JPH09257992A - Nuclear power plant and hydrogen peroxide decomposing device, and inspection work method of nuclear power plant - Google Patents

Nuclear power plant and hydrogen peroxide decomposing device, and inspection work method of nuclear power plant

Info

Publication number
JPH09257992A
JPH09257992A JP8064174A JP6417496A JPH09257992A JP H09257992 A JPH09257992 A JP H09257992A JP 8064174 A JP8064174 A JP 8064174A JP 6417496 A JP6417496 A JP 6417496A JP H09257992 A JPH09257992 A JP H09257992A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
condensate
storage tank
reactor
condensate storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8064174A
Other languages
Japanese (ja)
Other versions
JP3143058B2 (en
Inventor
Kazunari Ishida
一成 石田
Masayoshi Kondo
政義 近藤
Naoto Uetake
直人 植竹
Yamato Asakura
大和 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP08064174A priority Critical patent/JP3143058B2/en
Publication of JPH09257992A publication Critical patent/JPH09257992A/en
Application granted granted Critical
Publication of JP3143058B2 publication Critical patent/JP3143058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the time for periodical inspection of nuclear reactor and various works in the reactor and prevent the performance of resin washing the water in the reactor form decreasing. SOLUTION: This plant is provided with a pressure vessel with nuclear fuel in a core, a nuclear reactor well 1, a condensate storing tank 2 storing condensate and a condensate purifier 3 and is formed such that nuclear reactor water is filled in the well 1 at the time of stop of nuclear reactor and after the completion of a specified inspection work the water is brought into the tank 2. In the tank 2, a hydrogen peroxide decomposition device 4 is set to decompose hydrogen peroxide in the water in the tank 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は原子力プラント及び
原子力プラントの検査作業方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear power plant and an inspection work method for a nuclear power plant.

【0002】[0002]

【従来の技術】従来一般に採用されている発電用原子炉
の一つとして沸騰水型原子炉(以下BWRと呼ぶ)があ
る。この沸騰水型原子炉プラントは、図2に示されてい
るように、核燃料を炉心5に装備した圧力容器6と、こ
の圧力容器内で発生した蒸気にて駆動されるタービン7
と、タービンからの排出蒸気を圧力容器に戻す系統、す
なわち排出蒸気を復水する復水器8、復水浄化器3、給
水ポンプ9、熱交換器10とを備え、また復水浄化器3
に復水貯蔵タンク2が接続されている。
2. Description of the Related Art A boiling water reactor (hereinafter referred to as "BWR") is one of the generally used power generating nuclear reactors. In this boiling water reactor plant, as shown in FIG. 2, a pressure vessel 6 equipped with a nuclear fuel in a core 5 and a turbine 7 driven by steam generated in this pressure vessel
And a system for returning the exhaust steam from the turbine to the pressure vessel, that is, a condenser 8 for condensing the exhaust steam, a condensate purifier 3, a water supply pump 9, and a heat exchanger 10, and the condensate purifier 3
A condensate storage tank 2 is connected to.

【0003】復水浄化器3では樹脂等を使って冷却水に
含まれる鉄などの腐食生成物の除去が行われるが、除去
効率が低下した場合には樹脂の洗浄が行われる。この洗
浄には一般に水を使った物理的洗浄あるいは薬品を使っ
た化学的洗浄が採用されている。いずれの洗浄にして
も、この樹脂の洗浄には大量の水が使われることから、
通常、復水貯蔵タンク2内の原子炉水が使用されてい
る。
In the condensate purifier 3, resin or the like is used to remove corrosion products such as iron contained in the cooling water. However, when the removal efficiency is lowered, the resin is washed. For this cleaning, physical cleaning using water or chemical cleaning using chemicals is generally adopted. In any case, since a large amount of water is used to wash this resin,
Normally, the reactor water in the condensate storage tank 2 is used.

【0004】この復水貯蔵タンク2に持ち込まれる原子
炉水として、原子炉の定期検査時に持ち込まれるものが
ある。すなわち、原子炉の定期検査時に、例えば燃料交
換を行うため原子炉ウェル1に原子炉水が貯められ、諸
検査終了後その原子炉水が抜かれる。この抜き取られた
水が復水貯蔵タンク2へ持ち込まれるまでの経路の概略
が図3に示されている。
[0004] As the reactor water that is brought into the condensate storage tank 2, there is water that is brought into the reactor during periodic inspections. That is, at the time of periodic inspection of the nuclear reactor, for example, fuel water is stored in the reactor well 1 for the purpose of fuel exchange, and the reactor water is drained after completion of various inspections. An outline of a path until the water taken out is brought into the condensate storage tank 2 is shown in FIG.

【0005】通常、その原子炉水は放射性廃棄物処理系
12へ直接通すか、あるいはサプレッションプール11
に一旦落としてから放射性廃棄物処理系12を通して復
水貯蔵タンク2に持ち込まれる。この経路を取ると原子
炉運転中に生成した過酸化水素は放射性廃棄物処理系1
2で分解されるため復水貯蔵タンク2の貯蔵水の過酸化
水素濃度は小さくなり、過酸化水素は問題とならない。
Usually, the reactor water is passed directly to the radioactive waste treatment system 12, or the suppression pool 11 is used.
It is once dropped into the condensate storage tank 2 through the radioactive waste treatment system 12. If this route is taken, the hydrogen peroxide generated during the reactor operation will be the radioactive waste treatment system 1
Since it is decomposed by 2, the hydrogen peroxide concentration of the stored water in the condensate storage tank 2 becomes small, and hydrogen peroxide does not pose a problem.

【0006】[0006]

【発明が解決しようとする課題】このように通常の定期
検査時においては貯蔵水の過酸化水素濃度が問題になる
ことはないのであるが、しかし、定期検査の時間を短縮
することなどを目的として、直接原子炉水を復水貯蔵タ
ンク2に直接持ち込む場合がある。この場合には貯蔵水
の過酸化水素濃度が高くなり、この貯蔵水を使って復水
浄化器の樹脂の洗浄を行うと過酸化水素により樹脂の性
能が低下する恐れがあった。
As described above, the hydrogen peroxide concentration of stored water does not pose a problem at the time of normal regular inspection, but the purpose is to shorten the time for regular inspection. As a result, the reactor water may be directly brought into the condensate storage tank 2. In this case, the hydrogen peroxide concentration of the stored water becomes high, and if the resin of the condensate purifier is washed using this stored water, the performance of the resin may be deteriorated by the hydrogen peroxide.

【0007】本発明はこれに鑑みなされたもので、その
目的とするところは、定期検査の時間を短縮することが
可能で、かつ樹脂性能が低下する恐れのない原子力プラ
ントおよび原子力プラントの運転方法を提供するにあ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nuclear power plant and a method of operating a nuclear power plant capable of shortening the time for periodical inspection and without fear of deterioration of resin performance. To provide.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、核燃
料を炉心装備した圧力容器と、原子炉に設けられている
原子炉ウェルと、復水を貯蔵する復水貯蔵タンクとを備
え、原子炉検査作業時に、前記原子炉ウェル内に原子炉
水が満たされ、所定の作業後その原子炉水が前記復水貯
蔵タンクに持ち込まれるように形成されている原子力プ
ラントにおいて、前記復水貯蔵タンクに、タンク内水に
含まれている過酸化水素を分解する過酸化水素分解装置
を設けるとともに、前記原子炉ウェル内の原子炉水を復
水貯蔵タンクに持ち込むに際し、前記原子炉水を直接前
記復水貯蔵タンクに持ち込み、その後、前記過酸化水素
分解装置にて復水貯蔵タンク内の原子炉水を過酸化水素
分解処理するようにし所期の目的を達成するようにした
ものである。
That is, the present invention comprises a pressure vessel equipped with a nuclear fuel core, a reactor well provided in the reactor, and a condensate storage tank for storing condensate. At the time of inspection work, in the nuclear power plant configured such that the reactor well is filled with reactor water and the reactor water is brought into the condensate storage tank after a predetermined work, A hydrogen peroxide decomposing device for decomposing hydrogen peroxide contained in the water in the tank, and directly bringing the reactor water into the condensate storage tank when bringing the reactor water in the reactor well into the condensate storage tank. The reactor is brought into a water storage tank, and then the reactor water in the condensate storage tank is decomposed into hydrogen peroxide by the hydrogen peroxide decomposition apparatus to achieve the intended purpose.

