JPH09257856A - Power supply device and method for detecting deterioration - Google Patents

Power supply device and method for detecting deterioration

Info

Publication number
JPH09257856A
JPH09257856A JP8094709A JP9470996A JPH09257856A JP H09257856 A JPH09257856 A JP H09257856A JP 8094709 A JP8094709 A JP 8094709A JP 9470996 A JP9470996 A JP 9470996A JP H09257856 A JPH09257856 A JP H09257856A
Authority
JP
Japan
Prior art keywords
capacitor
capacitor cell
deterioration
cell
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8094709A
Other languages
Japanese (ja)
Other versions
JP3611397B2 (en
Inventor
Satoshi Hiyama
智 樋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP09470996A priority Critical patent/JP3611397B2/en
Publication of JPH09257856A publication Critical patent/JPH09257856A/en
Application granted granted Critical
Publication of JP3611397B2 publication Critical patent/JP3611397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device and a method for detecting deterioration capable of accurately and readily detecting the deterioration by directly measuring a capacitance value of a capacitor cell. SOLUTION: A power supply device 1 comprises a capacitance management ECU 21, a capacitor unit 24 and a DC-DC converter 11. The capacitance management ECU 21 comprises a CPU 31, a meter 37 and a multiplexer 39. The CPU 31 switches the multiplexer 39 so that both of terminals of the first(No.1) capacitor cell 27 are connected to both of terminals of the meter 37 and switches a by-pass switch 27b of the capacitor cell 27 to a by-pass side. The meter 37 is activated and an AC voltage V is supplied to an electric double layer capacitor 27a in the capacitor cell 27, then a charging current at that time is measured. A capacitance value of the capacitor cell 27 is calculated from the measured current and voltage values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電源装置および劣
化検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device and a deterioration detecting method.

【0002】[0002]

【従来の技術】従来、電気二重層コンデンサからなる複
数のコンデンサセルを直並列に組み合わせ、コンデンサ
セルに蓄えられたエネルギーを電力として外部に供給す
る電源装置が知られている。
2. Description of the Related Art Conventionally, there is known a power supply device in which a plurality of capacitor cells each composed of an electric double layer capacitor are combined in series and in parallel, and the energy stored in the capacitor cells is supplied to the outside as electric power.

【0003】この種の電源装置として、特開平7−99
723号公報には、各コンデンサセルCの端子間にツェ
ナーダイオードD1と発光ダイオードD2とを直列に接
続し、発光ダイオードD2の光度によりコンデンサセル
単位毎に故障を検出することが示されている。さらに、
満充電時の電圧より△Vだけ低い電圧を設定し、放電を
開始して△Vだけ低い電圧に達するまでの時間tを測定
することによりコンデンサセルの異常を検出することが
示されている。
As a power supply device of this type, Japanese Patent Laid-Open No. 7-99
Japanese Patent No. 723 discloses that a Zener diode D1 and a light emitting diode D2 are connected in series between the terminals of each capacitor cell C, and a failure is detected for each capacitor cell unit by the light intensity of the light emitting diode D2. further,
It has been shown that the abnormality of the capacitor cell is detected by setting a voltage lower by ΔV than the voltage at the time of full charge and measuring the time t from the start of discharging to the voltage lower by ΔV.

【0004】また、特開平6−342024号公報に
は、信号源から電気二重層コンデンサに対して低周波の
方形波信号を加え、その応答信号の積分値に基づいて特
性変化を検出し、電気二重層コンデンサの劣化を初期の
段階で検出することが示されている。
Further, in Japanese Unexamined Patent Publication No. 6-342024, a low-frequency square wave signal is applied to an electric double layer capacitor from a signal source, a characteristic change is detected based on an integrated value of the response signal, and electric characteristics are detected. It has been shown to detect degradation of double layer capacitors at an early stage.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の各劣化検出方法は、コンデンサセルの容量値を直接
測定したものではなく、劣化を正確かつ簡単に検出する
ことが困難であった。
However, in each of the above-mentioned conventional deterioration detecting methods, the capacitance value of the capacitor cell is not directly measured, and it is difficult to detect the deterioration accurately and easily.

【0006】そこで、本発明は、コンデンサセルの容量
値を直接測定することにより劣化を正確かつ簡単に検出
することができる電源装置および劣化検出方法を提供す
ることを目的とする。
Therefore, an object of the present invention is to provide a power supply device and a deterioration detecting method capable of accurately and easily detecting deterioration by directly measuring the capacitance value of a capacitor cell.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1に係る電源装置は、蓄電用コンデ
ンサを備えたコンデンサセルを複数有し、各コンデンサ
セルの劣化を充電時に検出する電源装置において、前記
コンデンサセルが満充電になるまでの充電時間および充
電電流を測定する測定手段と、該測定された充電時間お
よび充電電流に基づき、前記コンデンサセルの容量を算
出する容量算出手段と、該算出されたコンデンサセルの
容量が所定量以下である場合、該コンデンサセルが劣化
していると判定する劣化判定手段とを備えたことを特徴
とする。
In order to achieve the above object, a power supply device according to claim 1 of the present invention has a plurality of capacitor cells provided with capacitors for storing electricity, and deterioration of each capacitor cell is caused during charging. In a power supply device for detecting, a measuring unit for measuring a charging time and a charging current until the capacitor cell is fully charged, and a capacity calculating unit for calculating a capacity of the capacitor cell based on the measured charging time and charging current. And a deterioration determining unit that determines that the capacitor cell is deteriorated when the calculated capacity of the capacitor cell is equal to or less than a predetermined amount.

