JPH09257894A - Superconducting quantum interference device - Google Patents
Superconducting quantum interference deviceInfo
- Publication number
- JPH09257894A JPH09257894A JP6271096A JP6271096A JPH09257894A JP H09257894 A JPH09257894 A JP H09257894A JP 6271096 A JP6271096 A JP 6271096A JP 6271096 A JP6271096 A JP 6271096A JP H09257894 A JPH09257894 A JP H09257894A
- Authority
- JP
- Japan
- Prior art keywords
- interference device
- quantum interference
- superconducting quantum
- output voltage
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は屋外および電磁波
の変動する環境下で使用する超伝導量子干渉素子に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting quantum interference device used outdoors and under an environment where electromagnetic waves fluctuate.
【0002】[0002]
【従来の技術】図4は従来の超伝導量子干渉素子を動作
させる構成を示すものであり、1は直流超伝導量子干渉
素子、2はDCバイアス電源、3はバイアスケーブル、
4はセンサ出力ケーブル、5は冷却用デュワ、6は磁界
検出用駆動回路、7は磁力計出力、8は超伝導量子干渉
素子1に入射する外部磁界である。また、図4内の破線
枠は9が動作時低温領域、10が動作時室温領域を示
す。2. Description of the Related Art FIG. 4 shows a structure for operating a conventional superconducting quantum interference device, 1 is a DC superconducting quantum interference device, 2 is a DC bias power supply, 3 is a bias cable,
4 is a sensor output cable, 5 is a dewar for cooling, 6 is a drive circuit for magnetic field detection, 7 is an output of a magnetometer, and 8 is an external magnetic field incident on the superconducting quantum interference device 1. Further, in the broken line frame in FIG. 4, 9 indicates a low temperature region during operation and 10 indicates a room temperature region during operation.
【0003】DCバイアス電源2からバイアスケーブル
3を通して直流超伝導量子干渉素子1に適切なDCバイ
アス電流Ibを供給することにより、センサ出力ケーブ
ル4に電圧が発生する。この状態で超伝導量子干渉素子
1は外部磁界8に対して図51に示す電圧をセンサ出力
ケーブル4に出力する。以下に図5の特性をΦ−V特性
と称する。センサ出力ケーブル4に発生する電圧は周知
の技術である例えばフラックスロックドループ等の磁界
検出用駆動回路6により磁界として検出され、磁力計出
力7に出力される。A voltage is generated in the sensor output cable 4 by supplying an appropriate DC bias current Ib from the DC bias power source 2 to the DC superconducting quantum interference device 1 through the bias cable 3. In this state, the superconducting quantum interference device 1 outputs the voltage shown in FIG. 51 to the sensor output cable 4 with respect to the external magnetic field 8. Hereinafter, the characteristic of FIG. 5 will be referred to as a Φ-V characteristic. The voltage generated in the sensor output cable 4 is detected as a magnetic field by a magnetic field detection drive circuit 6 such as a flux locked loop, which is a known technique, and is output to the magnetometer output 7.
【0004】[0004]
【発明が解決しようとする課題】直流超伝導量子干渉素
子1を磁気シールドの外で使用すると、放送波等の電磁
波がバイアスケーブル3に混入する。混入した電磁波は
電流の形で直流超伝導量子干渉素子1に印加される。そ
の結果、図5に示す正常なΦ−V特性は縦方向に圧縮さ
れ、かつ山谷の位置が横方向にずれ、図6に示すような
Φ−V特性になる。磁界検出用駆動回路6は図5のΦ−
V特性を想定して磁界を検出しているため、想定と異な
る図6のΦ−V特性に対しては、(1)縦方向の圧縮は
検出磁界のS/Nの悪化、(2)横方向のずれは検出磁
界の真値からのずれとなる。また、これを避けるため
に、DCバイアス電源2を超伝導量子干渉素子1の出来
るだけ近くに設置し、バイアスケーブル3を短くする方
法が考えられるが、動作時低温領域9と動作時室温領域
10の間には、熱を遮断するための冷却用デュワ5の壁
面があり、ある程度の間隔が必ずあいてしまい、また、
DCバイアス電源2は低温では動作しないため冷却用デ
ュワ5内部に設置する事ができず、その結果、バイアス
ケーブル3を十分短くすることができない。従って、従
来の直流超伝導量子干渉素子1は磁気シールドの外で使
用すると、その感度が著しく悪化し、かつ正確な磁界を
示さないという問題点があった。When the DC superconducting quantum interference device 1 is used outside the magnetic shield, electromagnetic waves such as broadcast waves enter the bias cable 3. The mixed electromagnetic waves are applied to the DC superconducting quantum interference device 1 in the form of electric current. As a result, the normal Φ-V characteristic shown in FIG. 5 is compressed in the vertical direction, and the peaks and valleys are displaced in the horizontal direction, resulting in the Φ-V characteristic as shown in FIG. The magnetic field detection drive circuit 6 is Φ− in FIG.
Since the magnetic field is detected assuming the V characteristic, for the Φ-V characteristic of FIG. 6 which is different from the assumption, (1) compression in the vertical direction deteriorates the S / N of the detected magnetic field, and (2) the lateral direction. The deviation in the direction is the deviation from the true value of the detected magnetic field. In order to avoid this, a method of installing the DC bias power source 2 as close as possible to the superconducting quantum interference device 1 and shortening the bias cable 3 can be considered. However, the operating low temperature region 9 and the operating room temperature region 10 are possible. Between them, there is a wall surface of the cooling dewar 5 for shutting off heat, and there is always a certain amount of space between them.
Since the DC bias power source 2 does not operate at a low temperature, it cannot be installed inside the cooling dewar 5, and as a result, the bias cable 3 cannot be made sufficiently short. Therefore, when the conventional DC superconducting quantum interference device 1 is used outside the magnetic shield, there is a problem that its sensitivity is significantly deteriorated and an accurate magnetic field is not shown.
【0005】この発明は、このような問題点を解決する
ためになされたものであり、電磁波環境の変化する環境
下でも正確でかつ感度が悪化しない超伝導量子干渉素子
を得ることを目的とする。The present invention has been made in order to solve such a problem, and an object thereof is to obtain a superconducting quantum interference device which is accurate and does not deteriorate in sensitivity even in an environment where the electromagnetic wave environment changes. .
【0006】[0006]
【課題を解決するための手段】第1の発明の超伝導量子
干渉素子は、一定の臨界電流値を示すジョセフソン接合
と、磁界検出用の直流超伝導量子干渉素子と、上記ジョ
セフソン接合と直流超伝導量子干渉素子の直列回路に並
列に接続された電圧制御用の抵抗器とを備えたものであ
る。A superconducting quantum interference device of the first invention comprises a Josephson junction showing a constant critical current value, a DC superconducting quantum interference device for magnetic field detection, and the Josephson junction. And a resistor for voltage control connected in parallel to a series circuit of a DC superconducting quantum interference device.
【0007】第2の発明は第1の発明の超伝導量子干渉
素子において、ジョセフソン接合の出力電圧を直流超伝
導量子干渉素子の出力電圧よりも大きく設定したもので
ある。A second aspect of the present invention is the superconducting quantum interference device of the first aspect, in which the output voltage of the Josephson junction is set higher than the output voltage of the DC superconducting quantum interference device.
【0008】[0008]
実施の形態1.図1はこの発明による超伝導量子干渉素
子の実施の形態1を示すものである。なお、図1中で1
は上記従来装置と全く同じものである。また、11はジ
ョセフソン接合、12は抵抗器、13は構成全体を含め
た超伝導量子干渉素子である。また、ジョセフソン接合
11の出力電圧は直流超伝導量子干渉素子1の出力電圧
よりも十分大きく設定しかつ、ジョセフソン接合11の
臨界電流は直流超伝導量子干渉素子1の駆動に必要なバ
イアス電流Ibと同一に設定する。Embodiment 1. FIG. 1 shows a first embodiment of a superconducting quantum interference device according to the present invention. 1 in FIG.
Is exactly the same as the above conventional device. Further, 11 is a Josephson junction, 12 is a resistor, and 13 is a superconducting quantum interference device including the entire structure. The output voltage of the Josephson junction 11 is set sufficiently higher than the output voltage of the DC superconducting quantum interference device 1, and the critical current of the Josephson junction 11 is the bias current required to drive the DC superconducting quantum interference device 1. Set the same as Ib.
【0009】図2はジョセフソン接合11の両端にかか
る電圧Vjと、そのときにジョセフソン接合11に流れ
る電流Ijの関係の模式図である。図2によると、ジョ
セフソン接合11は電流Ij=Icにおいて、電圧Vj
が0からΔVまで変化してもほとんど電流変化を起こさ
ない。ただし、ΔVは接合を特徴付ける定数である。FIG. 2 is a schematic diagram showing the relationship between the voltage Vj applied to both ends of the Josephson junction 11 and the current Ij flowing through the Josephson junction 11 at that time. According to FIG. 2, the Josephson junction 11 has a voltage Vj at a current Ij = Ic.
Changes from 0 to ΔV, almost no current change occurs. However, ΔV is a constant characterizing the junction.
【0010】抵抗器12の両端にΔV/2程度の電圧を
印加する。ジョセフソン接合11の出力電圧は、直流超
伝導量子干渉素子1の出力電圧に比べて十分大きく設定
しており、従って、ジョセフソン接合11の両端には、
ほぼ、ΔV/2の電圧が印加される。この際、ジョセフ
ソン接合11には、臨界電流Icが流れ、従って、直流
超伝導量子干渉素子1には駆動に適正なバイアス電流が
流れるので、図5に示すΦ−V特性が得られる。図3に
超伝導量子干渉素子13を駆動させる構成を示す。な
お、図3中で、2から10は上記従来装置と同一のもの
である。DCバイアス電源2より直流超伝導量子干渉素
子13にΔV/2の電圧を印加する。超伝導量子干渉素
子13は上記の駆動条件を満たすので、図5のΦ−V特
性を示す。従って、従来の技術どおり磁界検出用駆動回
路6により磁力計出力7を出力する。A voltage of about ΔV / 2 is applied across the resistor 12. The output voltage of the Josephson junction 11 is set to be sufficiently higher than the output voltage of the DC superconducting quantum interference device 1. Therefore, at both ends of the Josephson junction 11,
A voltage of approximately ΔV / 2 is applied. At this time, the critical current Ic flows through the Josephson junction 11, and accordingly, the bias current appropriate for driving flows through the DC superconducting quantum interference device 1, so that the Φ-V characteristic shown in FIG. 5 is obtained. FIG. 3 shows a configuration for driving the superconducting quantum interference device 13. In FIG. 3, 2 to 10 are the same as those of the conventional device. A voltage of ΔV / 2 is applied to the DC superconducting quantum interference device 13 from the DC bias power supply 2. Since the superconducting quantum interference device 13 satisfies the above driving conditions, it exhibits the Φ-V characteristic of FIG. Therefore, the magnetic field detection drive circuit 6 outputs the magnetometer output 7 as in the prior art.
【0011】次に電磁波による外乱が入った場合を考え
る。磁界検出中にバイアスケーブル3に電磁波が印加さ
れるとする。電磁波は電圧となり、バイアスケーブル3
を経由して、超伝導量子干渉素子13に印加される。こ
の際、電流の振幅が±ΔV/2の範囲内であれば、図2
に示すジョセフソン接合11の性質によりジョセフソン
接合11に流れる電流は変化せず、従って直流超伝導量
子干渉素子1に流れる電流は変化しない。従って、図5
に示すΦ−V特性が維持できるので、検出磁界に精度お
よび感度の劣化は起こらない。Next, consider the case where a disturbance due to electromagnetic waves is introduced. It is assumed that electromagnetic waves are applied to the bias cable 3 during magnetic field detection. Electromagnetic waves become voltage, and the bias cable 3
Is applied to the superconducting quantum interference device 13 via. At this time, if the amplitude of the current is within the range of ± ΔV / 2,
Due to the property of the Josephson junction 11 shown in (4), the current flowing in the Josephson junction 11 does not change, and therefore the current flowing in the DC superconducting quantum interference device 1 does not change. Therefore, FIG.
Since the .PHI.-V characteristic shown in (3) can be maintained, the detection magnetic field does not deteriorate in accuracy and sensitivity.
【0012】以上のようにこの発明の超伝導量子干渉素
子は、直流超伝導量子干渉素子と上記直流超伝導量子干
渉素子の出力電圧よりも十分大きな出力電圧を持ちかつ
上記直流超伝導量子干渉素子の最適駆動電流と同じ臨界
電流値を持つジョセフソン接合を直列に接続しかつ、上
記直列回路に並列に抵抗器を接続し、抵抗器の両端の電
圧を制御することで、上記ジョセフソン接合に流れる電
流を一定にし、直流超伝導量子干渉素子の適正なバイア
ス電流が流れるようにして、バイアスケーブルに混入す
る電磁波による電圧が直流超伝導量子干渉素子のバイア
ス電流ずらすことを抑制し、磁気シールドの外でも高感
度の磁界検出ができるようにしたものである。As described above, the superconducting quantum interference device of the present invention has a DC superconducting quantum interference device and an output voltage sufficiently larger than the output voltages of the DC superconducting quantum interference device and the DC superconducting quantum interference device. By connecting a Josephson junction having the same critical current value as the optimum drive current of in series and connecting a resistor in parallel to the series circuit and controlling the voltage across the resistor, By keeping the flowing current constant and allowing an appropriate bias current of the DC superconducting quantum interference device to flow, it is possible to prevent the voltage due to the electromagnetic waves mixed in the bias cable from shifting the bias current of the DC superconducting quantum interference device, The magnetic field can be detected with high sensitivity even outside.
【0013】[0013]
【発明の効果】この発明によれば、劣悪な電磁波環境で
も感度劣化が無く、高精度な磁界検出が可能となる。According to the present invention, it is possible to detect a magnetic field with high accuracy without sensitivity deterioration even in a bad electromagnetic environment.
【図1】 この発明の実施の形態1の構成を示す図であ
る。FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.
【図2】 ジョセフソン接合の電流電圧特性を示す図で
ある。FIG. 2 is a diagram showing a current-voltage characteristic of a Josephson junction.
【図3】 この発明の実施の形態1を駆動させるための
構成を示す図である。FIG. 3 is a diagram showing a configuration for driving Embodiment 1 of the present invention.
【図4】 従来の超伝導量子干渉素子を駆動させるため
の構成を示す図である。FIG. 4 is a diagram showing a configuration for driving a conventional superconducting quantum interference device.
【図5】 正常な状態のΦ−V特性を示す図である。FIG. 5 is a diagram showing a Φ-V characteristic in a normal state.
【図6】 電磁波の影響を受けたΦ−V特性を示す図で
ある。FIG. 6 is a diagram showing a Φ-V characteristic affected by an electromagnetic wave.
1 直流超伝導量子干渉素子、2 DCバイアス電源、
3 バイアスケーブル、4 センサ出力ケーブル、5
冷却用デュワ、6 磁界検出用駆動回路、7検出磁界、
8 外部磁界、9 動作時低温領域、10 動作時室温
領域、11ジョセフソン接合、12 抵抗器、13 超
伝導量子干渉素子。1 DC superconducting quantum interference device, 2 DC bias power supply,
3 Bias cable, 4 Sensor output cable, 5
Dewar for cooling, 6 magnetic field detection drive circuit, 7 detection magnetic field,
8 external magnetic field, 9 low temperature region during operation, 10 room temperature region during operation, 11 Josephson junction, 12 resistor, 13 superconducting quantum interference device.
Claims (2)
伝導量子干渉素子において、一定の臨界電流値を示すジ
ョセフソン接合と、磁界検出用の直流超伝導量子干渉素
子と、上記ジョセフソン接合と直流超伝導量子干渉素子
の直列回路に並列に接続された電圧制御用の抵抗器とを
備えたことを特徴とする超伝導量子干渉素子。1. A superconducting quantum interference device for applying a DC bias current, comprising: a Josephson junction showing a constant critical current value; a DC superconducting quantum interference device for magnetic field detection; and the Josephson junction. A superconducting quantum interference device, comprising: a voltage control resistor connected in parallel to a series circuit of a DC superconducting quantum interference device.
導量子干渉素子の出力電圧よりも大きく設定してあるこ
とを特徴とする請求項1記載の超伝導量子干渉素子。2. The superconducting quantum interference device according to claim 1, wherein the output voltage of the Josephson junction is set higher than the output voltage of the direct current superconducting quantum interference device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6271096A JPH09257894A (en) | 1996-03-19 | 1996-03-19 | Superconducting quantum interference device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6271096A JPH09257894A (en) | 1996-03-19 | 1996-03-19 | Superconducting quantum interference device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09257894A true JPH09257894A (en) | 1997-10-03 |
Family
ID=13208160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6271096A Pending JPH09257894A (en) | 1996-03-19 | 1996-03-19 | Superconducting quantum interference device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09257894A (en) |
-
1996
- 1996-03-19 JP JP6271096A patent/JPH09257894A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100397896B1 (en) | Magnetic field stabilization method, magnetic field generating apparatus and magnetic resonance imaging apparatus | |
Oomen et al. | HTS flux pump for cryogen-free HTS magnets | |
CN108474811A (en) | Method and apparatus for sensing electric current | |
Dorozhkin et al. | Photocurrent and photovoltage oscillations in the two-dimensional electron system: Enhancement and suppression of built-in electric fields | |
EP0205120B1 (en) | Superconducting current detecting circuit employing DC flux parametron circuit | |
US20010032990A1 (en) | Semiconductor device for load drive circuit | |
US20090212891A1 (en) | Coil energization apparatus and method of energizing a superconductive coil | |
JPH10282196A (en) | Superconducting quantum interference element and nondestructive inspection equipment employing it | |
US5406201A (en) | Magnetic field detecting circuit having a relaxation oscillator SQUID | |
JPH09257894A (en) | Superconducting quantum interference device | |
US4315215A (en) | Plural frequency type superconducting quantum interference fluxmeter | |
US6323645B1 (en) | Superconducting quantum interference device | |
US7388371B2 (en) | Method for controlling characteristics of double relaxation oscillation SQUID with reference junction | |
JPH09257893A (en) | Superconducting quantum interference device | |
Do Chung et al. | Characteristics of a persistent current compensator for superconducting NMR magnets using linear type magnetic flux pump | |
JPH08136356A (en) | Device and method for detecting temperature and adjusting system of temperature of semiconductor using the method | |
Reintsema et al. | Thermal transfer measurements at microwatt power levels | |
JPH0237730B2 (en) | ||
JP3206202B2 (en) | SQUID magnetic flux measuring device | |
Koch et al. | Investigation of 1/f noise in tunnel junction DC SQUIDS | |
JPH06118113A (en) | Abnormality detector of thermomodule | |
JPH0894727A (en) | Superconductive magnetic field measuring instrument | |
US6414865B1 (en) | AC to DC converting apparatus | |
Jackel et al. | Current-phase relations and noise in rf biased squids | |
JP2001141799A (en) | Squid magnetic field detection device |