【0009】また、前記復水貯蔵タンクの原子炉水排出
系統に、過酸化水素を分解する過酸化水素分解装置を設
け、かつ前記原子炉ウェル内の原子炉水を排出するに際
し、前記原子炉水を直接前記復水貯蔵タンクに持ち込
み、復水貯蔵タンクの原子炉水排出系統に設けられてい
る過酸化水素分解装置にて原子炉水を過酸化水素分解処
理するようにしたものである。
Further, a hydrogen peroxide decomposing device for decomposing hydrogen peroxide is provided in the reactor water discharge system of the condensate storage tank, and the reactor water is discharged when the reactor water in the reactor well is discharged. The water is brought directly into the condensate storage tank, and the reactor water is decomposed into hydrogen peroxide by a hydrogen peroxide decomposing device provided in the reactor water discharge system of the condensate storage tank.

【0010】またこの場合、前記過酸化水素分解装置
を、着脱自在でかつ移動可能に形成するようにしたもの
である。またこの過酸化水素分解装置に過酸化水素分解
反応の金属触媒を担持した触媒を使用するようにしたも
のである。また、過酸化水素分解装置に、PtとRuと
RdとPdの内少なくとも1つをアルミナあるいはシリ
カに担持した触媒を使用するようにしたものである。
Further, in this case, the hydrogen peroxide decomposition device is formed so as to be detachable and movable. Further, a catalyst carrying a metal catalyst for hydrogen peroxide decomposition reaction is used in this hydrogen peroxide decomposition apparatus. Further, a catalyst in which at least one of Pt, Ru, Rd, and Pd is supported on alumina or silica is used in the hydrogen peroxide decomposition apparatus.

【0011】すなわちこのように形成されている原子力
プラントであると、諸検査終了後原子炉ウェル内の原子
炉水を復水貯蔵タンクに持ち込むに際し、原子炉水が直
に復水貯蔵タンクに持ち込まれるので、その原子炉水の
抜取り作業時間は短縮され、かつこの復水貯蔵タンクの
貯蔵水を使って復水浄化器の樹脂の洗浄を行っても、復
水貯蔵タンクあるいは復水貯蔵タンクと復水浄化器を接
続する配管に過酸化水素分解装置が設置されていること
から、この過酸化水素分解装置で貯蔵水の過酸化水素が
分解され、貯蔵水の過酸化水素濃度を低くすることがで
き、したがって、定期検査の時間を短縮することが可能
で、かつ過酸化水素による樹脂の性能低下を充分防止す
ることができるのである。
That is, in the nuclear power plant constructed in this way, when the reactor water in the reactor well is brought into the condensate storage tank after various inspections, the reactor water is directly brought into the condensate storage tank. Therefore, the time required for extracting the reactor water is shortened, and even if the resin of the condensate purifier is washed using the stored water of this condensate storage tank, Since a hydrogen peroxide decomposing device is installed in the pipe connecting the condensate purifier, the hydrogen peroxide decomposing device decomposes the hydrogen peroxide in the stored water and lowers the hydrogen peroxide concentration in the stored water. Therefore, it is possible to reduce the time required for the periodic inspection, and it is possible to sufficiently prevent the deterioration of the performance of the resin due to hydrogen peroxide.

【0012】[0012]

【発明の実施の形態】以下図示した実施例に基づいて本
発明を詳細に説明する。図1にはその原子力プラントの
原子炉水排出(循環)系統の要部が示されている。1が
原子炉ウェルであり、原子炉検査作業時には、この原子
炉ウェル内に原子炉水が満たされ、所定の検査あるいは
作業を行った後、この原子炉水は復水貯蔵タンク2に持
ち込まれるように形成されている。なお3は復水浄化器
であり、4は過酸化水素分解装置である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. FIG. 1 shows the main part of the reactor water discharge (circulation) system of the nuclear power plant. Reference numeral 1 is a reactor well, and during the reactor inspection work, the reactor water is filled in the reactor well, and after performing a predetermined inspection or work, the reactor water is brought into the condensate storage tank 2. Is formed. In addition, 3 is a condensate purifier and 4 is a hydrogen peroxide decomposition apparatus.

【0013】このように復水貯蔵タンク2には、タンク
内水に含まれている過酸化水素を分解する過酸化水素分
解装置が設置されており、そして前記原子炉ウェル内の
原子炉水を復水貯蔵タンクに持ち込むに際し、原子炉水
は直接この復水貯蔵タンクに持ち込まれ、その後、過酸
化水素分解装置にてこの持ち込まれた原子炉水が過酸化
水素分解処理されるのである。
As described above, the condensate storage tank 2 is provided with a hydrogen peroxide decomposing device for decomposing hydrogen peroxide contained in the tank water, and the reactor water in the reactor well is installed. When bringing it into the condensate storage tank, the reactor water is directly brought into this condensate storage tank, and thereafter, the carried-in reactor water is subjected to hydrogen peroxide decomposition treatment.

【0014】このようにすると、復水貯蔵タンク2の貯
蔵水に含まれる過酸化水素は過酸化水素分解装置で分解
され、貯蔵水の過酸化水素濃度を十分低減できるので、
貯蔵水を使って復水浄化器3の樹脂の洗浄を行っても過
酸化水素による樹脂の性能低下をおこさない。
In this way, the hydrogen peroxide contained in the stored water in the condensate storage tank 2 is decomposed by the hydrogen peroxide decomposing device, and the hydrogen peroxide concentration of the stored water can be sufficiently reduced.
Even if the resin of the condensate purifier 3 is washed with stored water, the performance of the resin does not deteriorate due to hydrogen peroxide.

【0015】図5に本発明の復水貯蔵タンク2の貯蔵水
の過酸化水素分解装置4設置の第2の実施例を示す。す
なわち、復水貯蔵タンク2と復水浄化器3を接続する配
管(流通路)Aに過酸化水素分解装置4を接続した構成
を持つ。この構成によれば復水浄化器3に持ち込む貯蔵
水に含まれる過酸化水素を過酸化水素分解装置4で分解
することにより貯蔵水の過酸化水素濃度を十分低減でき
るので、貯蔵タンクに直接持ち込まれた貯蔵水を使って
復水浄化器3の樹脂の洗浄を行っても過酸化水素による
樹脂の性能低下はおこらない。また、この構成によれば
必要な量の貯蔵水だけを過酸化水素分解装置4に通すこ
とになるので通水量を少なくできる。さらにこれにより
触媒を効率良く使うことができる。
FIG. 5 shows a second embodiment of installation of the hydrogen peroxide decomposing device 4 for stored water in the condensate storage tank 2 of the present invention. That is, it has a configuration in which the hydrogen peroxide decomposition device 4 is connected to a pipe (flow passage) A that connects the condensate storage tank 2 and the condensate purifier 3. According to this configuration, the hydrogen peroxide concentration in the stored water can be sufficiently reduced by decomposing the hydrogen peroxide contained in the stored water brought into the condensate purifier 3 by the hydrogen peroxide decomposing device 4, so that it can be directly brought into the storage tank. Even if the resin of the condensate purifier 3 is washed with the stored water stored therein, the performance of the resin is not deteriorated by hydrogen peroxide. Further, according to this configuration, only a required amount of stored water is passed through the hydrogen peroxide decomposition device 4, so that the amount of water passing can be reduced. Furthermore, this allows the catalyst to be used efficiently.