【0008】請求項2に係る電源装置は、蓄電用コンデ
ンサを備えたコンデンサセルを複数有し、各コンデンサ
セルの劣化を検出する電源装置において、交流電圧が印
加された前記コンデンサセルの充電電流を測定する測定
手段と、該測定された充電電流に基づき、前記コンデン
サセルの容量を算出する容量算出手段と、該算出された
コンデンサセルの容量が所定量以下である場合、該コン
デンサセルが劣化していると判定する劣化判定手段とを
備えたことを特徴とする。
According to a second aspect of the present invention, there is provided a power supply device having a plurality of capacitor cells each having a storage capacitor, wherein the power supply device detects deterioration of each capacitor cell. The measuring means for measuring, the capacity calculating means for calculating the capacity of the capacitor cell based on the measured charging current, and when the calculated capacity of the capacitor cell is less than a predetermined amount, the capacitor cell is deteriorated. And a deterioration determining means for determining that

【0009】請求項3に係る電源装置では、請求項2に
係る電源装置において前記複数のコンデンサセルは両端
子で直列に接続され、該コンデンサセルは前記コンデン
サを切り離しかつ前記両端子を短絡するスイッチを有
し、該スイッチにより前記両端子が短絡された状態で前
記コンデンサセルの劣化を検出することを特徴とする。
According to a third aspect of the present invention, in the power source apparatus according to the second aspect, the plurality of capacitor cells are connected in series at both terminals, and the capacitor cell disconnects the capacitor and short-circuits both terminals. And detecting deterioration of the capacitor cell in a state where the both terminals are short-circuited by the switch.

【0010】請求項4に係る電源装置では、請求項1に
係る電源装置において前記複数のコンデンサセルは両端
子で直列に接続され、該コンデンサセルは前記コンデン
サを切り離しかつ前記両端子を短絡するスイッチを有
し、前記直列に接続された複数のコンデンサセルの両側
の端子に電力を供給して充電を行う際、前記スイッチに
より前記両端子が短絡されたコンデンサセルを除くコン
デンサセルの劣化を検出することを特徴とする。
According to a fourth aspect of the present invention, in the power source apparatus according to the first aspect, the plurality of capacitor cells are connected in series at both terminals, and the capacitor cell disconnects the capacitor and shorts the both terminals. And for supplying power to the terminals on both sides of the plurality of capacitor cells connected in series to perform charging, the deterioration of the capacitor cells except the capacitor cells whose terminals are short-circuited by the switch is detected. It is characterized by

【0011】請求項5に係る劣化検出方法は、蓄電用コ
ンデンサを備えたコンデンサセルの劣化を充電時に検出
する劣化検出方法において、前記コンデンサセルが満充
電になる充電時間および充電電流を測定し、該測定され
た充電時間および充電電流に基づき、前記コンデンサセ
ルの容量を算出し、該算出されたコンデンサセルの容量
が所定量以下である場合、該コンデンサセルが劣化して
いると判定することを特徴とする。
According to a fifth aspect of the present invention, there is provided a deterioration detecting method for detecting deterioration of a capacitor cell having a storage capacitor during charging, by measuring a charging time and a charging current at which the capacitor cell is fully charged, Based on the measured charging time and charging current, the capacity of the capacitor cell is calculated, and when the calculated capacity of the capacitor cell is equal to or less than a predetermined amount, it is determined that the capacitor cell is deteriorated. Characterize.

【0012】請求項6に係る劣化検出方法は、蓄電用コ
ンデンサを備えたコンデンサセルの劣化を検出する劣化
検出方法において、前記コンデンサセルに交流電圧を印
加し、該交流電圧が印加されたコンデンサセルの充電電
流を測定し、該測定された充電電流に基づき、前記コン
デンサセルの容量を算出し、該算出されたコンデンサセ
ルの容量が所定量以下である場合、該コンデンサセルが
劣化していると判定することを特徴とする。
According to a sixth aspect of the present invention, there is provided a deterioration detecting method for detecting deterioration of a capacitor cell having a storage capacitor, wherein an AC voltage is applied to the capacitor cell, and the capacitor cell to which the AC voltage is applied is applied. The charging current of the capacitor cell is measured, the capacity of the capacitor cell is calculated based on the measured charging current, and when the calculated capacity of the capacitor cell is equal to or less than a predetermined amount, the capacitor cell is deteriorated. It is characterized by judging.

【0013】[0013]

【発明の実施の形態】本発明の電源装置および劣化検出
方法の実施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a power supply device and a deterioration detecting method of the present invention will be described.

【0014】[第1の実施の形態]図1は電気自動車に
搭載された電源装置の構成を示すブロック図である。電
気自動車は、電源装置1、パルス幅変調(PWM)ドラ
イバ14および電動モータ16を有する。PWMドライ
バ14は図示しないモータコントロールECUからの制
御信号にしたがって電動モータ16に電力を供給し、電
動モータ16は図示しない車輪に動力を伝達する。
[First Embodiment] FIG. 1 is a block diagram showing the configuration of a power supply device mounted on an electric vehicle. The electric vehicle includes a power supply device 1, a pulse width modulation (PWM) driver 14, and an electric motor 16. The PWM driver 14 supplies electric power to the electric motor 16 according to a control signal from a motor control ECU (not shown), and the electric motor 16 transmits power to wheels (not shown).

【0015】電源装置1は、コンデンサマネジメントE
CU21、コンデンサユニット24およびDC−DCコ
ンバータ11を有する。コンデンサユニット24は、1
00ヶ直列に接続された3.5V仕様のコンデンサセル
27を有し、満充電時に350Vの電圧を出力する。
The power supply unit 1 includes a capacitor management E
It has a CU 21, a capacitor unit 24, and a DC-DC converter 11. One capacitor unit 24
It has 3.5 cells of 3.5V capacitor cells connected in series and outputs a voltage of 350V when fully charged.

【0016】コンデンサセル27は、電気二重層コンデ
ンサ27a、バイパススイッチ27bを有する。電気二
重層コンデンサ27aが劣化したときなど、コンデンサ
マネジメントECU21によってバイパススイッチ27
bが切り替わり、両端子は電気二重層コンデンサ27a
を介さずに短絡する。
The capacitor cell 27 has an electric double layer capacitor 27a and a bypass switch 27b. When the electric double layer capacitor 27a is deteriorated, the bypass switch 27 is operated by the capacitor management ECU 21.
b is switched, and both terminals are connected to the electric double layer capacitor 27a.
Short circuit without going through.

【0017】コンデンサマネジメントECU21は、バ
ス30に接続された周知のCPU31、ROM32、R
AM33、I/Oインターフェース34、通信インター
フェース35の他、I/Oインターフェース34に接続
される測定器37、マルチプレクサ39を有する。マル
チプレクサ39はコンデンサユニット24内の各コンデ
ンサセル27の両端子と測定器37の両端子との接続を
切り換える。測定器37は、容量測定モード時に各コン
デンサセル27に交流電圧Vを供給し、そのときの充電
電流Iを計測する。また、ROM32には後述する劣化
判定処理プログラムが格納されており、RAM33には
後述するセル容量テーブルが格納されている。
The capacitor management ECU 21 is a well-known CPU 31, ROM 32, R connected to the bus 30.
In addition to the AM 33, the I / O interface 34, and the communication interface 35, the measuring instrument 37 and the multiplexer 39 connected to the I / O interface 34 are included. The multiplexer 39 switches connection between both terminals of each capacitor cell 27 in the capacitor unit 24 and both terminals of the measuring instrument 37. The measuring instrument 37 supplies an AC voltage V to each capacitor cell 27 in the capacity measuring mode and measures the charging current I at that time. Further, the ROM 32 stores a later-described deterioration determination processing program, and the RAM 33 stores a later-described cell capacity table.

【0018】図2はコンデンサマネジメントECU21
内のCPU31によって実行される劣化判定処理手順を
示すフローチャートである。この処理は所定時間毎に実
行される。劣化判定処理の実行を開始すると、まず、C
PU31はマルチプレクサ39を切り換えて最初(N
o.1)のコンデンサセル27の両端子と測定器37の
両端子とを接続する。さらに、選択されたNo.1のコ
ンデンサセル27のバイパススイッチ27bをバイパス
側に切り換える(ステップS1)。
FIG. 2 shows the capacitor management ECU 21.
It is a flow chart which shows the deterioration judging processing procedure performed by CPU31 in. This process is executed every predetermined time. When the execution of the deterioration determination process is started, first, C
The PU 31 switches the multiplexer 39 to switch to the first (N
o. Both terminals of the capacitor cell 27 of 1) and both terminals of the measuring device 37 are connected. Furthermore, the selected No. The bypass switch 27b of the first capacitor cell 27 is switched to the bypass side (step S1).

【0019】そして、測定器37を起動し、コンデンサ
セル27内の電気二重層コンデンサ27aに交流電圧V
を供給しそのときの充電電流Iを測定する(ステップS
2)。
Then, the measuring instrument 37 is started, and the AC voltage V is applied to the electric double layer capacitor 27a in the capacitor cell 27.
Is supplied and the charging current I at that time is measured (step S
2).

【0020】測定された電流値Iと電圧値Vとから、数
式1にしたがってコンデンサセル27の容量値Cを算出
する(ステップS3)。
From the measured current value I and voltage value V, the capacitance value C of the capacitor cell 27 is calculated according to Equation 1 (step S3).

【0021】[0021]

【数1】C=1/2πfz、 z=V/I ここで、zはインピーダンス、fは交流周波数である。## EQU1 ## C = 1 / 2.pi.fz, z = V / I where z is impedance and f is AC frequency.

【0022】算出されたコンデンサセル27の容量値
は、RAM33に格納されたセル容量テーブルの現在値
として更新される(ステップS4)。図3はセル容量テ
ーブルを示す説明図である。図において、No.1のコ
ンデンサセル27の現在値が14Fであることが示され
ている。
The calculated capacitance value of the capacitor cell 27 is updated as the current value of the cell capacitance table stored in the RAM 33 (step S4). FIG. 3 is an explanatory diagram showing a cell capacity table. In the figure, No. It is shown that the current value of the capacitor cell 27 of 1 is 14F.

【0023】セル容量テーブルから全てのコンデンサセ
ル27の初期値を読み出す(ステップS5)。この初期
値の50%以下にステップS3で算出された容量値が至
ったか否かを判別し(ステップS6)、初期値の50%
以下に至っていない場合、そのままステップS8に移行
する。一方、ステップS3で算出された容量値が初期値
の50%以下になった場合、セル容量テーブルの判断の
項目に劣化であることを示すNGフラグを登録する(ス
テップS7)。このように、セル容量テーブルには絶対
値による劣化判断結果が登録される。図3には、No.
3のコンデンサセル27の容量値が10Fまで下がり、
劣化であると判定されている。このとき、CPU31
は、劣化であると判定されたコンデンサセル27のバイ
パススイッチ27bをバイパス側に切り替え、交換され
るまで使用できないようにする。
The initial values of all the capacitor cells 27 are read from the cell capacity table (step S5). It is determined whether or not the capacity value calculated in step S3 has reached 50% or less of this initial value (step S6), and 50% of the initial value.
If the following has not been reached, the process directly proceeds to step S8. On the other hand, when the capacity value calculated in step S3 becomes 50% or less of the initial value, the NG flag indicating deterioration is registered in the item of the judgment of the cell capacity table (step S7). In this way, the deterioration determination result based on the absolute value is registered in the cell capacity table. In FIG.
The capacitance value of the capacitor cell 27 of 3 drops to 10F,
It is determined to be deterioration. At this time, the CPU 31
Switches the bypass switch 27b of the capacitor cell 27 determined to be deteriorated to the bypass side so that it cannot be used until it is replaced.

【0024】ステップS8では、全てのコンデンサセル
の現在の容量の平均値を算出し、容量が平均値の90%
以下か否かを判別する(ステップS9)。90%以下で
ない場合、そのままステップS11に移行し、90%以
下である場合、セル容量テーブルの判断の項目に劣化で
あることを示すNGフラグを登録する(ステップS1
0)。このように、セル容量テーブルには相対値による
劣化判断結果が登録される。
In step S8, the average value of the current capacities of all the capacitor cells is calculated, and the capacity is 90% of the average value.
It is determined whether or not the following (step S9). If it is not 90% or less, the process proceeds to step S11 as it is, and if it is 90% or less, the NG flag indicating deterioration is registered in the item of the judgment of the cell capacity table (step S1).
0). As described above, the deterioration determination result based on the relative value is registered in the cell capacity table.

【0025】ステップS11では、全てのコンデンサセ
ル27の測定が済んだか否かを判別し、済んでいる場合
には処理を終了し、済んでいない場合にはステップS1
に戻って次のコンデンサセル27の劣化検出を行う。即
ち、マルチプレクサ39を切り換えて2番目(No.
2)のコンデンサセル27の両端子と測定器37の両端
子とを接続する。そして、No.1と同様に測定器37
を起動し、コンデンサセル27内の電気二重層コンデン
サ27aに交流電圧Vを供給してそのときの充電電流I
を計測し、同様の処理を行う。
In step S11, it is determined whether or not all the capacitor cells 27 have been measured, and if they have been measured, the processing is terminated, and if they have not been measured, step S1.
Then, the deterioration of the next capacitor cell 27 is detected. That is, the multiplexer 39 is switched to the second (No.
2) Both terminals of the capacitor cell 27 and both terminals of the measuring device 37 are connected. And No. Measuring instrument 37 as in 1
And the AC voltage V is supplied to the electric double layer capacitor 27a in the capacitor cell 27 to charge the current I at that time.
Is measured and the same processing is performed.

【0026】このように、本実施の形態の劣化検出方法
では、コンデンサセル27の容量値を電流値Iおよび電
圧値Vから直接に算出しているので、正確かつ簡単に劣
化を検出できる。また、バイパススイッチ27bをバイ
パス側に切り換えて測定するので、コンデンサユニット
24の電力をDC−DCコンバータ11に供給している
使用中にも劣化検出を行うことができる。また、現在の
容量の平均値を判断基準とすれば劣化しつつあるコンデ
ンサセルを検出することもできる。
As described above, in the deterioration detecting method of the present embodiment, since the capacitance value of the capacitor cell 27 is directly calculated from the current value I and the voltage value V, the deterioration can be accurately and easily detected. Further, since the bypass switch 27b is switched to the bypass side for measurement, deterioration can be detected even during use while supplying the power of the capacitor unit 24 to the DC-DC converter 11. Further, if the current average value of the capacitance is used as a criterion, it is possible to detect a capacitor cell that is deteriorating.

【0027】さらに、劣化であるとしてセル容量テーブ
ルに登録された後にコンデンサセルが交換された場合に
はそのものの初期値を無視するようにしてもよい。ま
た、セル容量テーブルの初期値はコンデンサセルの交換
によってオペレータが個々に設定できるようにしてもよ
い。このようにしておくことにより、より正確に劣化検
出を行うことができる。さらに、平均値算出の際に変換
されたセルを除くことにより正確に劣化検出が可能であ
る。またさらに、絶対値からくる劣化判断と相対値から
くる劣化判断の双方が可能である。
Further, when the capacitor cell is replaced after being registered in the cell capacity table as being deteriorated, the initial value of the capacitor cell may be ignored. The initial value of the cell capacity table may be individually set by the operator by replacing the capacitor cell. By doing so, the deterioration can be detected more accurately. Furthermore, deterioration can be accurately detected by excluding the cells that have been converted when calculating the average value. Furthermore, it is possible to make both the deterioration judgment based on the absolute value and the deterioration judgment based on the relative value.

【0028】また、上記実施の形態では、交流電圧Vを
コンデンサセル27に印加しその充電電流Iを計測して
インピーダンスZを算出したが、交流電流Iをコンデン
サセルに供給しその充電電圧Vを計測してインピーダン
スZを算出するようにしてもよい。さらに、所定時間当
たりの充電電圧よび充電電流の変化分に基づき、前記コ
ンデンサセルの容量値を算出するようにしてもよい。
In the above embodiment, the AC voltage V is applied to the capacitor cell 27 and the charging current I thereof is measured to calculate the impedance Z. However, the AC current I is supplied to the capacitor cell and the charging voltage V thereof is calculated. You may make it measure and calculate the impedance Z. Further, the capacitance value of the capacitor cell may be calculated based on the amount of change in charging voltage and charging current per predetermined time.

【0029】[第2の実施の形態]図4は第2の実施の
形態における電源装置の構成を示すブロック図である。
前記第1の実施の形態と同一の構成要素については同一
の番号を付してその説明を省略する。図において、4
1、42はそれぞれ電流検出器および充電器である。電
流検出器41は充電器42からコンデンサユニット24
に供給される充電電流を検出する。また、測定器37は
マルチプレクサ39によって切り換えられたコンデンサ
セル27の電圧を検出する。さらに、バス30にはタイ
マ38が接続されている。
[Second Embodiment] FIG. 4 is a block diagram showing the structure of a power supply unit according to the second embodiment.
The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the figure, 4
Reference numerals 1 and 42 are a current detector and a charger, respectively. The current detector 41 changes from the charger 42 to the capacitor unit 24.
Detects the charging current supplied to. Further, the measuring device 37 detects the voltage of the capacitor cell 27 switched by the multiplexer 39. Further, a timer 38 is connected to the bus 30.

【0030】上記構成を有する電源装置の劣化判定処理
について説明する。図5はコンデンサマネジメントEC
U21内のCPU31によって実行される劣化判定処理
手順を示すフローチャートである。
A deterioration determination process of the power supply device having the above configuration will be described. Figure 5 shows capacitor management EC
It is a flowchart which shows the deterioration determination processing procedure performed by CPU31 in U21.

【0031】まず、CPU31はコンデンサユニット2
4のNo.1のコンデンサセル27を除き、他のコンデ
ンサセル27のバイパススイッチ27bをバイパス側に
切り換える(ステップS11)。そして、充電器42を
起動し、No.1のコンデンサセル27だけを充電す
る。充電開始と同時にタイマ38をスタートさせて充電
時間tを計測すると共に、充電電流Iを電流検出器41
により計測する(ステップS12)。
First, the CPU 31 is the capacitor unit 2
No. 4 With the exception of the first capacitor cell 27, the bypass switches 27b of the other capacitor cells 27 are switched to the bypass side (step S11). Then, the charger 42 is activated and No. Only one capacitor cell 27 is charged. The timer 38 is started simultaneously with the start of charging to measure the charging time t, and the charging current I is measured by the current detector 41.
Is measured (step S12).

【0032】測定器37により検出される電圧に基づ
き、No.1のコンデンサセル27が満充電に至るのを
待つ(ステップS13)。満充電に至ったとき、CPU
31は数式2にしたがって、容量値Cを算出する(ステ
ップS14)。
On the basis of the voltage detected by the measuring device 37, No. It waits until the first capacitor cell 27 reaches full charge (step S13). CPU when fully charged
31 calculates the capacitance value C according to Equation 2 (step S14).

【0033】[0033]

【数2】C=I×t/V このように、No.1のコンデンサセル27を充電する
場合、他のコンデンサセルのバイパススイッチ27bを
バイパス側に接続しておくことにより、充電器42から
供給される電力をNo.1のコンデンサセル27にだけ
蓄えることができる。同様に、No.2のコンデンサセ
ル27を充電する場合、他のコンデンサセルのバイパス
スイッチ27bをバイパス側に接続しておく。
[Equation 2] C = I × t / V When the capacitor cell 27 of No. 1 is charged, by connecting the bypass switch 27b of the other capacitor cell to the bypass side, the power supplied from the charger 42 is changed to No. It can be stored only in one capacitor cell 27. Similarly, no. When charging the second capacitor cell 27, the bypass switch 27b of the other capacitor cell is connected to the bypass side.

【0034】算出された容量値Cによりセル容量テーブ
ルの現在値を更新する(ステップS15)。図6はセル
容量テーブルを示す説明図である。
The current value of the cell capacity table is updated with the calculated capacity value C (step S15). FIG. 6 is an explanatory diagram showing a cell capacity table.

【0035】算出された容量値はセル容量テーブルに登
録された初期値の50%以下であるか否かを判別する
(ステップS16)。初期値の50%以下でない場合、
ステップS18に移行し、初期値の50%以下である場
合、セル容量テーブルに劣化であることを示すNGフラ
グを登録する(ステップS17)。
It is determined whether or not the calculated capacity value is 50% or less of the initial value registered in the cell capacity table (step S16). If it is not less than 50% of the initial value,
If the value is 50% or less of the initial value, the NG flag indicating deterioration is registered in the cell capacity table (step S17).

【0036】ステップS18では、全てのコンデンサセ
ル27の劣化判定が済んだか否かを判別し、済んでいる
場合、そのまま終了し、済んでいない場合、ステップS
11の処理に戻り、次のコンデンサセルの処理を行う。
In step S18, it is determined whether or not the deterioration determination of all the capacitor cells 27 has been completed. If yes, the process ends, otherwise, step S18.
Returning to the processing of 11, the processing of the next capacitor cell is performed.

【0037】このように、本実施の形態における電源装
置では、個々のコンデンサセルが満充電に至るまでの充
電電流および充電時間により容量値を算出するので、簡
単かつ正確に容量値を算出できる。しかも、充電時に劣
化検出を併せて行うことができる。
As described above, in the power supply device according to the present embodiment, the capacitance value is calculated from the charging current and the charging time until each capacitor cell is fully charged, so that the capacitance value can be calculated easily and accurately. Moreover, it is possible to detect deterioration at the same time as charging.

【0038】尚、上記実施の形態では、満充電に至る充
電時間および充電電流により容量値を算出していたが、
満充電に至らなくてもコンデンサセルが所定電圧△Vだ
け上昇するまでの充電時間および充電電流を計測するよ
うにしてもよく、これにより短時間に容量値を算出する
ことができる。
In the above embodiment, the capacity value is calculated from the charging time and the charging current to reach full charge.
The charging time and the charging current until the capacitor cell rises by the predetermined voltage ΔV may be measured even if the capacitor cell is not fully charged, whereby the capacitance value can be calculated in a short time.

【0039】また、劣化の判定には、初期値の50%を
基準として用いたが、これに限らずオペレータが任意の
値に設定できるようにしてもよい。
Although 50% of the initial value is used as a reference for the determination of deterioration, the present invention is not limited to this, and the operator may be allowed to set an arbitrary value.

【0040】[0040]

【発明の効果】本発明の請求項1に係る電源装置によれ
ば、各コンデンサセルの劣化を充電時に検出する際、測
定手段により前記コンデンサセルが満充電になるまでの
充電時間および充電電流を測定し、該測定された充電時
間および充電電流に基づき、容量算出手段により前記コ
ンデンサセルの容量を算出し、該算出されたコンデンサ
セルの容量が所定量以下である場合、劣化判定手段によ
り該コンデンサセルが劣化していると判定するので、コ
ンデンサセルの劣化を正確かつ簡単に検出できる。
According to the power supply device according to the first aspect of the present invention, when the deterioration of each capacitor cell is detected at the time of charging, the measuring time indicates the charging time and the charging current until the capacitor cell is fully charged. The capacitance of the capacitor cell is calculated by the capacitance calculating means based on the measured charging time and the charging current, and when the calculated capacitance of the capacitor cell is equal to or less than a predetermined amount, the deterioration determining means determines the capacitor. Since it is determined that the cell is deteriorated, the deterioration of the capacitor cell can be detected accurately and easily.

【0041】請求項2に係る電源装置によれば、各コン
デンサセルの劣化を検出する際、測定手段により交流電
圧が印加された前記コンデンサセルの充電電流を測定
し、該測定された充電電流に基づき、容量算出手段によ
り前記コンデンサセルの容量を算出し、該算出されたコ
ンデンサセルの容量が所定量以下である場合、劣化判定
手段により該コンデンサセルが劣化していると判定する
ので、短時間にコンデンサセルの劣化を正確かつ簡単に
検出できる。
According to the power supply device of the second aspect, when the deterioration of each capacitor cell is detected, the charging current of the capacitor cell to which the AC voltage is applied is measured by the measuring means, and the measured charging current is measured. Based on the above, the capacity of the capacitor cell is calculated by the capacity calculating means, and when the calculated capacity of the capacitor cell is equal to or less than a predetermined amount, the deterioration determining means determines that the capacitor cell is deteriorated, so that Moreover, deterioration of the capacitor cell can be detected accurately and easily.

【0042】請求項3に係る電源装置によれば、前記複
数のコンデンサセルは両端子で直列に接続され、該コン
デンサセルは前記コンデンサを切り離しかつ前記両端子
を短絡するスイッチを有し、該スイッチにより前記両端
子が短絡された状態で前記コンデンサセルの劣化を検出
するので、電力を外部に供給している使用中に各コンデ
ンサセルの劣化検出を行うことができる。
According to the power supply device of the third aspect, the plurality of capacitor cells are connected in series at both terminals, and the capacitor cell has a switch for disconnecting the capacitor and short-circuiting the both terminals. As a result, the deterioration of the capacitor cell is detected in a state where the both terminals are short-circuited, so that the deterioration of each capacitor cell can be detected during use while supplying electric power to the outside.

【0043】請求項4に係る電源装置によれば、前記複
数のコンデンサセルは両端子で直列に接続され、該コン
デンサセルは前記コンデンサを切り離しかつ前記両端子
を短絡するスイッチを有し、前記直列に接続された複数
のコンデンサセルの両側の端子に電力を供給して充電を
行う際、前記スイッチにより前記両端子が短絡されたコ
ンデンサセルを除くコンデンサセルの劣化を検出するの
で、各コンデンサセルの充電時に劣化検出を併せて行う
ことができる。
According to another aspect of the power supply device of the present invention, the plurality of capacitor cells are connected in series at both terminals, and the capacitor cell has a switch for disconnecting the capacitor and short-circuiting both terminals. When charging is performed by supplying power to the terminals on both sides of the plurality of capacitor cells connected to each other, deterioration of the capacitor cells other than the capacitor cells in which the terminals are short-circuited is detected by the switch. Deterioration detection can also be performed at the time of charging.

【0044】請求項5に係る劣化検出方法によれば、蓄
電用コンデンサを備えたコンデンサセルの劣化を充電時
に検出する劣化検出方法において、前記コンデンサセル
が満充電になる充電時間および充電電流を測定し、該測
定された充電時間および充電電流に基づき、前記コンデ
ンサセルの容量を算出し、該算出されたコンデンサセル
の容量が所定量以下である場合、該コンデンサセルが劣
化していると判定するので、コンデンサセルの劣化を正
確かつ簡単に検出できる。
According to the deterioration detecting method of the fifth aspect, in the deterioration detecting method of detecting deterioration of a capacitor cell having a storage capacitor at the time of charging, a charging time and a charging current at which the capacitor cell is fully charged are measured. Then, the capacity of the capacitor cell is calculated based on the measured charging time and charging current, and when the calculated capacity of the capacitor cell is equal to or less than a predetermined amount, it is determined that the capacitor cell is deteriorated. Therefore, the deterioration of the capacitor cell can be detected accurately and easily.

【0045】請求項6に係る劣化検出方法によれば、蓄
電用コンデンサを備えたコンデンサセルの劣化を検出す
る劣化検出方法において、前記コンデンサセルに交流電
圧を印加し、該交流電圧が印加されたコンデンサセルの
充電電流を測定し、該測定された充電電流に基づき、前
記コンデンサセルの容量を算出し、該算出されたコンデ
ンサセルの容量が所定量以下である場合、該コンデンサ
セルが劣化していると判定するので、短時間にコンデン
サセルの劣化を正確かつ簡単に検出できる。
According to the deterioration detecting method of the sixth aspect, in the deterioration detecting method for detecting the deterioration of the capacitor cell having the storage capacitor, an AC voltage is applied to the capacitor cell, and the AC voltage is applied. The charging current of the capacitor cell is measured, the capacity of the capacitor cell is calculated based on the measured charging current, and when the calculated capacity of the capacitor cell is equal to or less than a predetermined amount, the capacitor cell is deteriorated. Since it is determined that the capacitor cell is present, deterioration of the capacitor cell can be accurately and easily detected in a short time.

【図面の簡単な説明】[Brief description of drawings]

【図1】電気自動車に搭載された電源装置の構成を示す
ブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a power supply device mounted on an electric vehicle.

【図2】コンデンサマネジメントECU21内のCPU
31によって実行される劣化判定処理手順を示すフロー
チャートである。
[Fig. 2] CPU in the capacitor management ECU 21
31 is a flowchart showing a deterioration determination processing procedure executed by S.

【図3】セル容量テーブルを示す説明図である。FIG. 3 is an explanatory diagram showing a cell capacity table.

【図4】第2の実施の形態における電源装置の構成を示
すブロック図である。
FIG. 4 is a block diagram showing a configuration of a power supply device according to a second embodiment.

【図5】コンデンサマネジメントECU21内のCPU
31によって実行される劣化判定処理手順を示すフロー
チャートである。
FIG. 5: CPU in the capacitor management ECU 21
31 is a flowchart showing a deterioration determination processing procedure executed by S.

【図6】セル容量テーブルを示す説明図である。FIG. 6 is an explanatory diagram showing a cell capacity table.

【符号の説明】[Explanation of symbols]

1 電源装置 21 コンデンサマネジメントECU 24 コンデンサユニット 27 コンデンサセル 27a 電気二重層コンデンサ 27b バイパススイッチ 31 CPU 37 測定器 39 マルチプレクサ 41 電流検出器 1 Power Supply Device 21 Capacitor Management ECU 24 Capacitor Unit 27 Capacitor Cell 27a Electric Double Layer Capacitor 27b Bypass Switch 31 CPU 37 Measuring Instrument 39 Multiplexer 41 Current Detector

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 蓄電用コンデンサを備えたコンデンサセ
ルを複数有し、各コンデンサセルの劣化を充電時に検出
する電源装置において、 前記コンデンサセルが満充電になるまでの充電時間およ
び充電電流を測定する測定手段と、 該測定された充電時間および充電電流に基づき、前記コ
ンデンサセルの容量を算出する容量算出手段と、 該算出されたコンデンサセルの容量が所定量以下である
場合、該コンデンサセルが劣化していると判定する劣化
判定手段とを備えたことを特徴とする電源装置。
1. A power supply device having a plurality of capacitor cells each having a capacitor for storing electricity, wherein deterioration of each capacitor cell is detected at the time of charging, and a charging time and a charging current until the capacitor cell is fully charged are measured. Measuring means, capacity calculating means for calculating the capacity of the capacitor cell based on the measured charging time and charging current, and if the calculated capacity of the capacitor cell is equal to or less than a predetermined amount, the capacitor cell is deteriorated. A power supply device, comprising: a deterioration determining unit that determines that the power supply is operating.
【請求項2】 蓄電用コンデンサを備えたコンデンサセ
ルを複数有し、各コンデンサセルの劣化を検出する電源
装置において、 交流電圧が印加された前記コンデンサセルの充電電流を
測定する測定手段と、 該測定された充電電流に基づき、前記コンデンサセルの
容量を算出する容量算出手段と、 該算出されたコンデンサセルの容量が所定量以下である
場合、該コンデンサセルが劣化していると判定する劣化
判定手段とを備えたことを特徴とする電源装置。
2. A power supply device having a plurality of capacitor cells each having a capacitor for storing electricity, for detecting deterioration of each capacitor cell, and measuring means for measuring a charging current of the capacitor cell to which an AC voltage is applied, A capacitance calculation unit that calculates the capacitance of the capacitor cell based on the measured charging current, and a deterioration determination that determines that the capacitor cell is deteriorated if the calculated capacitance of the capacitor cell is less than or equal to a predetermined amount. And a power supply device.
【請求項3】 前記複数のコンデンサセルは両端子で直
列に接続され、 該コンデンサセルは前記コンデンサを切り離しかつ前記
両端子を短絡するスイッチを有し、 該スイッチにより前記両端子が短絡された状態で前記コ
ンデンサセルの劣化を検出することを特徴とする請求項
2記載の電源装置。
3. A state in which the plurality of capacitor cells are connected in series at both terminals, the capacitor cell has a switch for disconnecting the capacitor and short-circuiting the both terminals, and the both terminals are short-circuited by the switch. The power supply device according to claim 2, wherein deterioration of the capacitor cell is detected by.
【請求項4】 前記複数のコンデンサセルは両端子で直
列に接続され、 該コンデンサセルは前記コンデンサを切り離しかつ前記
両端子を短絡するスイッチを有し、 前記直列に接続された複数のコンデンサセルの両側の端
子に電力を供給して充電を行う際、 前記スイッチにより前記両端子が短絡されたコンデンサ
セルを除くコンデンサセルの劣化を検出することを特徴
とする請求項1記載の電源装置。
4. The plurality of capacitor cells are connected in series at both terminals, and the capacitor cell has a switch for disconnecting the capacitor and short-circuiting the both terminals. The power supply device according to claim 1, wherein when the power is supplied to the terminals on both sides to perform charging, deterioration of the capacitor cells other than the capacitor cells in which the terminals are short-circuited is detected by the switch.
【請求項5】 蓄電用コンデンサを備えたコンデンサセ
ルの劣化を充電時に検出する劣化検出方法において、 前記コンデンサセルが満充電になる充電時間および充電
電流を測定し、 該測定された充電時間および充電電流に基づき、前記コ
ンデンサセルの容量を算出し、 該算出されたコンデンサセルの容量が所定量以下である
場合、該コンデンサセルが劣化していると判定すること
を特徴とする劣化検出方法。
5. A deterioration detecting method for detecting deterioration of a capacitor cell having a storage capacitor at the time of charging, wherein a charging time and a charging current at which the capacitor cell is fully charged are measured, and the measured charging time and charge are measured. A deterioration detecting method, characterized in that the capacity of the capacitor cell is calculated on the basis of an electric current, and when the calculated capacity of the capacitor cell is equal to or less than a predetermined amount, the capacitor cell is deteriorated.
【請求項6】 蓄電用コンデンサを備えたコンデンサセ
ルの劣化を検出する劣化検出方法において、 前記コンデンサセルに交流電圧を印加し、 該交流電圧が印加されたコンデンサセルの充電電流を測
定し、 該測定された充電電流に基づき、前記コンデンサセルの
容量を算出し、 該算出されたコンデンサセルの容量が所定量以下である
場合、該コンデンサセルが劣化していると判定すること
を特徴とする劣化検出方法。
6. A deterioration detecting method for detecting deterioration of a capacitor cell having a storage capacitor, wherein an AC voltage is applied to the capacitor cell, and a charging current of the capacitor cell to which the AC voltage is applied is measured. Deterioration characterized by calculating the capacitance of the capacitor cell based on the measured charging current, and determining that the capacitor cell is deteriorated when the calculated capacitance of the capacitor cell is equal to or less than a predetermined amount. Detection method.
JP09470996A 1996-03-26 1996-03-26 Power supply device and deterioration detection method Expired - Fee Related JP3611397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09470996A JP3611397B2 (en) 1996-03-26 1996-03-26 Power supply device and deterioration detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09470996A JP3611397B2 (en) 1996-03-26 1996-03-26 Power supply device and deterioration detection method

Publications (2)

Publication Number Publication Date
JPH09257856A true JPH09257856A (en) 1997-10-03
JP3611397B2 JP3611397B2 (en) 2005-01-19

Family

ID=14117695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09470996A Expired - Fee Related JP3611397B2 (en) 1996-03-26 1996-03-26 Power supply device and deterioration detection method

Country Status (1)

Country Link
JP (1) JP3611397B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139173A (en) * 2007-12-05 2009-06-25 Tokyo Electron Ltd Device and method for measuring capacity variation of microstructure
JP2010071905A (en) * 2008-09-22 2010-04-02 Sumitomo Heavy Ind Ltd Method and device of measuring capacitance of electric double layer capacitor
US8093905B2 (en) 2006-07-31 2012-01-10 Mitsubishi Electric Corporation Power supply device and sequencer system
JP2012088314A (en) * 2010-10-14 2012-05-10 Ego Elektro Geraete Blanc & Fischer Method and device for determining capacitance of capacitance type sensor element and/or change in capacitance
KR20140062066A (en) * 2011-09-13 2014-05-22 르노 에스.아.에스. Method of monitoring the capacitive filter of a battery charger
JP2014240807A (en) * 2013-06-12 2014-12-25 三菱自動車工業株式会社 Battery pack abnormality determination apparatus
JP2017181274A (en) * 2016-03-30 2017-10-05 トッパン・フォームズ株式会社 Inspection device and inspection method
JP2021056147A (en) * 2019-10-01 2021-04-08 株式会社日立産機システム Static capacitance measurement device for power source capacitor and static capacitance measurement method for power source capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8093905B2 (en) 2006-07-31 2012-01-10 Mitsubishi Electric Corporation Power supply device and sequencer system
JP2009139173A (en) * 2007-12-05 2009-06-25 Tokyo Electron Ltd Device and method for measuring capacity variation of microstructure
JP2010071905A (en) * 2008-09-22 2010-04-02 Sumitomo Heavy Ind Ltd Method and device of measuring capacitance of electric double layer capacitor
JP2012088314A (en) * 2010-10-14 2012-05-10 Ego Elektro Geraete Blanc & Fischer Method and device for determining capacitance of capacitance type sensor element and/or change in capacitance
KR20140062066A (en) * 2011-09-13 2014-05-22 르노 에스.아.에스. Method of monitoring the capacitive filter of a battery charger
JP2014528232A (en) * 2011-09-13 2014-10-23 ルノー エス.ア.エス. Battery charger capacitive filter monitoring method
US9764654B2 (en) 2011-09-13 2017-09-19 Renault S.A.S Method of monitoring the capacitive filter of a battery charger
JP2014240807A (en) * 2013-06-12 2014-12-25 三菱自動車工業株式会社 Battery pack abnormality determination apparatus
JP2017181274A (en) * 2016-03-30 2017-10-05 トッパン・フォームズ株式会社 Inspection device and inspection method
JP2021056147A (en) * 2019-10-01 2021-04-08 株式会社日立産機システム Static capacitance measurement device for power source capacitor and static capacitance measurement method for power source capacitor
WO2021065219A1 (en) * 2019-10-01 2021-04-08 株式会社日立産機システム Power capacitor electrostatic capacitance measurement device and power capacitor electrostatic capacitance measurement method

Also Published As

Publication number Publication date
JP3611397B2 (en) 2005-01-19

Similar Documents

Publication Publication Date Title
EP3455917B1 (en) Method and apparatus of a modular management system for energy storage cells
JP6165732B2 (en) Battery charger capacitive filter monitoring method
EP3792639A1 (en) Ground fault detection apparatus
JP3300309B2 (en) Battery voltage measuring device
JP3224977B2 (en) Method and apparatus for detecting insulation of ungrounded power supply
US8643500B2 (en) Apparatus and method for diagnosing abnormality in cell balancing circuit
US5699050A (en) Battery capacity meter
JPH08138759A (en) Deterioration detection method and deterioration detection device for battery set
US10343524B2 (en) Weld detection apparatus and weld detection method
CN102377331A (en) Dc-dc converter
JP2003519900A (en) Battery health state determining apparatus and method
JP4884435B2 (en) Storage battery state determination device and storage battery state determination method
US20210148992A1 (en) Ground fault detection device
JP3611397B2 (en) Power supply device and deterioration detection method
JPH11346476A (en) Abnormality detector for capacitor in inverter
JP2006115640A (en) Adjusting device for capacity of battery pack
EP3770002A1 (en) Method for capacitor precharging and capacitance measurement in electric vehicle drive system
JP4389758B2 (en) Cell voltage variation abnormality detection device
JP4604619B2 (en) Battery pack capacity adjustment device
JP2003032801A (en) Current-measuring device for motor-driven vehicle
JP5012483B2 (en) Power storage device
CN114428216A (en) Battery current detection method and device and storage medium
JP2004170361A (en) Device for diagnosing capacitor lifetime and capacitor lifetime diagnosis method
JPH11317243A (en) Capacity computing method at battery replacement for automobile
US11604227B2 (en) Method and control device for impedance-based determination of a state of charge of at least one battery cell and motor vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees