained photosensitive member was subjected to image confirmation and film thickness confirmation in the same manner as in Example 1. As a result, the upper portion of the dried charge transport layer was confirmed. In the lower part, the film thickness becomes thin, uneven density occurs in the image, and brushing occurs in the lower part, which causes uneven image, and good image characteristics cannot be obtained. FIG. 17 shows the measurement result of the film thickness performed in this Comparative Example 5.

【0053】(比較例6)実施例1で使用した電荷輸送
層用の結着剤樹脂の粘度平均分子量が30,000であ
ったものに対し25,000、粘度液粘度を90mp
a.sにし、それ以外は実施例1と同様の方法にて積層
型電子写真感光体を作成し、この様にして得られた感光
体を実施例1と同様画像確認及び膜厚確認を行ったとこ
ろ、乾燥後の電荷輸送層の平均膜厚が8μmでコントラ
ストのない画像となり良好な画像特性が得られなかっ
た。また、膜厚を上げるために塗布速度を速くしたが感
光体上部膜厚の立ち上がり不良及びブラッシング等が発
生し、やはり良好な画像特性が得られなかった。本比較
例6で行った膜厚の測定結果を図18に示す。
(Comparative Example 6) The binder resin for the charge transport layer used in Example 1 had a viscosity average molecular weight of 30,000, but was 25,000, and the viscosity liquid viscosity was 90 mp.
a. s, except that a laminated electrophotographic photosensitive member was prepared by the same method as in Example 1, and the image and film thickness of the thus obtained photosensitive member were confirmed in the same manner as in Example 1. However, the average film thickness of the charge transport layer after drying was 8 μm, and an image with no contrast was obtained, and good image characteristics were not obtained. Although the coating speed was increased in order to increase the film thickness, defective rising of the upper film thickness of the photoconductor, brushing, etc. occurred, and good image characteristics could not be obtained. FIG. 18 shows the measurement result of the film thickness performed in this Comparative Example 6.

【0054】(比較例7)実施例1で使用した電荷輸送
層用の結着剤樹脂の粘度平均分子量が30,000であ
ったものに対し70,000、粘度液粘度を480mp
a.sにし、それ以外は実施例1と同様の方法にて積層
型電子写真感光体を作成し、この様にして得られた感光
体を実施例1と同様画像確認及び膜厚確認を行ったとこ
ろ、乾燥後の電荷輸送層の平均膜厚が49μmで電荷輸
送層塗布液の気泡抜けの悪さから塗布膜に気泡後が、電
荷輸送層の膜厚により感光体下部にブラッシングが発生
し画像欠陥となった。また、膜厚を25μmにするため
には電荷輸送層の塗布速度が0.25mm/saと極端
に遅くなり溶剤蒸気層の悪影響で電荷発生層の表面の粗
れ及び感光体下部の膜厚不足等が発生し画像ムラとなり
良好な画像特性が得られなかった。本比較例7で行った
膜厚の測定結果を図19に示す。
(Comparative Example 7) The binder resin for the charge transport layer used in Example 1 had a viscosity average molecular weight of 30,000, but was 70,000, and the viscosity liquid viscosity was 480 mp.
a. s, except that a laminated electrophotographic photosensitive member was prepared by the same method as in Example 1, and the image and film thickness of the thus obtained photosensitive member were confirmed in the same manner as in Example 1. The average film thickness of the charge transport layer after drying is 49 μm, and after the bubbles in the coating film due to the poor bubble escape of the coating solution for the charge transport layer, the film thickness of the charge transport layer causes the brushing at the lower part of the photoreceptor to cause an image defect. became. Further, in order to make the film thickness 25 μm, the coating speed of the charge transport layer is extremely slow at 0.25 mm / sa, and the surface of the charge generation layer is rough due to the bad influence of the solvent vapor layer and the film thickness is insufficient at the lower part of the photoreceptor. However, good image characteristics cannot be obtained. FIG. 19 shows the measurement result of the film thickness performed in this Comparative Example 7.

【0055】(比較例8)実施例1の電荷輸送層用塗布
液の全固形分濃度が20重量部であったものに対し9重
量部、塗布液粘度を96mpa.sにし、それ以外は実
施例1と同様の方法にて積層型電子写真感光体を作成
し、この様にして得られた感光体を実施例1と同様画像
確認及び膜厚確認を行ったところ、乾燥後の電荷輸送層
の平均膜厚が9μmであり良好な画像特性が得られなか
った。また、膜厚を25μmにするためには電荷輸送層
の塗布速度が10mm/saと速くなり、感光体上部の
立ち上がり不足及び感光体全面に渡ってブラッシングが
発生し、やはり良好な画像特性が得られなかった。本比
較例8で行った膜厚の測定結果を図20に示す。
Comparative Example 8 9 parts by weight of the coating solution for the charge transport layer of Example 1 having a total solid content of 20 parts by weight and a coating solution viscosity of 96 mpa. s, except that a laminated electrophotographic photosensitive member was prepared by the same method as in Example 1, and the image and film thickness of the thus obtained photosensitive member were confirmed in the same manner as in Example 1. However, the average film thickness of the charge transport layer after drying was 9 μm, and good image characteristics were not obtained. Further, in order to make the film thickness 25 μm, the coating speed of the charge transport layer becomes as high as 10 mm / sa, insufficient rising of the upper part of the photoconductor and brushing over the entire surface of the photoconductor, and good image characteristics can be obtained. I couldn't do it. FIG. 20 shows the measurement result of the film thickness performed in this Comparative Example 8.

【0056】(比較例9)実施例1の電荷輸送層用塗布
液の全固形分濃度が20重量部であったものに対し25
重量部、塗布液粘度を425mpa.sにし、それ以外
は実施例1と同様の方法にて積層型電子写真感光体を作
成し、この様にして得られた感光体を実施例1と同様画
像確認及び膜厚確認を行ったところ、乾燥後の電荷輸送
層の平均膜厚が35μmで電荷輸送層塗布液の気泡抜け
の悪さから塗布膜に気泡後が、電荷輸送層の膜厚により
感光体下部にブラッシングが発生し画像欠陥となった。
また、膜厚を25μmにするためには電荷輸送層の塗布
速度が2.2mm/saとなり、比較的均一な感光層は
得られたが固定分濃度が多いため塗布液内に不溶物が発
生し画像上に白点欠陥として発生したため、良好な画像
特性が得られなかった。本比較例9で行った膜厚の測定
結果を図20に示す。
Comparative Example 9 The total solid content of the charge transport layer coating solution of Example 1 was 20 parts by weight, but 25
Parts by weight, the viscosity of the coating liquid is 425 mpa. s, except that a laminated electrophotographic photosensitive member was prepared by the same method as in Example 1, and the image and film thickness of the thus obtained photosensitive member were confirmed in the same manner as in Example 1. The average film thickness of the charge transport layer after drying is 35 μm, and after the bubbles in the coating film due to the poor bubble escape of the coating solution for the charge transport layer, the film thickness of the charge transport layer causes brushing in the lower part of the photoconductor to cause an image defect. became.
Further, in order to make the film thickness 25 μm, the coating speed of the charge transport layer was 2.2 mm / sa, and a relatively uniform photosensitive layer was obtained, but insoluble matter was generated in the coating solution because the fixed concentration was large. However, good image characteristics were not obtained because white spot defects occurred on the image. FIG. 20 shows the measurement result of the film thickness performed in this Comparative Example 9.

【0057】[0057]

【発明の効果】請求項1の積層型電子写真感光体の製造
方法によれば、感光層塗布後、電荷輸送層の下部膜厚が
薄くなる溶剤蒸気層中での基体の移動速度を塗布中の基
体の移動速度よりも速くすることで、塗布膜の乾燥速度
をコントロールすることで変速の影響を受けることなく
均一な感光層を形成することができ、また、電荷輸送層
用結着剤樹脂の粘度平均分子量を30,000以上6
0,000以下にすることで、複写機のクリーニング工
程による膜削れ強度、及び、塗工性と塗布液の保存安定
性とを両立することができる。
According to the method of manufacturing a laminated electrophotographic photosensitive member of claim 1, the substrate is moved at a moving speed in a solvent vapor layer where the lower film thickness of the charge transport layer becomes thinner after coating the photosensitive layer. It is possible to form a uniform photosensitive layer without being affected by the speed change by controlling the drying speed of the coating film by making the moving speed higher than the moving speed of the substrate, and the binder resin for the charge transport layer. Viscosity average molecular weight of 30,000 or more 6
When the amount is less than or equal to 10,000, the film scraping strength in the cleaning process of the copying machine and the coatability and the storage stability of the coating liquid can be made compatible.

【0058】請求項2記載の積層型電子写真感光体の製
造方法によれば、感光層塗布中の塗布液供給を止め、塗
布槽内の液面を低下させることにより、溶剤蒸気層を長
くし当該溶剤蒸気層中での移動速度をコントロールする
ことで蒸気層を有効に活用できるため、より一層均一な
感光層を形成することができる。
According to the method for producing a laminated electrophotographic photosensitive member of claim 2, the supply of the coating liquid during the coating of the photosensitive layer is stopped and the liquid level in the coating tank is lowered to lengthen the solvent vapor layer. By controlling the moving speed in the solvent vapor layer, the vapor layer can be effectively utilized, so that a more uniform photosensitive layer can be formed.

【0059】請求項3記載の積層型電子写真感光体の製
造方法によれば、塗布槽塗工蓋開口部と塗布液の液面と
の距離を30mm以上にすることにより感光層下部の画
像領域内の塗布ムラの抑制を、500mm以下にするこ
とにより溶剤上記すの悪影響による電界発生層の塗布膜
欠陥及び電荷輸送層下部の薄膜化を抑制することができ
る。
According to the method for producing a multi-layer type electrophotographic photosensitive member of claim 3, the image area below the photosensitive layer is set by setting the distance between the opening of the coating tank coating lid and the liquid surface of the coating liquid to be 30 mm or more. By suppressing the coating unevenness in the inside to 500 mm or less, it is possible to suppress the coating film defect of the electric field generation layer and the thinning of the lower portion of the charge transport layer due to the adverse effect of the solvent.

【0060】請求項4記載の積層型電子写真感光体の製
造方法によれば、電荷輸送層用塗布液を使用し、感光層
塗布時の基体移動速度を0.8mm/sec〜4.0m
m/secにすることで、電荷輸送層のと膜均一化及び
と膜乾燥工程におけるブラッシング等のと膜欠陥を抑制
することができる。
According to the method for producing a multi-layer type electrophotographic photoconductor of claim 4, the coating solution for the charge transport layer is used, and the substrate moving speed at the time of coating the photosensitive layer is 0.8 mm / sec to 4.0 m.
By setting m / sec, it is possible to make uniform the film of the charge transport layer and suppress film defects such as brushing in the film drying step.

【0061】請求項5記載の積層型電子写真感光体の製
造方法によれば、電荷輸送層用の塗布液に全固形分濃度
が10重量部〜20重量部とし、且つ、粘度を100m
pa.s〜400mpa.sにすることで、電荷輸送層
の塗工性、電荷輸送層用塗布液の増粘、難溶解性の抑制
及び保存安定性の確保を行うことができる。
According to the method for producing a multi-layer type electrophotographic photosensitive member of claim 5, the coating solution for the charge transport layer has a total solid content concentration of 10 to 20 parts by weight and a viscosity of 100 m.
pa. s-400 mpa. When it is set to s, coatability of the charge transport layer, thickening of the coating solution for the charge transport layer, suppression of poor solubility, and storage stability can be ensured.

【0062】請求項6記載の積層型電子写真感光体の製
造方法によれば、電荷輸送層の乾燥膜厚を10μm〜2
5μmとすることで、塗布膜の均一化、塗布膜内の残留
溶剤の発生等を抑制することができる。
According to the method for producing a multi-layer electrophotographic photosensitive member of claim 6, the dry thickness of the charge transport layer is 10 μm to 2 μm.
By setting the thickness to 5 μm, it is possible to make the coating film uniform and suppress the generation of residual solvent in the coating film.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に伴う塗布装置の概略断面図
(塗布液面を下げずに感光層を塗布する場合)である。
FIG. 1 is a schematic sectional view of a coating apparatus according to an embodiment of the present invention (when a photosensitive layer is coated without lowering the coating liquid level).

【図2】本発明の実施例に伴う塗布装置の概略断面図
(塗布液面を下げながら感光層を塗布する場合)であ
る。
FIG. 2 is a schematic cross-sectional view of a coating apparatus according to an embodiment of the present invention (when coating a photosensitive layer while lowering the coating liquid level).