【0016】図6に本発明の復水貯蔵タンク2の貯蔵水
の過酸化水素分解装置4設置の第4の実施例を示す。こ
の図は復水貯蔵タンク2に過酸化水素分解装置4の上流
側を接続し、復水浄化器2と復水貯蔵タンク2に過酸化
水素分解装置4の下流側を接続するという構成を持つ。
本構成によれば復水貯蔵タンク2の貯蔵水の過酸化水素
の分解を進める一方で、復水貯蔵タンクの貯蔵水の過酸
化水素濃度が一定値以下になっていない時に復水浄化器
2の樹脂の洗浄が必要になった時は過酸化水素分解装置
4を通して直接復水浄化器2に貯蔵水を送ることができ
る。この構成により復水浄化器2に過酸化水素濃度の低
い貯蔵水を送ることができるので、貯蔵水を使って復水
浄化器3の樹脂の洗浄を行っても過酸化水素による樹脂
の性能低下をおこさない。
FIG. 6 shows a fourth embodiment of installation of the hydrogen peroxide decomposing device 4 for stored water in the condensate storage tank 2 of the present invention. This figure has a configuration in which the condensate storage tank 2 is connected to the upstream side of the hydrogen peroxide decomposition apparatus 4, and the condensate purifier 2 and the condensate storage tank 2 are connected to the downstream side of the hydrogen peroxide decomposition apparatus 4. .
According to this configuration, while the hydrogen peroxide of the stored water in the condensate storage tank 2 is decomposed, when the hydrogen peroxide concentration of the stored water in the condensate storage tank is not below a certain value, the condensate purifier 2 When it is necessary to wash the resin, the stored water can be sent directly to the condensate purifier 2 through the hydrogen peroxide decomposition device 4. With this configuration, stored water having a low hydrogen peroxide concentration can be sent to the condensate purifier 2, so that even if the resin of the condensate purifier 3 is washed with the stored water, the performance of the resin is deteriorated by hydrogen peroxide. Does not cause

【0017】上記の実施例に示した過酸化水素分解装置
4は常設にしても良いし、着脱自在にして移動可能なも
のとしても良い。移動可能な装置にすれば複数の原子炉
を持つ原子力発電所では使い回しができる。
The hydrogen peroxide decomposing device 4 shown in the above embodiment may be permanently installed or may be detachable and movable. If it is a mobile device, it can be reused in a nuclear power plant with multiple reactors.

【0018】次に過酸化水素分解装置の例を図7から図
13を使って説明する。過酸化水素分解装置の第1の例
を図7に示す。この図はポンプ101と管に触媒を通水
しても管から出ないように充填した触媒充填塔102を
配管で接続した構成を持つ。ポンプ101と触媒充填塔
102の順番は逆でもよい。触媒としてはアルカリや粉
状白金、パラジウム、二酸化マンガン、微細な粉末(例
えばガラスの破片)などが上げられる。ポンプ101に
より強制的に復水貯蔵タンク2の貯蔵水を触媒充填塔1
02を通すことにより強制的に過酸化水素を分解できる
ので復水貯蔵タンク2の貯蔵水の過酸化水素濃度を低減
できる。
Next, an example of the hydrogen peroxide decomposition apparatus will be described with reference to FIGS. 7 to 13. FIG. 7 shows a first example of the hydrogen peroxide decomposition apparatus. This figure has a structure in which a pump 101 and a catalyst packed tower 102, which is filled so as not to come out of the pipe even when water is passed through the pipe, are connected by a pipe. The order of the pump 101 and the catalyst packed column 102 may be reversed. Examples of the catalyst include alkali, powdered platinum, palladium, manganese dioxide, and fine powder (for example, glass fragments). The stored water in the condensate storage tank 2 is forcibly forced by the pump 101 into the catalyst packed tower 1
Since hydrogen peroxide can be forcibly decomposed by passing through 02, the hydrogen peroxide concentration of the stored water in the condensate storage tank 2 can be reduced.

【0019】過酸化水素分解装置の第2の例を図8に示
す。図8は図7のポンプ101と触媒充填塔102を接
続する配管に通水する水を加熱できる加熱器103を接
続する構成を持つ。加熱器103は触媒充填塔の上流側
に有ればよい。また触媒充填塔102自体にヒーターを
つけても良い。この構成により触媒に通す貯蔵水の温度
を高くすることにより、触媒を活性化させることができ
る(図15参照)のでより強制的に過酸化水素を分解で
きるので復水貯蔵タンク2の貯蔵水の過酸化水素濃度を
低減できる。
A second example of the hydrogen peroxide decomposition apparatus is shown in FIG. FIG. 8 has a configuration in which a heater 103 capable of heating water passing through is connected to a pipe connecting the pump 101 and the catalyst packed tower 102 of FIG. The heater 103 may be located upstream of the catalyst packed tower. A heater may be attached to the catalyst packed tower 102 itself. With this configuration, by raising the temperature of the stored water passing through the catalyst, the catalyst can be activated (see FIG. 15), so that hydrogen peroxide can be more forcibly decomposed, and therefore the stored water in the condensate storage tank 2 can be decomposed. The hydrogen peroxide concentration can be reduced.

【0020】過酸化水素分解装置の第3の例を図9に示
す。この図はポンプ101と加熱器103を接続する配
管にステンレスのメッシュを長手方向に垂直方向に貼っ
た、ステンレスメッシュ管104を接続する構成を持
つ。過酸化水素は粗雑な固体面に接触することにより容
易に分解するので、ポンプ101により強制的にステン
レスメッシュ管を復水貯蔵タンク2の貯蔵水を通すこと
により強制的に過酸化水素を分解できるので復水貯蔵タ
ンク2の貯蔵水の過酸化水素濃度を低減できる。
A third example of the hydrogen peroxide decomposition apparatus is shown in FIG. This drawing has a configuration in which a stainless steel mesh pipe 104 in which a stainless steel mesh is attached in a direction perpendicular to the longitudinal direction is connected to a pipe connecting the pump 101 and the heater 103. Since hydrogen peroxide is easily decomposed by coming into contact with a rough solid surface, the hydrogen peroxide can be forcibly decomposed by forcibly passing the stainless mesh pipe by the pump 101 through the stored water in the condensate storage tank 2. Therefore, the hydrogen peroxide concentration of the stored water in the condensate storage tank 2 can be reduced.

