JP3871848B2 - Photoconductor and image forming apparatus - Google Patents
Photoconductor and image forming apparatus Download PDFInfo
- Publication number
- JP3871848B2 JP3871848B2 JP2000080316A JP2000080316A JP3871848B2 JP 3871848 B2 JP3871848 B2 JP 3871848B2 JP 2000080316 A JP2000080316 A JP 2000080316A JP 2000080316 A JP2000080316 A JP 2000080316A JP 3871848 B2 JP3871848 B2 JP 3871848B2
- Authority
- JP
- Japan
- Prior art keywords
- charge generation
- photoconductor
- photoreceptor
- layer
- generation layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
Description
【0001】
【発明の属する分野】
本発明は、複写機、FAX、プリンター等の画像形成装置などに用いられる感光体の改良に関する。
【0002】
【従来の技術】
近年、複写機、プリンター、FAX等の画像形成装置により形成される画像にはさらなる高品質化が求められている。このため、画像形成装置に用いられる感光体には、高画質な画像が得られるように、画像形成域部分における感光体の静電潜像として、数十〜十V以下の均一性が要求されている。そのため、如何に均一な感度の感光体を作製するかが重要な課題となっている。
【0003】
多くの感光体は量産性等の点から、浸漬塗工法により、導電性基体上に(必要により下引層を積層した後)、電荷発生層、電荷輸送層を順次積層して作製している。しかしながら、浸漬塗工法は、本質的に重力により塗膜が下方にすり落ちていくため、等速で導電性基体を引き上げたのでは、導電性基体の上部で塗膜が薄く、下部で塗膜が厚くなってしまい、均一な付着量の感光体を作製することができない。この問題を解決するため、例えば特開平3−78751、特開昭57−5048では、浸漬塗工における導電性基体の引き上げ速度を上部で速く、下部で遅くなるよう制御して均一な付着量を形成する浸漬塗工法が開示されている。
【0004】
しかしながら、浸漬塗工法にて導電性基体上に、電荷発生層、電荷輸送層を順次積層し、それぞれの付着量が均一になるよう感光体を作製しても、数十〜十V以下の静電潜像の均一性をどうしても確保することができなかった。
【0005】
【発明が解決しようとする課題】
本発明者らは、上記問題、即ち、浸漬塗工により導電性基体上に電荷発生層、電荷輸送層を順次積層した感光体のそれぞれの付着量について検討し、数十〜十V以下の静電潜像の均一性を確保する条件を見出す点にある。
【0006】
【課題を解決するための手段】
本発明は下記の構成よりなる。
(1)浸漬塗工法により導電性基体上に感光層を形成した感光体において、浸漬塗工法における電荷発生層の引き上げ方向に電荷発生材料の付着量の傾斜を有し、かつ引き上げ開始側の電荷発生層の付着材料の方が引き上げ終了側の電荷発生材料の付着量よりも大きいことを特徴とする感光体。
【0008】
(2) 上記(1)記載の感光体において電荷発生層の引き上げ開始端部より50mmにおける感光体のマクベスIDと電荷発生層の引き上げ終了端部より50mmにおける感光体のマクベスIDの差が0.002〜0.200であることを特徴とする感光体。
【0009】
(3) 上記(1)〜(2)のいずれかに記載の感光体において、電荷発生層の引き上げ方向と電荷輸送層の引き上げ方向が同じであることを特徴とする感光体。
【0010】
(4) 上記(3)記載の感光体において、電荷発生層の塗工後、及び電荷輸送層の塗工後、浸漬塗工法により引き上げられた方向を保ったままの状態で移動、乾燥することを特徴とする感光体。
【0011】
(5) 上記(3)又は(4)記載の感光体において、電荷発生層及び電荷輸送層の乾燥が感光体上方より下方に向かって熱風を送ることにより行われることを特徴とする感光体。
【0012】
(6) 上記(1)〜(5)のいずれかに記載の感光体を用いた画像形成装置。
【0013】
本発明者らは、浸漬塗工法による感光体の作製においては、感光体の画像形成域における電荷発生材料の付着量は、均一であるよりもむしろ感光体の引き上げ方向に傾斜を有している方が、より均一な静電潜像が得られることを見出した。また、電子写真装置における光学系、帯電、転写プロセスが感光体の引き上げ方向で均一あるいは対称であるとすれば、浸漬塗工法における引き上げ方向に電荷発生材料の付着量の傾斜を有し、かつ引き上げ開始側における電荷発生材料の付着量の方が引き上げ終了側の電荷発生材料の付着量よりも大きくした方が、より均一な静電潜像を得られることを見出した。
【0014】
従来より理想とされていた電荷発生材料が均一な付着量の感光体よりも、電荷発生材料の付着量に傾斜を有する本発明の感光体の方が、より均一な静電潜像を確保できるのか、その理由はいまだ明らかではないが、本発明者らが推測するに、浸漬塗工法における感光体の製造においては、一度導電性基体全体を塗工液に浸漬した後、導電性基体を引き上げることにより行われるので、導電性基体の引き上げ方向における導電性基体の下部は、上部に比べて長く塗工液と接触していることになる。導電性基体あるいは導電性基体上に形成された下引層と電荷発生層用塗工液との界面が完全になじむには一定の時間がかかると考えられる。特に切削等により粗面化した導電性基体あるいは、粒子を分散して表面が粗面化している下引層と電荷発生層用塗工液との界面がなじむには表面が鏡面の導電性基体あるいは下引層に比べてかなり時間がかかると思われるので、導電性基体の引き上げ方向における導電性基体の上部では導電性基体あるいは導電性基体上に形成された下引層と電荷発生層用塗工液が完全になじまないうちに引き上げられ、そのなじみは、下部の方ほど完全になっていく。そのため、導電性基体あるいは導電性基体上に形成された下引層と電荷発生層用の界面の状態が導電性基体の引き上げ方向に沿って傾斜的に変化していることになる。この考察に従えば、導電性基体が電荷発生層用塗工液に完全に浸漬している時間を導電性基体の引き上げている時間が無視できるよう、圧倒的に長くすれば良いのであるが、生産性を考えれば好ましくはないので、現実的な時間を選択するとすれば、界面状態が傾斜的に変化しているため、電荷発生材料の付着量が均一であっても、長く塗工液と接触している導電性基体下方はより高感度になるものと思われる。導電性基体あるいは導電性基体上に形成された下引層と電荷発生層の界面状態が同じであれば、電荷発生層の付着量が高いほど高感度になるので、本発明の構成の感光体は均一な静電潜像を得ることができる。
【0015】
このような考察は、電荷発生層の塗工方法として、スプレー法、ロールコート法等のような導電性基体と電荷発生層用塗工液の接触時間が感光体の長手方向で変わらない方法で塗工した場合には、電荷発生材料の傾斜がない場合の方がより感度が均一であることにも矛盾することがない。
【0016】
上記考察に従えば、浸漬塗工法においては電荷発生層のみでなく、電荷輸送層も同様な効果があるものと考えられるが、電荷発生層は一般に十分の数μmと非常に薄く、僅かな導電性基体あるいは導電性基体上に形成された下引層と電荷発生層との微妙な界面状態で感度は大きく変化してしまうものと考えられる。
【0017】
本発明の感光体における、電荷発生材料の付着量の傾斜は、感光体製造における微量の振動、微細な測定ノイズを無視できる場所であれば感光体の画像形成域の任意の2点あるいは多点で測定、管理しても良いが、紙等の被写体の大きさが210mm〜300mm長の感光体ドラムが、A3までの場合は300mm〜400mm長の感光体ドラムが使用されることが多いため、感光体の両端部よりそれぞれ30〜100mm、好ましくは40〜70mm、特に好ましくは、電荷発生層の引き上げ方向上部の感光体の端部より50mmにおける電荷発生層の付着量と電荷発生層の引き上げ方向下部の感光体の端部より50mmにおける電荷発生層の付着量を測定することが簡便で、再現性がよく、電荷発生材料の付着量の傾斜をあらわすことができる。
【0018】
本発明の感光体における電荷発生材料の付着量の測定は、化学的、物理的、光学的、電気化学的方法等、いずれの方法で測定しても良いが、測定の簡便さ、信頼性の点から光学的手法が好ましく、特にマクベス反射濃度計によるマクベスIDとして測定することが好ましい。一般に感光体に用いられる材料のうち、マクベス反射濃度計に用いられている光の波長に応答する材料は、電荷発生材料のみであるので、マクベスIDは電荷発生材料の付着量を示す代用値として有効に用いることができる。
【0019】
本発明の感光体における、電荷発生層の引き上げ方向上部における感光体の端部より50mmにおける感光体のマクベスIDと、電荷発生層の引き上げ方向下部における感光体の端部より50mmにおける感光体のマクベスIDの差、即ち電荷発生材料の付着量の傾斜は、感光体の用いられる画像形成装置の帯電、露光、転写プロセス等の偏差に合わせて適宜決定されるものであるが、通常、感光体の引き上げ方向では、対称あるいはほぼ均一とみなせるため、マクベスIDの差は0.002〜0.200、好ましくは0.005〜0.150、さらに好ましくは0.010〜0.120である。マクベスIDの差が0.002以下では電荷発生層引き上げ方向における感光体下部の感度が上部に比べて高くなり、均一な静電潜像は得られない。マクベスIDの差が0.200以上では感光体下部の感度が上部に比べて低くなり好ましくない。
【0020】
本発明の感光体の作製においては、浸漬塗工法により電荷発生層、電荷輸送層の引き上げ方向は、同じであることが好ましい。引き上げる方向を同じとすることで、電荷発生層の付着量に傾斜を設けた本発明の感光体は、より均一な静電潜像を得ることができる。電荷発生層の引き上げ方向と、電荷輸送層の引き上げ方向を変えた場合、電荷発生材料の付着量の傾斜の大きさが条件により変化しやすいため制御しづらくなり、製造設備も複雑となる。また、感光体の電荷発生層の塗工後、及び電荷輸送層の塗工後、浸漬塗工法により引き上げられた方向を保ったままの状態で移動、乾燥することが好ましい。塗工後、浸漬塗工法により引き上げられた方向を変えると電荷発生層及び電荷輸送層中での構成成分あるいは乾燥しきっていない塗工液の若干の移動が生じるため、感度に微妙な偏差が生じてしまい、十V以下を要求される超高画質の画像形成装置用感光体として用いることが難しくなる。
【0021】
本発明の感光体の製作における電荷発生層及び電荷輸送層の乾燥は、熱風あるいは赤外線等の電磁波の照射、減圧乾燥等により行われるが、感度の均一性、経済性、再現性を考えると熱風により行われることが好ましく、また熱風の送る方向は、電荷発生層の引き上げ方向の上方より、下方に向かって熱風を送り乾燥を行うことが特に好ましい。電荷発生層の引き上げ方向の上方より、下方に向かって熱風を送ることにより、感光体の上方が優先的に乾燥が開始され、下方に向かって徐々に乾燥が開始されることになり、乾燥の終了も上方より下方に向かって進行することになる。当然のことながら、最終的な乾燥は上下で違いがなく完全に行われることになるのであるが、このような乾燥を行うことにより、本発明の感光体は、より均一な静電潜像の形成が可能となる。従って、本発明の感光体の製作における電荷発生層及び電荷輸送層の乾燥は、電荷発生層の引き上げ方向の上方より、下方に向かって送った熱風が、乾燥機中の床あるいは壁等での跳ね返りにより、感光体付近での熱風の流れに乱流を起こさせないよう、乾燥機内のスペースを十分大きくしたり、下方に熱風の廃気口を設ける等の配慮が必要である。
【0022】
本発明の感光体は、基本的には導電性基体上に電荷発生層、電荷輸送層を用いた積層型感光体であるが、電荷発生層と電荷輸送層が同一の層中に有る単層型感光体であっても良い。導電性基体と電荷発生層の間には、導電性基体からの電荷注入の防止、モアレの防止、電荷発生層の接着性の向上を目的として下引層を設けることができる。また、感光層の保護を目的として電荷輸送層の上に保護層を設けることもできる。
【0023】
本発明の感光体の導電性基体としては、銅,アルミニウム,金,銀,白金,鉄,パラジウム,ニッケル等の金属あるいはこれら金属を主成分とする合金のシート状又はドラム状に形成したものや、上記の金属、酸化錫、酸化インジウム等をプラスチックフィルム等に真空蒸着,無電解メッキ等によって付着させたシートを例示することができる。本発明の感光体の導電性基体の表面は、接着性の向上、モアレの防止を目的として粗面化されていることが好ましい。
【0024】
本発明の感光体の下引層としては樹脂、あるいは白色顔料と樹脂を主成分としたもの、及び導電性基体表面を化学的あるいは電気化学的に酸化させた酸化金属膜等が例示できる。下引層の膜厚が0.1μm〜15μm、好ましくは1〜12μmであり、白色顔料と樹脂を主成分とするものが好ましい。白色顔料としては、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛等の金属酸化物が挙げられ、中でも導電性基体からの電荷の注入防止性が優れる酸化チタンを含有させることが最も好ましい。下引層に用いる樹脂としてはポリアミド、ポリビニルアルコール、カゼイン、メチルセルロース等の熱可塑性樹脂、アクリル、フェノール、メラミン、アルキッド、不飽和ポリエステル、エポキシ等の熱硬化性樹脂を例示することができる。
【0025】
本発明の感光体に用いる電荷発生剤としては、例えば、モノアゾ系顔料,ビスアゾ系顔料,トリスアゾ系顔料,テトラキスアゾ顔料,トリアリールメタン系染料,チアジン系染料,オキサジン系染料,キサンテン系染料,シアニン系色素,スチリル系色素,ビリリウム系染料,キナクリドン系顔料,インジゴ系顔料,ペリレン系顔料,多環キノン系顔料,ビスベンズイミダゾール系顔料,インダスロン系顔料,スクアリリウム系顔料,フタロシアニン系顔料等の有機系顔料及び染料や、セレン,セレン−ヒ素,セレン−テルル,硫化カドミウム,酸化亜鉛,酸化チタン,アモルファスシリコン等の無機材料を使用することができ、電荷発生剤は一種あるいは多種を、結着樹脂を用いて電荷輸送層を形成する。
【0026】
本発明の電子写真感光体に用いる電荷輸送材料としては、例えば、アントラセン誘導体,ピレン誘導体,カルバゾール誘導体,テトラゾール誘導体,メタロセン誘導体,フェノチアジン誘導体,ピラゾリン化合物,ヒドラゾン化合物,スチリル化合物,スチリルヒドラゾン化合物,エナミン化合物,ブタジエン化合物,ジスチリル化合物,オキサゾール化合物,オキサジアゾール化合物,チアゾール化合物,イミダゾール化合物,トリフェニルアミン誘導体,フェニレンジアミン誘導体,アミノスチルベン誘導体,トリフェニルメタン誘導体等の一種あるいは多種を混合して使用することができる。
【0027】
上記電荷発生層、電荷輸送層の感光層を形成するのに使用する結着樹脂としては、電気絶縁性であり、それ自体公知の熱可塑性樹脂,熱硬化性樹脂,光硬化性樹脂及び光導電性樹脂等を使用することができ、適当な結着樹脂としては、例えば、ポリ塩化ビニル,ポリ塩化ビニリデン,塩化ビニル−酢酸ビニル共重合体,塩化ビニル−酢酸ビニル−無水マレイン酸共重合体,エチレン−酢酸ビニル共重合体,ポリビニルブチラール,ポリビニルアセタール,ポリエステル,フェノキシ樹脂,(メタ)アクリル樹脂,ポリスチレン,ポリカーボネ−ト,ポリアリレート,ポリスルホン,ポリエーテルスルホン,ABS樹脂等の熱可塑性樹脂、フェノール樹脂,エポキシ樹脂,ウレタン樹脂,メラミン樹脂,イソシアネート樹脂,アルキッド樹脂,シリコーン樹脂,熱硬化性アクリル樹脂等の熱硬化性樹脂、ポリビニルカルバゾール,ポリビニルアントラセン,ポリビニルピレン等の光導電性樹脂など一種の結着樹脂あるいは多種と結着樹脂の混合を挙げることができるが、特に、これらのものに限定されるものではない。
【0028】
本発明の感光体は、均一な静電潜像を形成できることから、複写機、プリンター、FAX等の画像形成装置に用いることにより極めて高画質の画像形成が可能となる。
【0029】
【発明の実施の形態】
以下、本発明を実施例並びに比較例に基づいて具体的に説明する。
実施例1
アクリル樹脂(アクリディックA−460−60(大日本インキ化学工業製))15重量部、メラミン樹脂(スーパーベッカミンL−121−60(大日本インキ化学工業製))10重量部をメチルエチルケトン80重量部に溶解し、これに酸化チタン粉末(TM−1(富士チタン工業製))90重量部加え、ボールミルで12時間分散し、下引層塗布液を作製した。切削により表面を粗面化した直径120mm、長さ346mm、厚さ4mmのアルミドラムを上記下引層塗工液に浸漬した後、速度一定で垂直に引き上げて塗工した。アルミドラムの方向を維持したまま、乾燥室に移動させ140℃で20分乾燥し、厚さ2μmの下引層をアルミドラム上に形成した。乾燥室では、方向を維持したままアルミドラムを荷台上に固定し、アルミドラム上方より、アルミドラム長手方向に沿うように熱風を送り、荷台下の床に設けた排気口から熱風を排気するような構造にして、熱風が乱流を起こすことないような構造としている。
【0030】
次にブチラール樹脂(エスレックBLS(積水化学製))15重量部をシクロヘキサノン150重量部に溶解し、これに下記構造式のトリスアゾ顔料10重量部を加えてボールミルで48時間分散した。
【0031】
【化1】
【0032】
更にシクロヘキサノン210重量部を加え、3時間分散を行った。これを固形分が1.5重量%になるように攪拌しながらシクロヘキサノンで希釈した。こうして得られた電荷発生層用塗工液に、下引層を形成したアルミドラムを浸漬し、引き上げ速度を変化させながら電荷発生層を塗工し、下引層と同じようにアルミドラムの方向を維持したまま、下引層を乾燥した乾燥機と同じ構造の乾燥機に移動させ、120℃、20分間下引層と同様に乾燥を行い電荷発生層を形成した。
【0033】
さらに下記構造式の電荷輸送材料6重量部、
【0034】
【化2】
ポリカーボネート樹脂(パンライトK-1300(帝人化成製))10重量部、シリコンオイル(KF−50(信越化学工業製))0.002重量部を90重量部の塩化メチレンに溶解した。こうして得られて電荷輸送層塗工液に、下引層/電荷発生層を形成したアルミドラムを浸漬し、一定速度で電荷輸送層を塗工し、下引層と同じようにアルミドラムの方向を維持したまま、下引層を乾燥した乾燥機と同じ構造の乾燥機に移動させ、120℃、20分間下引層と同様に乾燥を行い電荷発生層上に厚さ約23μmの電荷輸送層を形成した。
【0035】
作製した感光体について、電荷発生層の引き上げ開始側の感光体端部より50mm、感光体中央部、電荷発生層の引き上げ終了側の感光体端部より50mmにおける感光体表面のマクベスIDをRD918マクベス反射濃度計(マクベス社製)測定したところ、それぞれ1.28、1.25、1.22であった。PRETER 550(リコー製)に作製した感光体を搭載し、A3、白黒ハーフトーン画像を出力した。画像出力中、感光体に書き込み光照射直後の静電潜像電位を測定したところ、電荷発生層の引き上げ開始側の感光体端部より50mmの地点の電位(V1)と、電荷発生層の引き上げ終了側の感光体端部より50mmの地点での電位(V2)との差V1−V2は2Vであった。出力したA3画像長手方向端部から各30mmの地点での画像濃度をX-Rite938分光測色濃度計(X-Rite社製)にてそれぞれ3点測定し、相加平均してそれぞれの画像濃度を測定したところ、電荷発生層の引き上げ開始側が0.181、電荷発生層の引き上げ終了側が0.182であった。目視レベルでは、画像濃度は一定であり、画像濃度に偏差は見られなかった。
【0036】
比較例1
実施例1において、電荷発生層の塗工における引き上げ速度を実施例1と異ならせて塗工する以外は、実施例1と同様に感光体を作製した。実施例1と同様に電荷発生層の引き上げ開始側の感光体端部より50mm、感光体中央部、電荷発生層の引き上げ終了側の感光体端部より50mmにおける感光体表面のマクベスIDをRD918マクベス反射濃度計(マクベス社製)測定したところ、それぞれ1.28、1.29、1.27であった。実施例1と同様に、画像を出力し、出力したA3画像長手方向端部から各30mmの地点での画像濃度を測定したところ、電荷発生層の引き上げ開始側が0.163、電荷発生層の引き上げ終了側が0.185であった。目視レベルでは、若干、電荷発生層の引き上げ開始側の画像濃度が薄いように感じられた。
【0037】
比較例2
実施例1において、電荷発生層の塗工をスプレー塗工法により行う以外は、実施例1と同様にして感光体を作製した。実施例1と同様に感光体表面のマクベスIDを測定したところ、それぞれ1.29、1.25、1.23と実施例1の感光体とほぼ同じ電荷発生層の分布となった。実施例1と同様に、画像を出力し、出力したA3画像長手方向端部から各30mmの地点での画像濃度を測定したところ、電荷発生層の引き上げ開始側が0.204、電荷発生層の引き上げ終了側が0.185であった。目視レベルでは、若干、電荷発生層の引き上げ開始側の画像濃度が濃いように感じられた。
【0038】
実施例2〜5、比較例3
実施例1において、電荷発生層の塗工において、引き上げ速度を調整して電荷発生層の引き上げ開始側の感光体端部より50mm、電荷発生層の引き上げ終了側の感光体端部より50mmにおける感光体表面のマクベスIDがそれぞれ異なる表1のような感光体を作製した。実施例1と同様に、画像を出力し、出力したA3画像長手方向端部から各30mmの地点での画像濃度を測定した。画像濃度の測定結果と合わせて、目視レベルでの画像評価結果を表1に示した。
【0039】
【表1】
【0040】
実施例6
実施例1において、電荷発生層の乾燥において、感光体の長手方向を水平にして実施例1の電荷発生層の乾燥に用いた乾燥機中に配置し、感光体を60rpmで回転させながら電荷発生層の乾燥を行う以外は実施例1と同様にして感光体を作製した。実施例1と同様に作製した感光体について、電荷発生層の引き上げ開始側の感光体端部より50mm、感光体中央部、電荷発生層の引き上げ終了側の感光体端部より50mmにおける感光体表面のマクベスIDを測定したところそれぞれ1.28、1.24、1.22であった。実施例1と同様に、PRETER550(リコー製)に作製した感光体を搭載し、A3、白黒ハーフトーン画像を出力したときの感光体に書き込み光照射直後の静電潜像電位を測定したところ、電荷発生層の引き上げ開始側の感光体端部より50mmの地点の電位(V1)と、電荷発生層の引き上げ終了側の感光体端部より50mmの地点での電位(V2)との差V1−V2は13Vであった。
【0041】
実施例7
実施例1において、電荷輸送層の浸漬塗工における引き上げ方向を電荷発生層の浸漬塗工における引き上げ方向と逆にする以外は実施例1と同様にして感光体を作製した。実施例1と同様に作製した感光体について、電荷発生層の引き上げ開始側の感光体端部より50mm、感光体中央部、電荷発生層の引き上げ終了側の感光体端部より50mmにおける感光体表面のマクベスIDを測定したところそれぞれ1.27、1.25、1.22であった。実施例1と同様に、PRETER 550(リコー製)に作製した感光体を搭載し、A3、白黒ハーフトーン画像を出力したときの感光体に書き込み光照射直後の静電潜像電位を測定したところ、電荷発生層の引き上げ開始側の感光体端部より50mmの地点の電位(V1)と、電荷発生層の引き上げ終了側の感光体端部より50mmの地点での電位(V2)との差V1−V2は−19Vであった。
【0042】
【発明の効果】
請求項1においては浸漬塗工法により導電性基体上に感光層を形成した感光体において、浸漬塗工法における引き上げ方向に電荷発生材料の付着量の傾斜を設けることに均一な静電潜像を作製可能な感光体を提供できる。
【0043】
請求項2においては、浸漬塗工法における引き上げ方向に電荷発生材料の付着量の傾斜を有し、かつ引き上げ開始側の電荷発生層の付着量の方が引き上げ終了側の電荷発生層の付着量よりも大きくすることにより、より均一な静電潜像を作製可能な感光体を提供できる。
【0044】
請求項3においては、電荷発生層の傾斜を、特に好ましい範囲とすることにより、より均一な静電潜像を作製可能な感光体を提供できる。
【0045】
請求項4〜6においては、請求項4〜6のようにして感光体を製造することにより、より均一な静電潜像を作製可能な感光体を提供することができる。
【0046】
請求項7においては、均一な静電潜像を作製することのできる感光体を用いることにより均一で、高画質な画像を形成可能な画像形成装置を提供することができる。[0001]
[Field of the Invention]
The present invention relates to an improvement in a photoreceptor used in an image forming apparatus such as a copying machine, a FAX, or a printer.
[0002]
[Prior art]
In recent years, there has been a demand for higher quality for images formed by image forming apparatuses such as copiers, printers, and fax machines. For this reason, the photoreceptor used in the image forming apparatus is required to have a uniformity of several tens to tens of volts or less as the electrostatic latent image of the photoreceptor in the image forming area so that a high-quality image can be obtained. ing. Therefore, how to produce a photoconductor with uniform sensitivity is an important issue.
[0003]
Many photoconductors are manufactured by sequentially laminating a charge generation layer and a charge transport layer on a conductive substrate (after laminating an undercoat layer if necessary) by dip coating from the viewpoint of mass productivity. . However, in the dip coating method, the coating film essentially slides down due to gravity, so when the conductive substrate is pulled up at a constant speed, the coating film is thin at the upper part of the conductive substrate and the coating film at the lower part. Becomes too thick to produce a photoconductor with a uniform adhesion amount. In order to solve this problem, for example, in Japanese Patent Laid-Open No. 3-78751 and Japanese Patent Laid-Open No. 57-5048, the rate of pulling up the conductive substrate in dip coating is controlled so as to be high at the top and slow at the bottom. A dip coating method is disclosed.
[0004]
However, even if a charge generating layer and a charge transport layer are sequentially laminated on a conductive substrate by a dip coating method to produce a photoconductor so that the amount of each deposited becomes uniform, The uniformity of the electrostatic latent image could not be ensured.
[0005]
[Problems to be solved by the invention]
The present inventors have studied the above problem, that is, the amount of adhesion of a photoreceptor in which a charge generation layer and a charge transport layer are sequentially laminated on a conductive substrate by dip coating. The point is to find out the conditions for ensuring the uniformity of the electrostatic latent image.
[0006]
[Means for Solving the Problems]
The present invention has the following configuration.
(1) In a photoreceptor in which a photosensitive layer is formed on a conductive substrate by a dip coating method, the charge generation material has an inclination in the pulling direction of the charge generation layer in the dip coating method , and the charge on the pulling start side A photoconductor characterized in that the adhesion material of the generation layer is larger than the adhesion amount of the charge generation material on the pulling end side .
[0008]
( 2 ) In the photoconductor described in (1) above, the difference between the Macbeth ID of the photoconductor 50 mm from the pulling start end of the charge generation layer and the Macbeth ID of the photoconductor 50 mm from the pulling end of the charge generation layer is 0. A photoconductor characterized by being 002 to 0.200.
[0009]
( 3 ) The photoreceptor according to any one of (1) to ( 2 ), wherein the pulling direction of the charge generation layer is the same as the pulling direction of the charge transport layer.
[0010]
( 4 ) In the photoreceptor described in ( 3 ) above, after coating the charge generation layer and after coating the charge transport layer, move and dry while maintaining the direction pulled up by the dip coating method. A photoreceptor characterized by.
[0011]
( 5 ) The photoreceptor according to ( 3 ) or ( 4 ), wherein the charge generation layer and the charge transport layer are dried by sending hot air downward from above the photoreceptor.
[0012]
( 6 ) An image forming apparatus using the photoreceptor according to any one of (1) to ( 5 ).
[0013]
In the production of a photoreceptor by a dip coating method, the present inventors have an amount of charge generation material adhering in an image forming area of the photoreceptor having a slope in the pulling direction of the photoreceptor rather than being uniform. It has been found that a more uniform electrostatic latent image can be obtained. If the optical system, charging, and transfer process in the electrophotographic apparatus are uniform or symmetric in the pulling direction of the photosensitive member, the charge generating material has an inclination in the pulling direction in the dip coating method, and the pulling is performed. It has been found that a more uniform electrostatic latent image can be obtained when the amount of charge generation material deposited on the start side is larger than the amount of charge generation material deposited on the pulling end side.
[0014]
The photoconductor of the present invention having a slope in the amount of charge generation material deposited can ensure a more uniform electrostatic latent image than the photoconductor having a uniform amount of charge generation material that has been considered ideal in the past. However, the reason for this is not yet clear, but the present inventors presume that in the production of a photoreceptor in the dip coating method, the conductive substrate is pulled up after the entire conductive substrate is once immersed in the coating solution. Therefore, the lower part of the conductive substrate in the pulling direction of the conductive substrate is in contact with the coating liquid longer than the upper part. It is considered that it takes a certain time for the interface between the conductive substrate or the subbing layer formed on the conductive substrate and the charge generation layer coating solution to be completely adapted. In particular, a conductive substrate roughened by cutting or the like, or a conductive substrate having a mirror surface for the interface between the coating layer for the charge generation layer and the undercoat layer in which the surface is roughened by dispersing particles. Alternatively, since it may take considerably longer than the undercoat layer, the undercoat layer and the charge generation layer coating formed on the conductive substrate or the conductive substrate are formed above the conductive substrate in the pulling direction of the conductive substrate. The working fluid is pulled up before it becomes completely familiar, and the familiarity becomes more complete toward the bottom. Therefore, the state of the interface for the conductive substrate or the subbing layer formed on the conductive substrate and the charge generation layer changes in an inclined manner along the pulling direction of the conductive substrate. According to this consideration, the time when the conductive substrate is completely immersed in the charge generation layer coating solution may be overwhelmingly long so that the time when the conductive substrate is pulled up can be ignored. Since it is not preferable in view of productivity, if a realistic time is selected, the interface state changes in a slanting manner. It seems that the lower part of the conductive substrate in contact is more sensitive. If the interface state between the conductive substrate or the undercoat layer formed on the conductive substrate and the charge generation layer is the same, the higher the amount of the charge generation layer attached, the higher the sensitivity. Can obtain a uniform electrostatic latent image.
[0015]
Such consideration is based on a method in which the contact time between the conductive substrate and the charge generation layer coating solution does not change in the longitudinal direction of the photoreceptor, such as a spray method or a roll coat method. When applied, there is no contradiction that the sensitivity is more uniform when the charge generating material is not inclined.
[0016]
According to the above consideration, in the dip coating method, it is considered that not only the charge generation layer but also the charge transport layer has the same effect, but the charge generation layer is generally very thin, a few μm, and has a slight conductivity. It is considered that the sensitivity changes greatly due to a delicate interface state between the undercoat layer formed on the conductive substrate or the conductive substrate and the charge generation layer.
[0017]
In the photoconductor of the present invention, the slope of the amount of charge generation material deposited can be any two points or multiple points in the image forming area of the photoconductor as long as a minute amount of vibration and fine measurement noise in the photoconductor production can be ignored. However, in the case of up to A3, a photosensitive drum having a length of 300 mm to 400 mm is often used. 30 to 100 mm, preferably 40 to 70 mm from both ends of the photoconductor, and particularly preferably, the charge generation layer adhesion amount and the charge generation layer pulling direction at 50 mm from the upper end of the photoconductor in the direction of pulling up the charge generation layer. It is easy to measure the amount of charge generation layer deposited at 50 mm from the edge of the lower photoconductor, which is easy to reproduce and represents the slope of the amount of charge generation material deposited. Kill.
[0018]
The adhesion amount of the charge generating material on the photoconductor of the present invention may be measured by any method such as chemical, physical, optical, and electrochemical methods, but the measurement is simple and reliable. From the point of view, an optical method is preferable, and it is particularly preferable to measure as Macbeth ID using a Macbeth reflection densitometer. Generally, the material that responds to the wavelength of light used in the Macbeth reflection densitometer among the materials used in the photoreceptor is only the charge generation material, so the Macbeth ID is a substitute value indicating the amount of the charge generation material attached. It can be used effectively.
[0019]
In the photoconductor of the present invention, the Macbeth ID of the photoconductor 50 mm from the end of the photoconductor in the upper direction of the charge generation layer and the Macbeth of the photoconductor 50 mm from the end of the photoconductor in the lower direction of the charge generation layer. The difference in ID, that is, the inclination of the amount of the charge generating material adhering, is appropriately determined in accordance with deviations in charging, exposure, transfer process, etc. of the image forming apparatus in which the photoconductor is used. In the pulling direction, since it can be regarded as symmetrical or almost uniform, the difference in Macbeth ID is 0.002 to 0.200, preferably 0.005 to 0.150, and more preferably 0.010 to 0.120. When the Macbeth ID difference is 0.002 or less, the sensitivity of the lower portion of the photoreceptor in the direction of pulling up the charge generation layer is higher than that of the upper portion, and a uniform electrostatic latent image cannot be obtained. If the Macbeth ID difference is 0.200 or more, the sensitivity of the lower part of the photoreceptor is lower than that of the upper part, which is not preferable.
[0020]
In the production of the photoreceptor of the present invention, it is preferable that the pulling directions of the charge generation layer and the charge transport layer are the same by the dip coating method. By making the pulling direction the same, the photoreceptor of the present invention in which the charge generation layer has an inclined amount of deposition can obtain a more uniform electrostatic latent image. When the direction in which the charge generation layer is pulled up and the direction in which the charge transport layer is pulled up are changed, the magnitude of the gradient of the amount of the charge generation material adhering easily changes depending on the conditions, making it difficult to control, and the manufacturing equipment becomes complicated. In addition, it is preferable to move and dry the film while keeping the direction pulled up by the dip coating method after coating the charge generation layer of the photoreceptor and after coating the charge transport layer. If the direction pulled up by the dip coating method is changed after coating, the component in the charge generation layer and the charge transport layer or a slight movement of the coating solution that has not dried out occurs, resulting in a slight deviation in sensitivity. As a result, it becomes difficult to use the photoconductor for an image forming apparatus with an ultra-high image quality that requires 10 V or less.
[0021]
Drying of the charge generation layer and the charge transport layer in the production of the photoreceptor of the present invention is performed by irradiation with hot air or electromagnetic waves such as infrared rays, drying under reduced pressure, etc. In consideration of uniformity of sensitivity, economy, and reproducibility, In addition, it is particularly preferable that the hot air is sent in a direction in which the hot air is sent downward from above the direction in which the charge generation layer is pulled up. By sending hot air downward from above the pulling-up direction of the charge generation layer, drying is preferentially started above the photoconductor, and drying is gradually started downward. The end also proceeds downward from above. As a matter of course, the final drying is performed completely without any difference between the upper and lower sides. By performing such drying, the photoconductor of the present invention has a more uniform electrostatic latent image. Formation is possible. Therefore, in the production of the photoreceptor of the present invention, the charge generation layer and the charge transport layer are dried by hot air sent downward from above in the pulling direction of the charge generation layer on the floor or wall in the dryer. In order not to cause turbulence in the flow of hot air in the vicinity of the photoconductor due to rebounding, it is necessary to take into consideration such as sufficiently increasing the space in the dryer or providing a hot air waste outlet below.
[0022]
The photoreceptor of the present invention is basically a laminated photoreceptor using a charge generation layer and a charge transport layer on a conductive substrate, but the single layer in which the charge generation layer and the charge transport layer are in the same layer. It may be a type photoreceptor. An undercoat layer can be provided between the conductive substrate and the charge generation layer for the purpose of preventing charge injection from the conductive substrate, preventing moire, and improving the adhesion of the charge generation layer. A protective layer can also be provided on the charge transport layer for the purpose of protecting the photosensitive layer.
[0023]
As the conductive substrate of the photoreceptor of the present invention, a metal such as copper, aluminum, gold, silver, platinum, iron, palladium, nickel, or a sheet or drum formed of an alloy mainly composed of these metals, A sheet in which the above metal, tin oxide, indium oxide or the like is attached to a plastic film or the like by vacuum deposition, electroless plating, or the like can be exemplified. The surface of the conductive substrate of the photoreceptor of the present invention is preferably roughened for the purpose of improving adhesion and preventing moire.
[0024]
Examples of the undercoat layer of the photoreceptor of the present invention include a resin, a layer mainly composed of a white pigment and a resin, and a metal oxide film obtained by chemically or electrochemically oxidizing the surface of a conductive substrate. The film thickness of the undercoat layer is 0.1 μm to 15 μm, preferably 1 to 12 μm, and those having a white pigment and a resin as main components are preferable. Examples of the white pigment include metal oxides such as titanium oxide, aluminum oxide, zirconium oxide, and zinc oxide. Among them, it is most preferable to contain titanium oxide that is excellent in preventing charge injection from the conductive substrate. Examples of the resin used for the undercoat layer include thermoplastic resins such as polyamide, polyvinyl alcohol, casein, and methyl cellulose, and thermosetting resins such as acrylic, phenol, melamine, alkyd, unsaturated polyester, and epoxy.
[0025]
Examples of the charge generating agent used in the photoreceptor of the present invention include monoazo pigments, bisazo pigments, trisazo pigments, tetrakisazo pigments, triarylmethane dyes, thiazine dyes, oxazine dyes, xanthene dyes, and cyanines. Organic dyes, styryl dyes, bililium dyes, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, bisbenzimidazole pigments, indanthrone pigments, squarylium pigments, phthalocyanine pigments, etc. Inorganic materials such as selenium pigments and dyes, selenium, selenium-arsenic, selenium-tellurium, cadmium sulfide, zinc oxide, titanium oxide, amorphous silicon, etc. can be used. Is used to form the charge transport layer.
[0026]
Examples of the charge transport material used in the electrophotographic photoreceptor of the present invention include anthracene derivatives, pyrene derivatives, carbazole derivatives, tetrazole derivatives, metallocene derivatives, phenothiazine derivatives, pyrazoline compounds, hydrazone compounds, styryl compounds, styrylhydrazone compounds, enamine compounds. , Butadiene compounds, distyryl compounds, oxazole compounds, oxadiazole compounds, thiazole compounds, imidazole compounds, triphenylamine derivatives, phenylenediamine derivatives, aminostilbene derivatives, triphenylmethane derivatives, etc. Can do.
[0027]
The binder resin used to form the charge generation layer and the charge transport layer photosensitive layer is electrically insulating, and is a known thermoplastic resin, thermosetting resin, photocurable resin, and photoconductive material. Suitable binder resins include, for example, polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, Ethylene-vinyl acetate copolymer, polyvinyl butyral, polyvinyl acetal, polyester, phenoxy resin, (meth) acrylic resin, polystyrene, polycarbonate, polyarylate, polysulfone, polyethersulfone, ABS resin, thermoplastic resin, phenol resin , Epoxy resin, urethane resin, melamine resin, isocyanate resin, alkyd resin, Examples include a thermosetting resin such as a ricone resin, a thermosetting acrylic resin, a type of binder resin such as a photoconductive resin such as polyvinyl carbazole, polyvinyl anthracene, and polyvinyl pyrene, or a mixture of various types of binder resins. In particular, it is not limited to these.
[0028]
Since the photoreceptor of the present invention can form a uniform electrostatic latent image, it can be used for image forming apparatuses such as copiers, printers, and fax machines to form extremely high-quality images.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described based on examples and comparative examples.
Example 1
15 parts by weight of acrylic resin (Acridic A-460-60 (Dainippon Ink Chemical Co., Ltd.)), 10 parts by weight of melamine resin (Super Becamine L-121-60 (Dainippon Ink Chemical Co., Ltd.)), 80 parts by weight of methyl ethyl ketone 90 parts by weight of titanium oxide powder (TM-1 (manufactured by Fuji Titanium Industry Co., Ltd.)) was added thereto and dispersed for 12 hours with a ball mill to prepare an undercoat layer coating solution. An aluminum drum having a diameter of 120 mm, a length of 346 mm, and a thickness of 4 mm roughened by cutting was dipped in the undercoat layer coating solution, and then applied by pulling it up vertically at a constant speed. While maintaining the direction of the aluminum drum, it was moved to a drying chamber and dried at 140 ° C. for 20 minutes to form a subbing layer having a thickness of 2 μm on the aluminum drum. In the drying chamber, the aluminum drum is fixed on the cargo bed while maintaining the direction, hot air is sent from the upper side of the aluminum drum along the longitudinal direction of the aluminum drum, and the hot air is exhausted from the exhaust port provided on the floor under the cargo bed. The structure is such that hot air does not cause turbulence.
[0030]
Next, 15 parts by weight of butyral resin (S-REC BLS (manufactured by Sekisui Chemical Co., Ltd.)) was dissolved in 150 parts by weight of cyclohexanone, and 10 parts by weight of a trisazo pigment having the following structural formula was added thereto and dispersed in a ball mill for 48 hours.
[0031]
[Chemical 1]
[0032]
Further, 210 parts by weight of cyclohexanone was added and dispersed for 3 hours. This was diluted with cyclohexanone with stirring so that the solid content was 1.5% by weight. In the coating solution for the charge generation layer thus obtained, the aluminum drum on which the undercoat layer is formed is immersed, and the charge generation layer is applied while changing the pulling speed, and the direction of the aluminum drum is the same as the undercoat layer. The undercoat layer was moved to a drier having the same structure as the drier that was dried, and dried at 120 ° C. for 20 minutes in the same manner as the undercoat layer to form a charge generation layer.
[0033]
Furthermore, 6 parts by weight of a charge transport material having the following structural formula,
[0034]
[Chemical 2]
10 parts by weight of polycarbonate resin (Panlite K-1300 (manufactured by Teijin Chemicals)) and 0.002 part by weight of silicon oil (KF-50 (manufactured by Shin-Etsu Chemical Co., Ltd.)) were dissolved in 90 parts by weight of methylene chloride. In this way, the aluminum drum with the undercoat layer / charge generation layer formed is immersed in the charge transport layer coating solution, and the charge transport layer is applied at a constant speed, and the direction of the aluminum drum is the same as the undercoat layer. The subbing layer is moved to a drier having the same structure as the drying drier while maintaining the temperature, and dried at 120 ° C. for 20 minutes in the same manner as the subbing layer, and a charge transport layer having a thickness of about 23 μm is formed on the charge generation layer. Formed.
[0035]
For the photoconductor produced, the Macbeth ID on the surface of the photoconductor at 50 mm from the end of the photoconductor at the start of lifting the charge generation layer, 50 mm from the end of the photoconductor at the center of the photoconductor, and RD918 Macbeth. When the reflection densitometer (Macbeth) was measured, they were 1.28, 1.25, and 1.22, respectively. The prepared photoconductor was mounted on PRETER 550 (manufactured by Ricoh), and an A3 black and white halftone image was output. During image output, the electrostatic latent image potential immediately after irradiation of the writing light on the photoconductor was measured. As a result, the potential (V1) at a point 50 mm from the end of the photoconductor on the start side of the charge generation layer and the charge generation layer was raised. The difference V1-V2 from the potential (V2) at a point 50 mm from the end of the photoconductor on the end side was 2V. The image density at each point of 30 mm from the output A3 image longitudinal direction end is measured with an X-Rite 938 spectrocolorimeter (manufactured by X-Rite), and arithmetically averaged. As a result of measurement, the pulling start side of the charge generation layer was 0.181, and the pulling end side of the charge generation layer was 0.182. At the visual level, the image density was constant and no deviation was observed in the image density.
[0036]
Comparative Example 1
In Example 1, a photoconductor was prepared in the same manner as in Example 1 except that the charge generation layer was applied at a different pulling rate from that in Example 1. As in Example 1, the Macbeth ID on the surface of the photoconductor at 50 mm from the end of the photoconductor at the start of lifting the charge generation layer, 50 mm from the end of the photoconductor at the center and at the end of the lift of the charge generation layer is RD918 Macbeth. When the reflection densitometer (Macbeth Co.) was measured, they were 1.28, 1.29, and 1.27, respectively. As in Example 1, when an image was output and the image density at each 30 mm point from the output A3 image longitudinal direction end was measured, the charge generation layer lifting start side was 0.163, and the charge generation layer lifting was performed. The end side was 0.185. At the visual level, the image density on the side where the charge generation layer was started to be pulled up was slightly felt.
[0037]
Comparative Example 2
A photoconductor was prepared in the same manner as in Example 1 except that the charge generation layer was applied by spray coating in Example 1. When the Macbeth ID on the surface of the photoreceptor was measured in the same manner as in Example 1, the distribution of the charge generation layer was approximately the same as that of the photoreceptor of Example 1, which was 1.29, 1.25, and 1.23, respectively. In the same manner as in Example 1, an image was output, and the image density at each 30 mm point from the output A3 image longitudinal direction end was measured. As a result, the charge generation layer lifting start side was 0.204, and the charge generation layer was lifted. The end side was 0.185. At the visual level, the image density on the side where the charge generation layer was started to be pulled up was slightly felt.
[0038]
Examples 2 to 5, Comparative Example 3
In Example 1, in the coating of the charge generation layer, the pulling speed is adjusted to adjust the photosensitivity at 50 mm from the end of the photoconductor at the start of lifting the charge generation layer and 50 mm from the end of the photoconductor at the end of lifting the charge generation layer. Photoconductors as shown in Table 1 having different Macbeth IDs on the surface of the body were prepared. In the same manner as in Example 1, an image was output, and the image density at each 30 mm point from the output A3 image longitudinal direction end portion was measured. Together with the image density measurement results, the image evaluation results at the visual level are shown in Table 1.
[0039]
[Table 1]
[0040]
Example 6
In Example 1, in the drying of the charge generation layer, the photoconductor was placed in the dryer used for drying the charge generation layer of Example 1 with the longitudinal direction of the photoconductor horizontal, and the charge generation was performed while rotating the photoconductor at 60 rpm. A photoconductor was prepared in the same manner as in Example 1 except that the layer was dried. For the photoconductor prepared in the same manner as in Example 1, the surface of the photoconductor is 50 mm from the end of the photoconductor on the side where the charge generation layer starts to be pulled up, and 50 mm from the end of the photoconductor at the center of the photoconductor The measured Macbeth IDs were 1.28, 1.24, and 1.22, respectively. In the same manner as in Example 1, the photoconductor prepared on PRETER550 (manufactured by Ricoh) was mounted, and the electrostatic latent image potential immediately after irradiation of writing light was measured on the photoconductor when A3, a black and white halftone image was output. The difference V1− between the potential (V1) at a point 50 mm from the end of the photoreceptor on the charge generation layer pulling start side and the potential (V2) at the point 50 mm from the end of the photoconductor end of pulling up the charge generation layer. V2 was 13V.
[0041]
Example 7
In Example 1, a photoreceptor was prepared in the same manner as in Example 1 except that the pulling direction in the dip coating of the charge transport layer was reversed to the pulling direction in the dip coating of the charge generation layer. For the photoconductor prepared in the same manner as in Example 1, the surface of the photoconductor is 50 mm from the end of the photoconductor on the side where the charge generation layer starts to be pulled up, and 50 mm from the end of the photoconductor at the center of the photoconductor The measured Macbeth IDs were 1.27, 1.25, and 1.22, respectively. In the same manner as in Example 1, a photoconductor prepared on PRETER 550 (manufactured by Ricoh) was mounted, and the electrostatic latent image potential immediately after irradiation of writing light was measured on the photoconductor when an A3 black and white halftone image was output. The difference V1 between the potential (V1) at a point 50 mm from the end of the photosensitive member on the start side of the charge generation layer and the potential (V2) at a point 50 mm from the end of the photosensitive member at the end of the pulling of the charge generation layer. -V2 was -19V.
[0042]
【The invention's effect】
According to claim 1, a uniform electrostatic latent image is produced by providing a photosensitive member having a photosensitive layer formed on a conductive substrate by a dip coating method, by providing a slope of the amount of charge generation material adhering in the pulling direction in the dip coating method. Possible photoreceptors can be provided.
[0043]
In claim 2, there is a slope of the amount of charge generation material adhering in the pulling direction in the dip coating method, and the amount of charge generation layer on the pulling start side is larger than the amount of charge generation layer on the pulling end side By increasing the size, it is possible to provide a photoconductor capable of producing a more uniform electrostatic latent image.
[0044]
According to the third aspect of the present invention, it is possible to provide a photoconductor capable of producing a more uniform electrostatic latent image by setting the inclination of the charge generation layer to a particularly preferable range.
[0045]
According to the fourth to sixth aspects, a photoconductor capable of producing a more uniform electrostatic latent image can be provided by manufacturing the photoconductor as in the fourth to sixth aspects.
[0046]
According to the seventh aspect of the present invention, it is possible to provide an image forming apparatus capable of forming a uniform and high-quality image by using a photoconductor capable of producing a uniform electrostatic latent image.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000080316A JP3871848B2 (en) | 2000-03-22 | 2000-03-22 | Photoconductor and image forming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000080316A JP3871848B2 (en) | 2000-03-22 | 2000-03-22 | Photoconductor and image forming apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001265024A JP2001265024A (en) | 2001-09-28 |
JP3871848B2 true JP3871848B2 (en) | 2007-01-24 |
Family
ID=18597441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000080316A Expired - Lifetime JP3871848B2 (en) | 2000-03-22 | 2000-03-22 | Photoconductor and image forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3871848B2 (en) |
-
2000
- 2000-03-22 JP JP2000080316A patent/JP3871848B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001265024A (en) | 2001-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9046797B2 (en) | Process for producing electrophotographic photosensitive member | |
US9256145B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JPH06208238A (en) | Electrophotographic receptor and electrophotographic device using the same | |
JP2007052063A (en) | Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus with the same | |
JP2003302773A (en) | Coating liquid for intermediate layer of electrophotographic photoconductor, manufacturing method therefor, electrophotographic photoconductor, electrophotographic apparatus, and electrophotographic process cartridge using the same | |
DE69519914T2 (en) | Electrophotographic photoreceptor | |
JP3871848B2 (en) | Photoconductor and image forming apparatus | |
JPH0478991B2 (en) | ||
JPH0534934A (en) | Electrophotographic sensitive body and production thereof | |
JP2000347433A (en) | Electrophotographic photoreceptor and electrophotographic apparatus using the same | |
JPH08184979A (en) | Electrophotographic photoreceptor and electrophotographic device | |
JP4411231B2 (en) | Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus | |
JP2001305838A (en) | Image forming device | |
JP2007086176A (en) | Method for manufacturing electrophotographic photoreceptor, electrophotographic photoreceptor, electrophotographic apparatus, electrophotographic manufacturing method, and coating machine for electrophotographic photoreceptor | |
JP2003066636A (en) | Organic photoreceptor, image forming device, method for forming image and process cartridge | |
JP2000181097A (en) | Electrophotographic photoreceptor, its production and image-forming device | |
JP2865037B2 (en) | Electrophotographic photoreceptor | |
JPS61140943A (en) | Electrophotographic sensitive body | |
JPH02207268A (en) | Electrophotographic sensitive body | |
JP3244951B2 (en) | Electrophotographic photoreceptor and electrophotographic apparatus using the electrophotographic photoreceptor | |
JP2003162080A (en) | Coating liquid for electrophotographic photosensitive body, electrophotographic photosensitive body, electrophotographic method and electrophotographic device | |
JP2746199B2 (en) | Electrophotographic photoreceptor | |
JP2002351110A (en) | Coating liquid for intermediate layer of electrophotographic photoreceptor, electrophotographic photoreceptor using the same, electrophotographic method using this electrophotographic photoreceptor, electrophotographic device and process cartridge for electrophotographic device | |
JPH03197953A (en) | Electrophotographic apparatus and electrophotographic method | |
JPS62269966A (en) | Electrophotographic sensitive body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061016 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061018 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3871848 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101027 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111027 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121027 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131027 Year of fee payment: 7 |
|
EXPY | Cancellation because of completion of term |