【図3】本発明の実施例に伴う塗布装置並びに基体保持
昇降装置の概略断面図である。
FIG. 3 is a schematic cross-sectional view of a coating device and a substrate holding / lifting device according to an embodiment of the present invention.

【図4】実施例1における感光体の長手方向長さとCG
L・CTLの厚さとの関係を表す図である。
FIG. 4 is a longitudinal direction length and CG of a photoconductor in Example 1.
It is a figure showing the relationship with the thickness of L * CTL.

【図5】実施例2における感光体の長手方向長さとCG
L・CTLの厚さとの関係を表す図である。
FIG. 5 is a longitudinal length and CG of a photoconductor in Example 2.
It is a figure showing the relationship with the thickness of L * CTL.

【図6】実施例3における感光体の長手方向長さとCG
L・CTLの厚さとの関係を表す図である。
FIG. 6 is the longitudinal length and CG of the photoconductor in Example 3.
It is a figure showing the relationship with the thickness of L * CTL.

【図7】実施例4における感光体の長手方向長さとCG
L・CTLの厚さとの関係を表す図である。
FIG. 7 is the longitudinal length and CG of the photoconductor in Example 4.
It is a figure showing the relationship with the thickness of L * CTL.

【図8】実施例5における感光体の長手方向長さとCG
L・CTLの厚さとの関係を表す図である。
FIG. 8 is a longitudinal length and CG of a photoconductor in Example 5.
It is a figure showing the relationship with the thickness of L * CTL.

【図9】実施例6における感光体の長手方向長さとCG
L・CTLの厚さとの関係を表す図である。
FIG. 9 is a longitudinal length and CG of a photoconductor in Example 6.
It is a figure showing the relationship with the thickness of L * CTL.

【図10】実施例7における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 10 is the longitudinal length and C of the photoconductor in Example 7.
It is a figure showing the relationship with the thickness of GL * CTL.

【図11】実施例8における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 11 is the longitudinal length of the photosensitive member and C in Example 8.
It is a figure showing the relationship with the thickness of GL * CTL.

【図12】実施例9における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 12 is the longitudinal length and C of the photoconductor in Example 9.
It is a figure showing the relationship with the thickness of GL * CTL.

【図13】比較例1における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 13 is the longitudinal length of the photoconductor and C in Comparative Example 1.
It is a figure showing the relationship with the thickness of GL * CTL.

【図14】比較例2における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
14 is a longitudinal length of the photoconductor and C in Comparative Example 2. FIG.
It is a figure showing the relationship with the thickness of GL * CTL.

【図15】比較例3における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 15 is a longitudinal length of the photosensitive member and C in Comparative Example 3.
It is a figure showing the relationship with the thickness of GL * CTL.

【図16】比較例4における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 16 is the longitudinal length and C of the photoconductor in Comparative Example 4.
It is a figure showing the relationship with the thickness of GL * CTL.

【図17】比較例5における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 17 is the longitudinal length of the photoconductor and C in Comparative Example 5.
It is a figure showing the relationship with the thickness of GL * CTL.

【図18】比較例6における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 18 is a longitudinal length of the photoconductor and C in Comparative Example 6.
It is a figure showing the relationship with the thickness of GL * CTL.

【図19】比較例7における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 19 is the longitudinal length of the photoconductor and C in Comparative Example 7.
It is a figure showing the relationship with the thickness of GL * CTL.

【図20】比較例8における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
20 is the longitudinal length and C of the photoconductor in Comparative Example 8. FIG.
It is a figure showing the relationship with the thickness of GL * CTL.

【図21】比較例9における感光体の長手方向長さとC
GL・CTLの厚さとの関係を表す図である。
FIG. 21 is the longitudinal length of the photoconductor and C in Comparative Example 9.
It is a figure showing the relationship with the thickness of GL * CTL.

【図22】従来の感光体製造方法に用いる塗布装置であ
る。
FIG. 22 shows a coating device used in a conventional method for manufacturing a photoreceptor.

【図23】従来の感光体製造方法に用いる塗布装置であ
る。
FIG. 23 is a coating device used in a conventional method for manufacturing a photoreceptor.

【符号の説明】[Explanation of symbols]

1 溶剤蒸気層 2 塗布槽 3 塗布液の液面 4 塗布槽塗工蓋 5 塗布液 6 オーバーフロー受け槽 7 塗布液供給口 8 塗布液戻し口 9 塗布済み基体 10 塗布槽塗工蓋開口部 11 撹拌タンク 12 送液ポンプ 13 オーバーフロー式塗布槽 14 導電性基体保持部 15 導電性基体昇降用ボールネジ 16 ボールネジ駆動用モーター 17 塗布速度コントロール装置 1 Solvent Vapor Layer 2 Coating Tank 3 Liquid Level of Coating Liquid 4 Coating Tank Coating Lid 5 Coating Liquid 6 Overflow Receiving Tank 7 Coating Liquid Supply Port 8 Coating Liquid Return Port 9 Coating Substrate 10 Coating Tank Coating Lid Opening 11 Stirring Tank 12 Liquid feed pump 13 Overflow type coating tank 14 Conductive substrate holding section 15 Conductive substrate lifting ball screw 16 Ball screw drive motor 17 Coating speed control device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 竜廣 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 上杉 さやか 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 松尾 力也 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryuhiro Morita 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Within Sharp Corporation (72) Inventor Sayaka Uesugi 22-22 Nagaike-cho, Abeno-ku, Osaka-shi, Osaka (72) Inventor Rikiya Matsuo 22-22 Nagaike-cho, Abeno-ku, Osaka City, Osaka Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 塗布液を満たした塗布槽に導電性基体を
浸漬した後、前記導電性基体を前記塗布槽から離間さ
せ、電荷発生層,電荷輸送層から感光層を形成する積層
型電子写真感光体の製造方法において、粘度平均分子量
が30,000〜60,000の電荷輸送層用の結着剤
樹脂を用い、感光層塗布後前記導電性基体の下端部が前
記塗布液から離間した後の前記塗布槽の蒸気槽中での前
記導電性基体の移動速度を感光層塗布時の前記導電性基
体の移動速度より早くすることを特徴とする積層型電子
写真感光体の製造方法。
1. A multi-layer electrophotography in which a conductive substrate is immersed in a coating tank filled with a coating solution, and then the conductive substrate is separated from the coating tank to form a photosensitive layer from a charge generation layer and a charge transport layer. In the method for producing a photoreceptor, a binder resin for a charge transport layer having a viscosity average molecular weight of 30,000 to 60,000 is used, and after the photosensitive layer is coated, the lower end of the conductive substrate is separated from the coating solution. 2. The method for producing a laminated electrophotographic photosensitive member, wherein the moving speed of the conductive substrate in the vapor tank of the coating tank is set to be higher than the moving speed of the conductive substrate at the time of coating the photosensitive layer.
【請求項2】 前記感光層形成時において導電性基体と
塗布槽とを離間せしめる際に、前記塗布槽内の塗布液面
を低下させることにより感光層の形成を行うことを特徴
とする請求項1記載の積層型電子写真感光体の製造方
法。
2. The photosensitive layer is formed by lowering the level of the coating liquid in the coating tank when separating the conductive substrate from the coating tank during the formation of the photosensitive layer. 1. The method for producing a laminated electrophotographic photosensitive member according to 1.
【請求項3】 前記塗布槽の塗工蓋開口部と感光層形成
後の前記塗布液の液面との距離を30mm〜500mm
にすることを特徴とする請求項1記載の積層型電子写真
感光体の製造方法。
3. The distance between the coating lid opening of the coating tank and the liquid surface of the coating liquid after forming the photosensitive layer is 30 mm to 500 mm.
The method for manufacturing a laminated electrophotographic photosensitive member according to claim 1, wherein
【請求項4】 前記感光層の電荷輸送層の浸漬塗布時の
導電性基体の移動速度が0.8mm/sec〜4.0m
m/secであることを特徴とする請求項1記載の積層
型電子写真感光体の製造方法。
4. The moving speed of the conductive substrate during dip coating of the charge transport layer of the photosensitive layer is 0.8 mm / sec to 4.0 m.
2. The method for manufacturing a laminated electrophotographic photosensitive member according to claim 1, wherein m / sec.
【請求項5】 前記感光層の電荷輸送層用の塗布液に全
固形分濃度が10重量部〜20重量部であり、且つ、粘
度が100mpa.s〜400mpa.sであることを
特徴とする請求項1記載の積層型電子写真感光体の製造
方法。
5. The coating solution for the charge transport layer of the photosensitive layer has a total solid content concentration of 10 to 20 parts by weight and a viscosity of 100 mPa.s. s-400 mpa. 2. The method for producing a laminated electrophotographic photosensitive member according to claim 1, wherein S is s.
【請求項6】 前記電荷輸送層の乾燥膜厚が10μm〜
25μmであることを特徴とする請求項1記載の積層型
電子写真感光体の製造方法。
6. The dry film thickness of the charge transport layer is from 10 μm to
The method for producing a laminated electrophotographic photosensitive member according to claim 1, wherein the thickness is 25 μm.
JP6254496A 1996-03-19 1996-03-19 Production of laminated electrophotographic photreceptor Pending JPH09258461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6254496A JPH09258461A (en) 1996-03-19 1996-03-19 Production of laminated electrophotographic photreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6254496A JPH09258461A (en) 1996-03-19 1996-03-19 Production of laminated electrophotographic photreceptor

Publications (1)

Publication Number Publication Date
JPH09258461A true JPH09258461A (en) 1997-10-03

Family

ID=13203292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6254496A Pending JPH09258461A (en) 1996-03-19 1996-03-19 Production of laminated electrophotographic photreceptor

Country Status (1)

Country Link
JP (1) JPH09258461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000181093A (en) * 1998-12-11 2000-06-30 Konica Corp Electrophotographic photoreceptor and process cartridge and image-forming device using the same
JP2004029489A (en) * 2002-06-27 2004-01-29 Ricoh Co Ltd Image forming apparatus
JP2014048326A (en) * 2012-08-29 2014-03-17 Ricoh Co Ltd Manufacturing method and manufacturing apparatus for electrophotographic photoreceptor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000181093A (en) * 1998-12-11 2000-06-30 Konica Corp Electrophotographic photoreceptor and process cartridge and image-forming device using the same
JP2004029489A (en) * 2002-06-27 2004-01-29 Ricoh Co Ltd Image forming apparatus
JP2014048326A (en) * 2012-08-29 2014-03-17 Ricoh Co Ltd Manufacturing method and manufacturing apparatus for electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JPH09258461A (en) Production of laminated electrophotographic photreceptor
US5445720A (en) Substrates, belts and electrostatographic imaging members, and methods of making
JP6945989B2 (en) Immersion coating device and method for manufacturing electrophotographic photosensitive member
JP2002049162A (en) Coating applicator for electrophotographic photoreceptor and method for manufacturing the same
JPH0869117A (en) Production of electrophotographic photoreceptor
JP2007193210A (en) Electrophotographic photoreceptor, method for manufacturing electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JPH0862862A (en) Electrophotographic image forming device
US4341851A (en) Electrophotographic photoconductor comprising CdS and ZnS
JP2001276701A (en) Apparatus and method for manufacturing electrophotographic photosensitive member
JP4411231B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP2000056487A (en) Electrophotographic photoreceptor and its manufacture
JPS58121045A (en) Electrophotographic receptor
JPH07140680A (en) Production of electrophotographic photoreceptor
JP2014178365A (en) Electrophotographic photoreceptor and method for manufacturing the same
JP2013134490A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor manufactured by manufacturing method
JPH1172931A (en) Apparatus for production of photoreceptor
JP5274628B2 (en) Coating apparatus, method for producing electrophotographic photosensitive member, and method for mass production of electrophotographic photosensitive member
JP3980389B2 (en) Method for producing seamless flexible endless metal sheet
JPH07110584A (en) Coating device
JPH08290089A (en) Immersion coating apparatus for photoreceptor for electrophotography
JP2013003397A (en) Coating device, method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, and image forming apparatus
JPH07134434A (en) Production of electrophotographic photoreceptor
JP3702116B2 (en) Coating liquid for charge transport layer of electrophotographic photosensitive member, method for producing the same, and method for producing electrophotographic photosensitive member
JP3871848B2 (en) Photoconductor and image forming apparatus
JP2000075511A (en) Production of electrophotographic photoreceptor