【0021】過酸化水素分解装置の第4の例を図10に
示す。この図は前記の触媒を通水できる容器に入れた触
媒充填容器106に容器内の水と容器外の水を強制的に
循環させることができる撹拌装置105を接続した構成
を持つ。復水貯蔵タンク2に設置し、撹拌装置105に
より貯蔵水を強制的に触媒充填容器106の内外を循環
させることにより復水貯蔵タンク2の貯蔵水に含まれる
過酸化水素を分解させれば過酸化水素濃度を低減するこ
とができる。
FIG. 10 shows a fourth example of the hydrogen peroxide decomposition apparatus. This figure has a structure in which a catalyst-filled container 106, which is placed in a container through which water can pass through the catalyst, is connected to a stirring device 105 that can forcibly circulate water inside the container and water outside the container. It is installed in the condensate storage tank 2, and the stirring device 105 forcibly circulates the stored water inside and outside the catalyst-filled container 106 to decompose hydrogen peroxide contained in the stored water in the condensate storage tank 2. The hydrogen oxide concentration can be reduced.

【0022】過酸化水素分解装置の第5の例を図11に
示す。図11は図8の触媒充填塔102の後に過酸化水
素濃度測定手段107を配管で接続し、過酸化水素濃度
測定手段107の下流側に、通水液の流れ先を手動ある
いは自動で決めることができる分岐弁108を接続し分
岐弁108の下流側の一方をこの過酸化水素濃度測定手
段107とポンプ101の上流側を配管に接続した構成
をもつ。この構成によれば触媒充填塔102をでた貯蔵
水の過酸化水素濃度が十分低いものとなっているかを確
認でき、さらに十分低くなっていなければ分岐弁108
で通水液の流れ先を触媒充填塔102の上流側に戻すこ
とができるので確実に過酸化水素濃度を低減できる。
FIG. 11 shows a fifth example of the hydrogen peroxide decomposition apparatus. In FIG. 11, the hydrogen peroxide concentration measuring means 107 is connected by a pipe after the catalyst packed tower 102 in FIG. 8, and the flow destination of the water passing liquid is determined manually or automatically on the downstream side of the hydrogen peroxide concentration measuring means 107. A branch valve 108 capable of being connected is connected, and one of the downstream side of the branch valve 108 is connected to the hydrogen peroxide concentration measuring means 107 and the upstream side of the pump 101 to a pipe. According to this configuration, it can be confirmed whether the hydrogen peroxide concentration of the stored water leaving the catalyst packed tower 102 is sufficiently low, and if it is not sufficiently lower, the branch valve 108
Since the flow destination of the water-passing liquid can be returned to the upstream side of the catalyst packed column 102, the hydrogen peroxide concentration can be reliably reduced.

【0023】過酸化水素分解装置の第6の例を図12に
示す。図12は図8に過酸化水素濃度測定手段107を
並装する構成を持つ。この過酸化水素濃度測定手段10
7は触媒充填塔よりも上流側にある配管あるいは復水貯
蔵タンク2にあればよい。この構成によれば過酸化水素
濃度測定手段107により復水貯蔵タンク2の貯蔵水の
過酸化水素濃度を測定し過酸化水素濃度が高い時にポン
プ101で貯蔵水を触媒充填塔102に送ることによ
り、必要に応じて過酸化水素分解装置2を作動させるこ
とができる。
A sixth example of the hydrogen peroxide decomposition apparatus is shown in FIG. FIG. 12 has a configuration in which hydrogen peroxide concentration measuring means 107 is installed in parallel with FIG. This hydrogen peroxide concentration measuring means 10
7 may be in the pipe or the condensate storage tank 2 on the upstream side of the catalyst packed tower. According to this configuration, the hydrogen peroxide concentration measuring means 107 measures the hydrogen peroxide concentration of the stored water in the condensate storage tank 2, and when the hydrogen peroxide concentration is high, the stored water is sent to the catalyst packed tower 102 by the pump 101. The hydrogen peroxide decomposition apparatus 2 can be operated as needed.

【0024】過酸化水素分解装置の第7の例を図13に
示す。図13は図11に過酸化水素濃度測定手段107
aを並装する構成を持つ。この構成によれば、過酸化水
素濃度測定手段107aの測定結果に基づき必要に応じ
て過酸化水素分解装置2を作動することができかつ、過
酸化水素濃度測定手段107bの測定結果に貯蔵水を触
媒充填塔102に必要な回数だけ通水することにより確
実に過酸化水素濃度を低減できる。第6の例あるいは第
7の例の方法をとれば必要な時だけ触媒を使うことがで
きるので、触媒の劣化を防止できる。
A seventh example of the hydrogen peroxide decomposition apparatus is shown in FIG. FIG. 13 shows the hydrogen peroxide concentration measuring means 107 in FIG.
It has a configuration in which a is mounted in parallel. According to this configuration, the hydrogen peroxide decomposing device 2 can be operated as necessary based on the measurement result of the hydrogen peroxide concentration measuring means 107a, and the stored water is added to the measurement result of the hydrogen peroxide concentration measuring means 107b. By passing water through the catalyst packed tower 102 as many times as necessary, the hydrogen peroxide concentration can be surely reduced. If the method of the sixth example or the seventh example is adopted, the catalyst can be used only when necessary, so that the deterioration of the catalyst can be prevented.

【0025】図7から図13で例示した過酸化水素分解
装置4で、PtとRuとRdとPdの内少なくとも1つ
をアルミナあるいはシリカに担持した触媒を使用するこ
とが適切である。この触媒はPtとRuとRdとPdを
アルミナやシリカなどの担持させることにより過酸化水
素を含む溶媒と白金属元素の接触面積を大きくすること
を特徴としている。この内、ルテニウムをアルミナに担
持した触媒の例を図15に示す。ここで滞留時間とは
In the hydrogen peroxide decomposition apparatus 4 illustrated in FIGS. 7 to 13, it is appropriate to use a catalyst in which at least one of Pt, Ru, Rd and Pd is supported on alumina or silica. This catalyst is characterized in that Pt, Ru, Rd, and Pd are supported on alumina or silica to increase the contact area between the solvent containing hydrogen peroxide and the white metal element. Of these, an example of a catalyst in which ruthenium is supported on alumina is shown in FIG. Here is the residence time

【0026】[0026]

【数1】(触媒充填塔102の断面積)×(触媒充填塔
102の高さ)/(溶媒流速) により求められる時間で、過酸化水素と触媒の接触時間
に対応する。図14より滞留時間が40秒程度で過酸化
水素の8割り以上が分解することがわかる。また、室温
(25℃)でも十分過酸化水素を分解できることがわか
る。図15に他の触媒との比較を示す。ここで縦軸のk
は過酸化水素分解反応の反応速度定数で上記の滞留時間
と次式の関係を持つ。
## EQU1 ## The time determined by (cross-sectional area of catalyst packed tower 102) × (height of catalyst packed tower 102) / (solvent flow rate) corresponds to the contact time between hydrogen peroxide and the catalyst. It can be seen from FIG. 14 that 80% or more of the hydrogen peroxide decomposes when the residence time is about 40 seconds. Further, it can be seen that hydrogen peroxide can be decomposed sufficiently even at room temperature (25 ° C.). FIG. 15 shows a comparison with other catalysts. Where k on the vertical axis
Is the reaction rate constant of the hydrogen peroxide decomposition reaction and has the following relationship with the above residence time.

【0027】[0027]

【数2】(滞留時間)=1n(1/(1−(過酸化水素
の残留割合)))/k(過酸化水素残留割合)=(触媒
を通す前の過酸化水素濃度)/(触媒を通した後の過酸
化水素の濃度) したがって、kが大きいほど滞留時間が短い、すなわち
効率良く過酸化水素を分解できる。図15よりルテニウ
ムをアルミナに担持した触媒は低い温度でも効率よく過
酸化水素を分解できることがわかる。また通水液を加熱
することによりさらに効率良く過酸化水素を分解できる
ことがわかる。
[Formula 2] (residence time) = 1n (1 / (1- (remaining ratio of hydrogen peroxide))) / k (remaining ratio of hydrogen peroxide) = (hydrogen peroxide concentration before passing through catalyst) / (catalyst Therefore, the higher the k, the shorter the residence time, that is, the more efficiently hydrogen peroxide can be decomposed. It can be seen from FIG. 15 that the catalyst supporting ruthenium on alumina can decompose hydrogen peroxide efficiently even at a low temperature. Further, it is understood that the hydrogen peroxide can be decomposed more efficiently by heating the water passing liquid.

【0028】以上説明してきたように、このような過酸
化水素分解装置を備えた原子力プラントであると、過酸
化水素分解装置の設置により復水浄化器の樹脂の洗浄に
使う復水貯蔵タンクの貯蔵水の過酸化水素濃度を十分小
さくできるので過酸化水素による樹脂の性能低下を防止
でき、また原子炉の定期検査時に貯めた原子炉ウェルの
原子炉水を抜くとき、原子炉水を直接復水貯蔵タンクに
持ち込むことができるため、原子炉の定期検査期間を短
縮することができる。
As described above, in a nuclear power plant equipped with such a hydrogen peroxide decomposing device, the condensate storage tank used for cleaning the resin of the condensate purifier is installed by installing the hydrogen peroxide decomposing device. Since the concentration of hydrogen peroxide in stored water can be made sufficiently small, deterioration of resin performance due to hydrogen peroxide can be prevented, and when draining the reactor water stored in the reactor well during the periodic inspection of the reactor, the reactor water is directly restored. Since it can be brought into the water storage tank, the periodic inspection period of the reactor can be shortened.

【0029】また過酸化水素分解装置で、PtとRuと
RdとPdの内少なくとも一つを担持したアルミナある
いはシリカを触媒として使用することにより効率良く過
酸化水素を分解できる。触媒充填塔の上流側に過酸化水
素濃度測定手段を設置しその測定結果を基に過酸化水素
分解装置を作動させることにより過酸化水素分解装置で
使用する触媒を無駄なく利用できる。触媒充填塔の下流
側に過酸化水素濃度測定手段を設置しその測定結果を基
に通水液下流か充填塔の上流に流すかを判断するという
操作を行うことにより、より確実に過酸化水素濃度を低
減できる。
In the hydrogen peroxide decomposing device, hydrogen peroxide can be decomposed efficiently by using alumina or silica carrying at least one of Pt, Ru, Rd and Pd as a catalyst. By installing a hydrogen peroxide concentration measuring means on the upstream side of the catalyst packed tower and activating the hydrogen peroxide decomposing apparatus based on the measurement result, the catalyst used in the hydrogen peroxide decomposing apparatus can be used without waste. The hydrogen peroxide concentration measuring means is installed on the downstream side of the catalyst packed tower, and based on the measurement result, it is judged whether to flow the water flowing liquid downstream or the packed tower upstream, so that the hydrogen peroxide can be more reliably discharged. The concentration can be reduced.

【0030】[0030]

【発明の効果】以上説明してきたように本発明によれ
ば、原子炉の定期検査あるいは原子炉内諸作業時間を短
縮することが可能で、かつ原子炉水を洗浄する樹脂の性
能が低下することのない原子力プラントを得ることがで
きる。
As described above, according to the present invention, it is possible to shorten the periodic inspection of the nuclear reactor or the various working hours inside the nuclear reactor, and the performance of the resin for cleaning the nuclear reactor water deteriorates. It is possible to obtain a nuclear power plant without a problem.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原子力プラントの原子炉水排出(循
環)系統の要部を示す系統線図である。
FIG. 1 is a system diagram showing a main part of a nuclear reactor water discharge (circulation) system of a nuclear power plant of the present invention.

【図2】従来の原子力プラントの原子炉水系統を示す系
統線図である。
FIG. 2 is a system diagram showing a reactor water system of a conventional nuclear power plant.

【図3】従来の原子力プラントの原子炉水排出(循環)
系統の要部を示す系統線図である。
[Fig. 3] Reactor water discharge (circulation) of a conventional nuclear power plant
It is a power system diagram which shows the principal part of a power system.

【図4】従来の原子炉ウェルの原子炉水を直接復水貯蔵
タンクに持ち込む時の系統線図である。
FIG. 4 is a system diagram when the reactor water of a conventional reactor well is directly brought into a condensate storage tank.

【図5】本発明の原子力プラントの他の実施例を示す原
子炉水排出(循環)系統の要部系統線図である。
FIG. 5 is a main part system diagram of a reactor water discharge (circulation) system showing another embodiment of the nuclear power plant of the present invention.

【図6】本発明の原子力プラントの他の実施例を示す原
子炉水排出(循環)系統の要部系統線図である。
FIG. 6 is a main part system diagram of a reactor water discharge (circulation) system showing another embodiment of the nuclear power plant of the present invention.

【図7】過酸化水素分解装置の一実施例を示すブロック
図である。
FIG. 7 is a block diagram showing an embodiment of a hydrogen peroxide decomposition apparatus.

【図8】過酸化水素分解装置の他の実施例を示すブロッ
ク図である。
FIG. 8 is a block diagram showing another embodiment of the hydrogen peroxide decomposition apparatus.

【図9】過酸化水素分解装置の他の実施例を示すブロッ
ク図である。
FIG. 9 is a block diagram showing another embodiment of the hydrogen peroxide decomposition apparatus.

【図10】過酸化水素分解装置の他の実施例を示すブロ
ック図である。
FIG. 10 is a block diagram showing another embodiment of the hydrogen peroxide decomposition apparatus.

【図11】過酸化水素分解装置の他の実施例を示すブロ
ック図である。
FIG. 11 is a block diagram showing another embodiment of the hydrogen peroxide decomposing apparatus.

【図12】過酸化水素分解装置の他の実施例を示すブロ
ック図である。
FIG. 12 is a block diagram showing another embodiment of the hydrogen peroxide decomposing apparatus.

【図13】過酸化水素分解装置の他の実施例を示すブロ
ック図である。
FIG. 13 is a block diagram showing another embodiment of the hydrogen peroxide decomposing apparatus.

【図14】過酸化水素分解割合の滞留時間依存性を示す
特性図である。
FIG. 14 is a characteristic diagram showing the residence time dependence of the hydrogen peroxide decomposition rate.

【図15】過酸化水素分解反応の反応速度の温度依存性
を示す特性図である。
FIG. 15 is a characteristic diagram showing temperature dependence of reaction rate of hydrogen peroxide decomposition reaction.

【符号の説明】[Explanation of symbols]

1…原子炉ウェル、2…復水貯蔵タンク、3…復水浄化
器、4…過酸化水素分解装置、5…炉心、6…圧力容
器、7…タービン、8…復水器、9…給水ポンプ、10
…熱交換器、11…サプレッションプール、12…放射
性廃棄物処理系、101…ポンプ、102…触媒充填
塔、103…加熱器、104…ステンレスメッシュ管、
105…撹拌装置、106…触媒充填容器、107,1
07a,107b…過酸化水素濃度測定手段、108…
分岐弁。
1 ... Reactor well, 2 ... Condensate storage tank, 3 ... Condensate purifier, 4 ... Hydrogen peroxide decomposition device, 5 ... Core, 6 ... Pressure vessel, 7 ... Turbine, 8 ... Condenser, 9 ... Water supply Pump, 10
... Heat exchanger, 11 ... Suppression pool, 12 ... Radioactive waste treatment system, 101 ... Pump, 102 ... Catalyst packed tower, 103 ... Heater, 104 ... Stainless mesh tube,
105 ... Stirrer, 106 ... Catalyst filling container, 107, 1
07a, 107b ... Hydrogen peroxide concentration measuring means, 108 ...
Branch valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝倉 大和 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yamato Asakura 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 核燃料を炉心装備した圧力容器と、原子
炉に設けられている原子炉ウェルと、復水を貯蔵する復
水貯蔵タンクとを備え、原子炉検査作業時に、前記原子
炉ウェル内に原子炉水が満たされ、所定の作業後その原
子炉水が前記復水貯蔵タンクに持ち込まれるように形成
されている原子力プラントの検査作業方法において、 前記復水貯蔵タンクに、タンク内水に含まれている過酸
化水素を分解する過酸化水素分解装置を設けるととも
に、前記原子炉ウェル内の原子炉水を復水貯蔵タンクに
持ち込むに際し、前記原子炉水を直接前記復水貯蔵タン
クに持ち込み、その後、前記過酸化水素分解装置にて復
水貯蔵タンク内の原子炉水を過酸化水素分解処理するよ
うにしたことを特徴とする原子力プラントの検査作業方
法。
1. A pressure vessel equipped with a nuclear fuel core, a reactor well provided in a reactor, and a condensate storage tank for storing condensate. In the inspection work method of the nuclear power plant, which is formed so that the reactor water is filled into the condensate storage tank after the predetermined work, the condensate storage tank, A hydrogen peroxide decomposing device for decomposing the contained hydrogen peroxide is provided, and when the reactor water in the reactor well is brought into the condensate storage tank, the reactor water is brought directly into the condensate storage tank. Then, a method for inspecting a nuclear power plant is characterized in that after that, the reactor water in the condensate storage tank is decomposed by hydrogen peroxide in the hydrogen peroxide decomposition device.
【請求項2】 核燃料を炉心装備した圧力容器と、原子
炉に設けられている原子炉ウェルと、復水を貯蔵する復
水貯蔵タンクとを備え、原子炉検査作業時に、前記原子
炉ウェル内に原子炉水が満たされ、所定の作業後その原
子炉水が前記復水貯蔵タンクに持ち込まれるように形成
されている原子力プラントの検査作業方法において、 前記復水貯蔵タンクの原子炉水排出系統に、過酸化水素
を分解する過酸化水素分解装置を設け、かつ前記原子炉
ウェル内の原子炉水を排出するに際し、前記原子炉水を
直接前記復水貯蔵タンクに持ち込み、復水貯蔵タンクの
原子炉水排出系統に設けられている過酸化水素分解装置
にて原子炉水を過酸化水素分解処理するようにしたこと
を特徴とする原子力プラントの検査作業方法。
2. A pressure vessel equipped with a nuclear fuel core, a reactor well provided in the reactor, and a condensate storage tank for storing condensate. In a method for inspecting a nuclear power plant, wherein the reactor water is filled in the reactor and the reactor water is brought into the condensate storage tank after a predetermined operation, the reactor water discharge system of the condensate storage tank. A hydrogen peroxide decomposition device for decomposing hydrogen peroxide, and when discharging the reactor water in the reactor well, bring the reactor water directly to the condensate storage tank, A method for inspecting a nuclear plant, characterized in that the hydrogen peroxide decomposition device provided in the reactor water discharge system decomposes the reactor water into hydrogen peroxide.
【請求項3】 核燃料を炉心装備した圧力容器と、原子
炉ウェルと、復水を貯蔵する復水貯蔵タンクと、復水を
浄化する復水浄化装置を備え、原子炉停止時に、前記原
子炉ウェル内に原子炉水が満たされ、所定の検査作業後
その原子炉水が前記復水貯蔵タンクに持ち込まれるよう
に形成されている原子力プラントにおいて、 前記復水貯蔵タンクに、過酸化水素分解装置を設置し、
復水貯蔵タンク内の原子炉水を過酸化水素分解するよう
にしたことを特徴とする原子力プラント。
3. A pressure vessel equipped with a nuclear fuel core, a reactor well, a condensate storage tank for storing condensate, and a condensate purifying device for purifying condensate. In a nuclear power plant in which the well is filled with reactor water and the reactor water is brought into the condensate storage tank after a predetermined inspection work, in the condensate storage tank, a hydrogen peroxide decomposition device is provided. Installed
A nuclear plant characterized in that the reactor water in a condensate storage tank is decomposed with hydrogen peroxide.
【請求項4】 核燃料を炉心装備した圧力容器と、原子
炉ウェルと、復水を貯蔵する復水貯蔵タンクと、復水を
浄化する復水浄化装置を備え、原子炉停止時に、前記原
子炉ウェル内に原子炉水が満たされ、所定の検査作業後
その原子炉水が前記復水貯蔵タンクに持ち込まれるよう
に形成されている原子力プラントにおいて、 前記復水貯蔵タンクと復水浄化器とを結んでいる通水路
に、過酸化水素分解装置を設置し、原子炉水の過酸化水
素分解処理を復水貯蔵タンクの後流側で行うように形成
したことを特徴とする原子力プラント。
4. A pressure vessel equipped with a nuclear fuel core, a reactor well, a condensate storage tank for storing condensate, and a condensate purification device for purifying the condensate. In a nuclear power plant in which the well is filled with reactor water and the reactor water is brought into the condensate storage tank after a predetermined inspection work, the condensate storage tank and the condensate purifier are provided. A nuclear plant characterized in that a hydrogen peroxide decomposing device is installed in the connected water passage, and the hydrogen peroxide decomposing process of the reactor water is performed on the downstream side of the condensate storage tank.
【請求項5】 核燃料を炉心装備した圧力容器と、原子
炉ウェルと、復水を貯蔵する復水貯蔵タンクと、復水を
浄化する復水浄化装置を備え、原子炉停止時に、前記原
子炉ウェル内に原子炉水が満たされ、所定の検査作業後
その原子炉水が前記復水貯蔵タンクに持ち込まれるよう
に形成されている原子力プラントにおいて、 前記復水貯蔵タンク部に過酸化水素分解装置を設置する
とともに、この過酸化水素分解装置の上流側を復水貯蔵
タンクに接続し、かつ過酸化水素分解装置の下流側を復
水浄化器あるいは復水浄化器と復水貯蔵タンクの両者に
接続するように形成したことを特徴とする原子力プラン
ト。
5. A reactor equipped with a pressure vessel equipped with a nuclear fuel core, a reactor well, a condensate storage tank for storing condensate, and a condensate purification device for purifying the condensate. In a nuclear power plant in which a well is filled with reactor water and the reactor water is brought into the condensate storage tank after a predetermined inspection work, a hydrogen peroxide decomposition device is provided in the condensate storage tank section. The upstream side of this hydrogen peroxide decomposer is connected to the condensate storage tank, and the downstream side of the hydrogen peroxide decomposer is connected to the condensate purifier or both the condensate purifier and the condensate storage tank. A nuclear power plant characterized by being formed so as to be connected.
【請求項6】 前記過酸化水素分解装置が、着脱自在で
かつ移動可能に形成されている請求項3,4または5記
載の原子力プラント。
6. The nuclear power plant according to claim 3, 4 or 5, wherein the hydrogen peroxide decomposition apparatus is formed so as to be removable and movable.
【請求項7】 前記過酸化水素分解装置が、過酸化水素
分解反応の金属触媒を担持した触媒を使用している請求
項3,4または5記載の原子力プラント。
7. The nuclear power plant according to claim 3, 4 or 5, wherein the hydrogen peroxide decomposition apparatus uses a catalyst carrying a metal catalyst for hydrogen peroxide decomposition reaction.
【請求項8】 前記過酸化水素分解装置が、PtとRu
とRdとPdの内少なくとも1つをアルミナあるいはシ
リカに担持した触媒を使用する請求項3,4または5記
載の原子力プラント。
8. The hydrogen peroxide decomposer comprises Pt and Ru.
6. The nuclear power plant according to claim 3, 4 or 5, wherein a catalyst in which at least one of Rd and Pd is supported on alumina or silica is used.
【請求項9】 核燃料を炉心装備した圧力容器と、原子
炉ウェルと、復水を貯蔵する復水貯蔵タンクと、復水を
浄化する復水浄化装置を備え、原子炉停止時に、前記原
子炉ウェル内に原子炉水が満たされ、所定の検査作業後
その原子炉水が前記復水貯蔵タンクに持ち込まれるよう
に形成されている原子力プラントにおいて、 前記原子炉ウェルと復水貯蔵タンクとを接続する配管
に、ポンプの上流側を接続し、前記ポンプ下流側と過酸
化水素分解反応の触媒を充填した触媒充填塔の上流側を
接続し、前記触媒充填塔の下流側と配管の上流側を接続
し、前記配管の下流側を前記復水貯蔵タンクに接続した
過酸化水素分解装置を備えていることを特徴とする原子
力プラント。
9. A reactor equipped with a pressure vessel equipped with a nuclear fuel core, a reactor well, a condensate storage tank for storing condensate, and a condensate purifying device for purifying condensate. In a nuclear power plant in which the well is filled with reactor water and the reactor water is brought into the condensate storage tank after a predetermined inspection work, the reactor well and the condensate storage tank are connected. To the pipe, the upstream side of the pump is connected, the pump downstream side and the upstream side of the catalyst packed tower filled with a catalyst for hydrogen peroxide decomposition reaction are connected, the downstream side of the catalyst packed tower and the upstream side of the pipe. A nuclear plant comprising a hydrogen peroxide decomposing device connected to the condensate storage tank, the downstream side of which is connected to the condensate storage tank.
【請求項10】 核燃料を炉心装備した圧力容器と、原
子炉ウェルと、復水を貯蔵する復水貯蔵タンクと、復水
を浄化する復水浄化装置を備え、原子炉停止時に、前記
原子炉ウェル内に原子炉水が満たされ、所定の検査作業
後その原子炉水が前記復水貯蔵タンクに持ち込まれるよ
うに形成されている原子力プラントにおいて、 前記原子炉ウェルと復水貯蔵タンクとを接続する配管
に、ポンプの上流側を接続し、前記ポンプ下流側と過酸
化水素分解反応の触媒を充填した触媒充填塔の上流側を
接続し、前記触媒充填塔の下流側と配管の上流側を接続
し、前記配管の下流側を前記復水浄化器に接続した過酸
化水素分解装置を備えていることを特徴とする原子力プ
ラント。
10. A reactor comprising a pressure vessel equipped with a nuclear fuel core, a reactor well, a condensate storage tank for storing condensate, and a condensate purifying device for purifying the condensate. In a nuclear power plant in which the well is filled with reactor water and the reactor water is brought into the condensate storage tank after a predetermined inspection work, the reactor well and the condensate storage tank are connected. To the pipe, the upstream side of the pump is connected, the pump downstream side and the upstream side of the catalyst packed tower filled with a catalyst for hydrogen peroxide decomposition reaction are connected, the downstream side of the catalyst packed tower and the upstream side of the pipe. A nuclear power plant comprising a hydrogen peroxide decomposing device connected to the condensate purifier, the downstream side of which is connected to the condensate purifier.
【請求項11】 核燃料を炉心装備した圧力容器と、原
子炉ウェルと、復水を貯蔵する復水貯蔵タンクと、復水
を浄化する復水浄化装置を備え、原子炉停止時に、前記
原子炉ウェル内に原子炉水が満たされ、所定の検査作業
後その原子炉水が前記復水貯蔵タンクに持ち込まれるよ
うに形成されている原子力プラントにおいて、 前記復水貯蔵タンクの貯蔵水液面下に排水ポンプの上流
側を接続し、前記ポンプ下流側と過酸化水素分解反応の
触媒を充填した触媒充填塔の上流側を接続し、前記触媒
充填塔の下流側と配管の上流側を接続し、前記配管の下
流側を復水浄化器あるいは前記復水浄化器と前記復水貯
蔵タンクに接続して形成された過酸化水素分解装置を備
えていることを特徴とする原子力プラント。
11. A reactor equipped with a pressure vessel equipped with a nuclear fuel core, a reactor well, a condensate storage tank for storing condensate, and a condensate purification device for purifying the condensate. In a nuclear power plant in which the well is filled with reactor water and the reactor water is carried into the condensate storage tank after a predetermined inspection work, below the stored water level of the condensate storage tank. The upstream side of the drainage pump is connected, the pump downstream side and the upstream side of the catalyst packed tower filled with the catalyst for the hydrogen peroxide decomposition reaction are connected, and the downstream side of the catalyst packed tower and the upstream side of the pipe are connected, A nuclear power plant comprising a condensate purifier or a hydrogen peroxide decomposing device formed by connecting the downstream side of the pipe to the condensate purifier and the condensate storage tank.
【請求項12】 前記ポンプと前記触媒充填塔の接続位
置を逆にしてなる請求項9,10または11記載の原子
力プラント。
12. The nuclear power plant according to claim 9, 10 or 11, wherein the connection positions of the pump and the catalyst packed tower are reversed.
【請求項13】 前記復水貯蔵タンクあるいは前記触媒
塔の上流側の配管に過酸化水素濃度を測定する手段を備
え、前記過酸化水素測定手段の測定手段に基づき前記ポ
ンプの動作を調整するように形成した請求項9,10,
11または12記載の原子力プラント。
13. A means for measuring hydrogen peroxide concentration is provided in the condensate storage tank or a pipe on the upstream side of the catalyst tower, and the operation of the pump is adjusted based on the measuring means of the hydrogen peroxide measuring means. Claims 9, 10 formed in
11. The nuclear power plant according to 11 or 12.
【請求項14】 前記触媒充填塔の下流側に過酸化水素
濃度を測定する手段を備え、前記過酸化水素測定手段の
下流側の配管に通水液を分岐する分岐弁を備え、前記分
岐弁の下流側の一方を触媒充填塔の上流側を配管で接続
し、前記過酸化水素測定手段の測定手段に基ずき前記分
岐弁で通水液の行き先を調整するように形成した請求項
9,10,11,12または13記載の原子力プラン
ト。
14. A means for measuring a hydrogen peroxide concentration is provided on the downstream side of the catalyst packed tower, and a branch valve for branching the water flow solution is provided on a pipe on the downstream side of the hydrogen peroxide measuring means. 10. One of the downstream sides of the above is connected by a pipe to the upstream side of the catalyst packed column, and the branch valve is formed based on the measuring means of the hydrogen peroxide measuring means so as to adjust the destination of the water passing liquid. , 10, 11, 12 or 13 nuclear power plant.
【請求項15】 前記触媒充填塔の上流側に通水液を加
熱する加熱器を備えるか、あるいは前記触媒充填塔に加
熱機能を備えている請求項9,10,11,12,13
または14記載の原子力プラント。
15. The catalyst packed tower is provided with a heater for heating the water-containing liquid on the upstream side, or the catalyst packed tower is provided with a heating function.
Or the nuclear power plant according to 14.
【請求項16】 前記過酸化水素分解装置が、過酸化水
素分解反応の金属触媒を担持した触媒を使用してなる請
求項9,10,11,12,13,14または15記載
の原子力プラント。
16. The nuclear power plant according to claim 9, 10, 11, 11, 12, 13, 14 or 15, wherein said hydrogen peroxide decomposing device uses a catalyst carrying a metal catalyst for hydrogen peroxide decomposing reaction.
【請求項17】 前記過酸化水素分解装置が、PtとR
uとRdとPdの内少なくとも1つをアルミナあるいは
シリカに担持した触媒を使用してなる請求項9,10,
11,12,13,14または15記載の原子力プラン
ト。
17. The hydrogen peroxide decomposer comprises Pt and R.
11. A catalyst in which at least one of u, Rd, and Pd is supported on alumina or silica is used.
The nuclear power plant according to 11, 12, 13, 14 or 15.
【請求項18】 配管の上流側を復水貯蔵タンクの貯蔵
水液面下,若しくは原子炉ウェルと復水貯蔵タンクとを
接続する配管に接続し、前記配管の下流側にポンプの上
流側を接続し、前記ポンプ下流側と過酸化水素分解反応
の触媒を充填した触媒充填塔の上流側を接続し、前記触
媒充填塔の下流側と配管の上流側を接続し、前記配管の
下流側を復水貯蔵タンクに接続するようにしたことを特
徴とする過酸化水素分解装置。
18. The upstream side of the pipe is connected below the liquid level of the condensate storage tank or to the pipe connecting the reactor well and the condensate storage tank, and the upstream side of the pump is connected to the downstream side of the pipe. Connected, the pump downstream side and the upstream side of the catalyst packed tower filled with a catalyst for hydrogen peroxide decomposition reaction is connected, the downstream side of the catalyst packed tower and the upstream side of the pipe, the downstream side of the pipe A hydrogen peroxide decomposition apparatus characterized in that it is connected to a condensate storage tank.
【請求項19】 前記復水貯蔵タンクあるいは前記触媒
塔の上流側の配管に過酸化水素濃度を測定する手段を備
え、前記過酸化水素測定手段の測定結果に基づき前記ポ
ンプの動作を調整するようにしてなる請求項18記載の
過酸化水素分解装置。
19. A means for measuring a hydrogen peroxide concentration is provided in a pipe on the upstream side of the condensate storage tank or the catalyst tower, and the operation of the pump is adjusted based on the measurement result of the hydrogen peroxide measuring means. The apparatus for decomposing hydrogen peroxide according to claim 18, wherein
【請求項20】 前記触媒塔の下流側に過酸化水素濃度
を測定する手段を備えるとともに、前記過酸化水素測定
手段の下流側の配管に通水液を分岐する分岐弁を備え、
前記分岐弁の下流側の一方を触媒充填塔の上流側を配管
で接続し、前記過酸化水素測定手段の測定結果に基づき
前記ポンプの動作を調整するようにしてなる請求項18
記載の過酸化水素分解装置。
20. A means for measuring the hydrogen peroxide concentration is provided on the downstream side of the catalyst tower, and a branch valve for branching the water flow solution is provided on a pipe on the downstream side of the hydrogen peroxide measuring means,
20. One of the downstream side of the branch valve is connected to the upstream side of the catalyst packed column by a pipe, and the operation of the pump is adjusted based on the measurement result of the hydrogen peroxide measuring means.
The hydrogen peroxide decomposition apparatus described.
【請求項21】 前記触媒充填塔の上流側に通水液を加
熱する加熱器を備えるか、あるいは触媒充填塔に加熱機
能を備えてなる請求項18記載の過酸化水素分解装置。
21. The apparatus for decomposing hydrogen peroxide according to claim 18, wherein a heater for heating the water flow liquid is provided on the upstream side of the catalyst packed tower, or the catalyst packed tower is provided with a heating function.
JP08064174A 1996-03-21 1996-03-21 Nuclear power plant, hydrogen peroxide decomposer, and inspection method of nuclear power plant Expired - Fee Related JP3143058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08064174A JP3143058B2 (en) 1996-03-21 1996-03-21 Nuclear power plant, hydrogen peroxide decomposer, and inspection method of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08064174A JP3143058B2 (en) 1996-03-21 1996-03-21 Nuclear power plant, hydrogen peroxide decomposer, and inspection method of nuclear power plant

Publications (2)

Publication Number Publication Date
JPH09257992A true JPH09257992A (en) 1997-10-03
JP3143058B2 JP3143058B2 (en) 2001-03-07

Family

ID=13250445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08064174A Expired - Fee Related JP3143058B2 (en) 1996-03-21 1996-03-21 Nuclear power plant, hydrogen peroxide decomposer, and inspection method of nuclear power plant

Country Status (1)

Country Link
JP (1) JP3143058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005038415A1 (en) * 2005-08-12 2007-02-15 Areva Np Gmbh Process for cleaning waters of nuclear installations

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005038415A1 (en) * 2005-08-12 2007-02-15 Areva Np Gmbh Process for cleaning waters of nuclear installations
DE102005038415B4 (en) * 2005-08-12 2007-05-03 Areva Np Gmbh Process for cleaning waters of nuclear installations
US7553422B2 (en) 2005-08-12 2009-06-30 Areva Np Gmbh Method and device for purifying water of nuclear installations

Also Published As

Publication number Publication date
JP3143058B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
EP1054413B1 (en) Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
KR940000359B1 (en) Process for the cleaning flow restricted areas of secondary side of a steam generator
US20210225544A1 (en) Method of decontaminating a metal surface in a nuclear power plant
JP3977963B2 (en) Chemical decontamination method
TW445459B (en) Method and device for chemical decontaminating for structural part of radiation handling facility
JP3143058B2 (en) Nuclear power plant, hydrogen peroxide decomposer, and inspection method of nuclear power plant
JP2001147288A (en) Method and deice for lowering dissolved oxygen concentration in nuclear power plant
JPH09276862A (en) Condensed water desalting apparatus
JP3942409B2 (en) Water treatment equipment for boiling water nuclear power plant
KR102085283B1 (en) System decontamination facilities
JP4183714B2 (en) In-furnace chemical decontamination apparatus and decontamination method thereof
JP2010054499A (en) Method to protect bwr reactor from corrosion during start-up
JPH10123289A (en) Washing method for terminal pipe of supply water
JP2000002787A (en) Hydrogen peroxide concentration reducing device for nuclear power plant
JP7475171B2 (en) Chemical decontamination method and chemical decontamination apparatus
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JP7299865B2 (en) Chemical decontamination method
Wille et al. Chemical decontamination with the CORD UV process: principle and field experience
JP2006038684A (en) Reactor water recovery device
JP2000329895A (en) Operation method of nuclear reactor plant and waste liquid processing method of nuclear reactor plant
JPH07181296A (en) Method and device for treating liquid waste in nuclear power generation facilities
JP2003033653A (en) Organic acid decomposing catalyst and chemical decontamination method
JPH08313692A (en) Recovery method and device for ion exchange resin in demineralizing device
JP2002162497A (en) Method and apparatus for treating radioactive waste liquid
KR20240055814A (en) Resin production method, ultrapure water production method, and ultrapure water production device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees