JP2009139173A - Device and method for measuring capacity variation of microstructure - Google Patents

Device and method for measuring capacity variation of microstructure Download PDF

Info

Publication number
JP2009139173A
JP2009139173A JP2007314453A JP2007314453A JP2009139173A JP 2009139173 A JP2009139173 A JP 2009139173A JP 2007314453 A JP2007314453 A JP 2007314453A JP 2007314453 A JP2007314453 A JP 2007314453A JP 2009139173 A JP2009139173 A JP 2009139173A
Authority
JP
Japan
Prior art keywords
electrode
capacitance
change
part electrode
microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007314453A
Other languages
Japanese (ja)
Inventor
Takashi Fujiwara
尚 藤原
Naoki Ikeuchi
直樹 池内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007314453A priority Critical patent/JP2009139173A/en
Publication of JP2009139173A publication Critical patent/JP2009139173A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a capacity variation measuring device and a capacity variation measuring method of a microstructure for measuring microvolume with a simple measuring circuit. <P>SOLUTION: The microstructure 1 comprises a fixed section electrode 4 and a movable section electrode 5 that is arranged facing to the fixed section electrode 4 and has a capacitance between it and the fixed section electrode 4. A bias generation circuit 20 applies a bias potential between the fixed section electrode 4 and the movable section electrode 5. A current measurement circuit 30 detects the current flowing between the fixed section electrode 4 and the movable section electrode 5 when the bias potential is applied. A current variation detection discrimination circuit 40, based on the detected variation in current with time, measures the variation in capacitance between the fixed section electrode 4 and the movable section electrode 5. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、加速度センサや角速度センサなどの微小構造体の電極間の静電容量の変化を測定する微小構造体の容量変化測定装置および容量変化測定方法に関する。   The present invention relates to a capacitance change measuring apparatus and a capacitance change measuring method for a microstructure that measures changes in capacitance between electrodes of the microstructure such as an acceleration sensor and an angular velocity sensor.

近年、微小構造体デバイスとして、例えばMEMS(Micro Electro Mechanical System)を使用した多軸加速度センサや多軸角度センサが、例えば自動車のエアーバッグの加速度センサなど多くの分野において多用されている。このような微小構造体の動作を確認するために、固定電極と可動電極との間の容量変化を測定することが行なわれている。   In recent years, for example, multi-axis acceleration sensors and multi-axis angle sensors using a micro electro mechanical system (MEMS) have been widely used as microstructure devices in many fields such as acceleration sensors for automobile airbags. In order to confirm the operation of such a microstructure, a change in capacitance between the fixed electrode and the movable electrode is measured.

例えば、特開2000−55956号公報(特許文献1)には、微小容量を測定するシステムについて記載されている。特許文献1による微小容量の測定は、プローバを測定電極に接触させ、容量測定装置により静電容量を測定するものである。
特開2000−55956号公報
For example, Japanese Patent Laid-Open No. 2000-55956 (Patent Document 1) describes a system for measuring a minute capacity. In the measurement of a minute capacitance according to Patent Document 1, a prober is brought into contact with a measurement electrode, and the capacitance is measured by a capacitance measuring device.
JP 2000-55956 A

特許文献1に記載されているようなプローバを測定電極に接触させる静電容量計測方法では、プローバのケーブル長や寄生容量などの影響を受けやすいという問題がある。また、微小構造体は、固定電極と可動電極との間の静電容量が高速で変化するので、プローバを用いた計測システムを微小容量の計測に適用した場合、計測時間の短縮が困難であるという問題もある。   In the capacitance measuring method in which a prober is brought into contact with a measurement electrode as described in Patent Document 1, there is a problem that the prober is easily affected by the cable length of the prober and parasitic capacitance. In addition, in the microstructure, the capacitance between the fixed electrode and the movable electrode changes at a high speed, so it is difficult to shorten the measurement time when a measurement system using a prober is applied to the measurement of a minute capacitance. There is also a problem.

そこで、この発明は、静電容量の計測に比べて簡単な計測回路で微小容量の測定が可能な微小構造体の容量変化測定装置および容量変化測定方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a capacitance change measuring device and a capacitance change measuring method for a microstructure capable of measuring a minute capacitance with a simple measurement circuit as compared with capacitance measurement.

この発明は、固定部電極と、固定部電極に対向して配置され、固定部電極との間に静電容量を有する可動部電極とを有する微小構造体の容量変化測定装置であって、固定部電極と可動部電極との間に電圧を印加する電圧印加手段と、電圧印加手段によって電圧を印加したときに、固定部電極と可動部電極との間に流れる電流を検出する電流検出手段と、電流検出手段によって検出された電流の時間変化に基づいて、固定部電極と可動部電極との間の静電容量の変化を検出する検出手段とを備える。   The present invention relates to a capacitance change measuring device for a microstructure having a fixed part electrode and a movable part electrode disposed opposite to the fixed part electrode and having a capacitance between the fixed part electrode and the fixed part electrode. A voltage applying means for applying a voltage between the partial electrode and the movable part electrode, and a current detecting means for detecting a current flowing between the fixed part electrode and the movable part electrode when a voltage is applied by the voltage applying means; And detecting means for detecting a change in capacitance between the fixed part electrode and the movable part electrode based on the time change of the current detected by the current detecting means.

この発明では、電流波形の変化に基づいて静電容量の変化を検出できるので、プローブ等により静電容量を検出するものに比べて、ケーブル長や寄生容量の影響を受けることがない。   In the present invention, since the change in capacitance can be detected based on the change in the current waveform, it is not affected by the cable length or parasitic capacitance compared to the case where the capacitance is detected by a probe or the like.

好ましくは、容量変化検出手段は、微小構造体の正常動作時における静電容量に対応する所定の範囲内の測定値を記憶しており、測定時の測定値が記憶している測定値の範囲内にあるかどうかにより、当該微小構造体が正常に動作するかどうかを検出する。   Preferably, the capacitance change detecting means stores a measured value within a predetermined range corresponding to the capacitance during normal operation of the microstructure, and the measured value range stored by the measured value at the time of measurement is stored. It is detected whether or not the microstructure operates normally depending on whether or not it is inside.

予め記憶している範囲内の測定値と、測定した微小構造体の測定値とを比較することにより、当該微小構造体が正常に動作するかどうかを判断できる。   By comparing the measured value within the range stored in advance with the measured value of the microstructure, it can be determined whether or not the microstructure operates normally.

好ましくは、記憶している所定の範囲内の測定値は、微小構造体の正常動作時における、電流波形に対する波形の変形量の差、歪量の差、電流波形のピーク値に対する電圧差、電流波形に対する位相差のいずれかである。   Preferably, the memorized measurement value within the predetermined range is the difference in the amount of deformation of the waveform with respect to the current waveform, the difference in the amount of distortion, the voltage difference with respect to the peak value of the current waveform, the current during the normal operation of the microstructure. One of the phase differences with respect to the waveform.

これらの測定値のいずれかにより微小構造体が正常に動作しているかを判断できる。   It can be determined whether the microstructure is operating normally from any of these measured values.

好ましくは、電圧印加手段は、時間的にレベルが変化する交流電圧を固定部電極と可動部電極との間に印加する。   Preferably, the voltage applying means applies an AC voltage whose level changes with time between the fixed part electrode and the movable part electrode.

交流電圧として、正弦波、三角波、鋸止状波などを利用できる。   As an AC voltage, a sine wave, a triangular wave, a sawtooth wave, or the like can be used.

この発明の他の局面は、固定部電極と、固定部電極に対向して配置され、固定部電極との間に静電容量を有する可動部電極とを含む微小構造体の容量変化測定方法であって、固定部電極と可動部電極との間に電圧を印加するステップと、電圧を印加したときに、固定部電極と可動部電極との間に流れる電流を検出するステップと、検出された電流の時間変化に基づいて、固定部電極と可動部電極との間の静電容量の変化を検出するステップとを備える。   Another aspect of the present invention is a capacitance change measuring method for a microstructure including a fixed part electrode and a movable part electrode disposed opposite to the fixed part electrode and having a capacitance between the fixed part electrode. A step of applying a voltage between the fixed portion electrode and the movable portion electrode, a step of detecting a current flowing between the fixed portion electrode and the movable portion electrode when the voltage is applied, and And detecting a change in capacitance between the fixed part electrode and the movable part electrode based on the time change of the current.

この発明の方法によっても、電流波形の変化に基づいて静電容量の変化を検出できるので、プローブ等により静電容量を検出するものに比べて、ケーブル長や寄生容量の影響を受けることがない。   Also according to the method of the present invention, since the change in capacitance can be detected based on the change in the current waveform, it is not affected by the cable length or parasitic capacitance compared to the case where the capacitance is detected by a probe or the like. .

好ましくは、検出した静電容量の変化が、予め記憶している微小構造体の正常動作時における測定値内であるかどうかに基づいて、当該測定している微小構造体が正常に動作するかどうかを判断する。   Preferably, based on whether or not the detected change in capacitance is within the measurement value of the microstructure stored in advance during normal operation, whether the microstructure being measured operates normally Judge whether.

この例においても、当該微小構造体が正常に動作するかどうかを判断できる。   Also in this example, it can be determined whether or not the microstructure operates normally.

固定部電極と可動部電極との間に電圧を印加し、電圧を印加したときに、固定部電極と可動部電極との間に流れる電流を検出し、検出した電流の変化に基づいて、微小構造体の容量変化を測定するようにしたので、ケーブル長や寄生容量の影響を受けることがなく、簡単な構成で微小容量の計測が可能になり、動作検出が容易になる。   A voltage is applied between the fixed part electrode and the movable part electrode, and when a voltage is applied, a current flowing between the fixed part electrode and the movable part electrode is detected, and a minute amount is determined based on the detected change in the current. Since the change in the capacitance of the structure is measured, it is not affected by the cable length or parasitic capacitance, and it is possible to measure a minute capacitance with a simple configuration, thereby facilitating operation detection.

図1はこの発明の一実施例における微小構造体の容量変化測定装置を示すブロック図であり、図2はバイアス電位と容量変化を示す波形図である。図1において、微小構造体1は、例えば外部から速度が加えられると加速度を検出する加速度センサなどである。微小構造体1は、第1電極2および第2電極3を含む固定部電極4と、固定部電極4に対向して配置される可動部電極5とを含む。微小構造体1は、可動部電極5と固定部電極4とが水平となるように配置され、可動部電極5は、加速度あるいは振動が加えられると共振する。固定部電極4の第2電極3と可動部電極5との間から共振信号が検出信号として取出される。   FIG. 1 is a block diagram showing an apparatus for measuring a change in capacitance of a microstructure in one embodiment of the present invention, and FIG. 2 is a waveform diagram showing changes in bias potential and capacitance. In FIG. 1, a microstructure 1 is, for example, an acceleration sensor that detects acceleration when a speed is applied from the outside. The microstructure 1 includes a fixed part electrode 4 including a first electrode 2 and a second electrode 3, and a movable part electrode 5 disposed to face the fixed part electrode 4. The microstructure 1 is arranged so that the movable part electrode 5 and the fixed part electrode 4 are horizontal, and the movable part electrode 5 resonates when acceleration or vibration is applied. A resonance signal is extracted as a detection signal from between the second electrode 3 and the movable part electrode 5 of the fixed part electrode 4.

電圧印加手段として作動するバイアス発生回路20から、動作確認のために、図2(A)に示す正弦波のバイアス信号に基づくバイアス電位aが電流検出手段として作動する電流測定回路30を介して、微小構造体1の第1電極2と可動部電極5との間に印加される。バイアス電位に応じて、可動部電極5が変位し、その変位に応じた図2(B)に示す静電容量の容量変化bが検出信号として固定部電極4の第2電極3と可動部電極5との間から取出されて、検出信号が検出回路50に与えられる。検出回路50は静電容量の変化を電圧信号の変化に変換して、固定部電極4の第2電極3と可動部電極5との間の容量変化に対応する電圧信号を出力する。   A bias potential a based on a sine wave bias signal shown in FIG. 2A is supplied from a bias generation circuit 20 that operates as a voltage application unit, via a current measurement circuit 30 that operates as a current detection unit, for operation confirmation. It is applied between the first electrode 2 and the movable part electrode 5 of the microstructure 1. The movable part electrode 5 is displaced according to the bias potential, and the capacitance change b of the electrostatic capacity shown in FIG. 2B according to the displacement is detected as the second electrode 3 of the fixed part electrode 4 and the movable part electrode. 5 and a detection signal is given to the detection circuit 50. The detection circuit 50 converts the change in capacitance into a change in voltage signal, and outputs a voltage signal corresponding to the change in capacitance between the second electrode 3 of the fixed part electrode 4 and the movable part electrode 5.

電流測定回路30は、バイアス発生回路20から第1電極2と可動部電極5との間にバイアス信号が印加されたときに、第1電極2と可動部電極5との間に流れる電流を測定する。測定された電流測定信号は、容量変化検出手段として作動する電流変化検出判別回路40に与えられる。電流変化検出判別回路40は、FFT(Fast Fourie Transform:高速フーリエ変換)による周波数解析や歪率計による歪率測定などで構成される。   The current measurement circuit 30 measures the current flowing between the first electrode 2 and the movable part electrode 5 when a bias signal is applied between the first electrode 2 and the movable part electrode 5 from the bias generation circuit 20. To do. The measured current measurement signal is given to a current change detection discriminating circuit 40 that operates as a capacity change detecting means. The current change detection discriminating circuit 40 includes frequency analysis by FFT (Fast Fourie Transform), distortion rate measurement by a distortion meter, and the like.

図3は図1に示した微小構造体1の構造を示す図であり、(A)は平面図を示し、(B)は図3(A)の線IIIB−IIIBから見た断面図である。図3(B)に示す基板10上に酸化絶縁膜11が形成されており、微小構造体1は、酸化絶縁膜11上に形成されている。   3A and 3B are diagrams showing the structure of the microstructure 1 shown in FIG. 1, FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. . An oxide insulating film 11 is formed over the substrate 10 illustrated in FIG. 3B, and the microstructure 1 is formed over the oxide insulating film 11.

すなわち、図1に示した可動部電極5は、図3において櫛歯状電極が接続される可動部電極の錘部51と、可動部電極の錘部51の長手方向に対して直交する一方方向に櫛歯状に延びる複数の可動部櫛歯状電極52と、他方方向に延びる複数の可動部櫛歯状電極53と、可動部電極の錘部51の両端を支持する可動部バネ54,55と、可動部バネ54,55を固定するアンカー部56,57とを含む。アンカー部56,57は酸化絶縁膜11上に形成されているが、可動部バネ54,55と、可動部電極の錘部51および複数の可動部櫛歯状電極52,53は酸化絶縁膜11に固定されていないので、速度が加えられると可動または変位する。   That is, the movable part electrode 5 shown in FIG. 1 is in one direction orthogonal to the longitudinal direction of the weight part 51 of the movable part electrode to which the comb-like electrode is connected in FIG. 3 and the weight part 51 of the movable part electrode. A plurality of movable part comb-like electrodes 52 extending in a comb-like shape, a plurality of movable part comb-like electrodes 53 extending in the other direction, and movable part springs 54 and 55 for supporting both ends of the weight part 51 of the movable part electrode. And anchor portions 56 and 57 for fixing the movable portion springs 54 and 55. The anchor portions 56 and 57 are formed on the oxide insulating film 11. However, the movable portion springs 54 and 55, the weight portion 51 of the movable portion electrode and the plurality of movable portion comb-like electrodes 52 and 53 are formed on the oxide insulating film 11. It is not fixed to, so it will move or displace when velocity is applied.

固定部電極4の第1電極2と、第2電極3は、それぞれが分離して設けられており、可動部電極5を挟むように酸化絶縁膜11上に形成されている。第1電極2は可動部電極5の可動部電極の錘部51の一方側から延びる複数の可動部櫛歯状電極52の間に位置する櫛歯状部21を含む。第2電極3は可動部電極5の可動部電極の錘部51の他方側から延びる複数の可動部櫛歯状電極53の間に位置する固定部櫛歯状部31を含む。   The first electrode 2 and the second electrode 3 of the fixed part electrode 4 are provided separately from each other, and are formed on the oxide insulating film 11 so as to sandwich the movable part electrode 5. The first electrode 2 includes a comb-like portion 21 positioned between a plurality of movable-part comb-like electrodes 52 extending from one side of the weight part 51 of the movable-part electrode of the movable-part electrode 5. The second electrode 3 includes a fixed portion comb-like portion 31 positioned between a plurality of movable portion comb-like electrodes 53 extending from the other side of the weight portion 51 of the movable portion electrode 5 of the movable portion electrode 5.

櫛歯状部21と可動部櫛歯状電極52との間隔は、上段のギャップG2が広く下段のギャップG1は狭くなるよう配置されている。逆に、固定部櫛歯状部31と可動部櫛歯状電極53との間隔は、上段が狭く下段は広くなるよう配置されている。電極間容量値は電極間距離が狭い方が大きく、また同じ距離変化では元々電極間距離が狭い方が大きく容量値が変化する。したがって、櫛歯状部21と可動部櫛歯状電極52と容量値の変化は、下段の電極間距離の変化が支配的に影響する。逆に,固定部櫛歯状部櫛歯状部31と可動部櫛歯状電極53と容量値の変化は、上段の電極間距離の変化が支配的に影響する。   The interval between the comb-like portion 21 and the movable portion comb-like electrode 52 is arranged such that the upper gap G2 is wide and the lower gap G1 is narrow. Conversely, the interval between the fixed portion comb-like portion 31 and the movable portion comb-like electrode 53 is arranged such that the upper stage is narrow and the lower stage is wide. The capacitance value between the electrodes is larger when the distance between the electrodes is narrower, and the capacitance value changes when the distance between the electrodes is originally narrower when the distance is the same. Therefore, the change in the comb-tooth portion 21, the movable portion comb-tooth electrode 52, and the capacitance value is predominantly affected by the change in the lower inter-electrode distance. On the contrary, the change in the inter-electrode distance in the upper stage is dominantly affected by the change in the capacitance value of the fixed-part comb-teeth part comb-teeth part 31, the movable part comb-teeth electrode 53 and the capacitance value.

可動部電極の錘部51の長手方向に対して加速度がかかり、可動部電極の錘部51および可動部櫛歯状電極52,53が慣性力で紙面上方向に変位した場合、櫛歯状部21と可動部櫛歯状電極52との間の容量値は増加し、逆に、固定部櫛歯状部31と可動部櫛歯状電極53との間の容量値は減少する。両者の容量値の差分をモニターしておけば、慣性力による可動部の変位、すなわち加速度の指標がモニターできる。これが加速度センサとしての微小構造体1の動作である。   When acceleration is applied to the longitudinal direction of the weight portion 51 of the movable portion electrode, and the weight portion 51 of the movable portion electrode and the movable portion comb-like electrodes 52 and 53 are displaced upward in the drawing by inertial force, the comb-like portion The capacitance value between 21 and the movable portion comb-like electrode 52 increases, and conversely, the capacitance value between the fixed portion comb-like portion 31 and the movable portion comb-like electrode 53 decreases. By monitoring the difference between the two capacitance values, the displacement of the movable part due to the inertial force, that is, the index of acceleration can be monitored. This is the operation of the microstructure 1 as an acceleration sensor.

第1電極2の一端にはバイアス印加パッド22が形成されており、第2電極3の一端には検出電極パッド32が形成されており、可動部電極5のアンカー部57には可動部検出パッド58が形成されている。これらのパッド22,32,58には図示しないプローブカードのプローブ針が接触して、バイアス信号を印加したり、検出信号が取出されたりする。   A bias application pad 22 is formed at one end of the first electrode 2, a detection electrode pad 32 is formed at one end of the second electrode 3, and a movable part detection pad is provided at the anchor part 57 of the movable part electrode 5. 58 is formed. Probe pads of a probe card (not shown) come into contact with these pads 22, 32, and 58, and a bias signal is applied or a detection signal is taken out.

図1に示したバイアス発生回路20から出力されたバイアス出力は、バイアス印加パッド22と可動部検出パッド58に接続され、櫛歯状部21と可動部櫛歯状電極52とにバイアスが印加される。検出回路50の信号入力は、検出電極パッド32と可動部検出パッド58に接続される。第1電極2と可動部電極5との間にバイアス信号を印加すると、可動部電極5が変位し、第2電極3と可動部電極5との間の静電容量が変化し、可動部電極5の変位に応じた検出信号が現れる。   The bias output outputted from the bias generation circuit 20 shown in FIG. 1 is connected to the bias application pad 22 and the movable part detection pad 58, and a bias is applied to the comb-like part 21 and the movable part comb-like electrode 52. The The signal input of the detection circuit 50 is connected to the detection electrode pad 32 and the movable part detection pad 58. When a bias signal is applied between the first electrode 2 and the movable part electrode 5, the movable part electrode 5 is displaced, the capacitance between the second electrode 3 and the movable part electrode 5 changes, and the movable part electrode A detection signal corresponding to the displacement of 5 appears.

図4は、バイアス電位を印加したときに電極間距離が変わらない場合の電圧Vと電流Iの波形を示す波形図であり、横軸は時間t(sec)を示し、左縦軸はバイアス電位V(V)を示し、右縦軸は電流I(A)を示している。   FIG. 4 is a waveform diagram showing waveforms of voltage V and current I when the distance between the electrodes does not change when a bias potential is applied. The horizontal axis indicates time t (sec), and the left vertical axis indicates the bias potential. V (V) is shown, and the right vertical axis shows the current I (A).

図5は、バイアス電位V(V)の波形と、クーロン力により第1電極2と可動部電極5との間に働く力F(N)を示す波形図であり、横軸は時間t(sec)を示し、左縦軸はバイアス電位V(V)を示し、右縦軸はクーロン力F(N)を示している。   FIG. 5 is a waveform diagram showing the waveform of the bias potential V (V) and the force F (N) acting between the first electrode 2 and the movable part electrode 5 due to the Coulomb force, and the horizontal axis represents time t (sec. ), The left vertical axis indicates the bias potential V (V), and the right vertical axis indicates the Coulomb force F (N).

図6は、可動部電極5が引き寄せられることによる櫛歯状部21と共振ビーム52との間のギャップG(d)と静電容量C(F)との変化示す波形図であり、横軸は時間t(sec)を示し、左縦軸は静電容量C(F)を示し、右縦軸はギャップG(d)を示している。   FIG. 6 is a waveform diagram showing changes in the gap G (d) and the capacitance C (F) between the comb-like portion 21 and the resonant beam 52 due to the movable portion electrode 5 being drawn. Indicates time t (sec), the left vertical axis indicates capacitance C (F), and the right vertical axis indicates gap G (d).

図7は、正弦波信号のバイアス電位V(V)が印加されたときに流れる電流I(A)の波形と、歪を生じた電流I2(A)の波形を示す波形図であり、横軸は時間t(sec)を示し、左縦軸は電流I(A)を示している。   FIG. 7 is a waveform diagram showing the waveform of the current I (A) flowing when the bias potential V (V) of the sine wave signal is applied and the waveform of the distorted current I2 (A). Indicates time t (sec), and the left vertical axis indicates current I (A).

次に、図4から図7を参照してこの発明の一実施例における微小構造体の容量変化測定装置1の動作について説明する。図1に示したバイアス発生回路20から、例えば周波数1kHzの正弦波で、5Vのバイアス電位を第1電極2と可動部電極5との間に印加した場合、可動部電極5が変位しなければ、第1電極2と可動部電極5との間の容量がコンデンサとして機能するため、図4に示すように電流I(A)の波形は電圧V(V)の波形に対して90度位相が進み、振幅が一定、周期は1kHzの波形となる。   Next, with reference to FIGS. 4 to 7, the operation of the capacitance change measuring apparatus 1 for a microstructure in one embodiment of the present invention will be described. For example, when a bias potential of 5 V is applied between the first electrode 2 and the movable part electrode 5 with a sine wave having a frequency of 1 kHz from the bias generation circuit 20 shown in FIG. Since the capacitance between the first electrode 2 and the movable part electrode 5 functions as a capacitor, the waveform of the current I (A) is 90 degrees out of phase with the waveform of the voltage V (V) as shown in FIG. Advancing, the amplitude is constant and the period is 1 kHz.

このとき、バイアス電位Vが第1電極2と可動部電極5との間に印加されることにより、クーロン力により可動部電極5に力F(N)が作用する。この力F(N)は次式で示される。次式において、dはギャップ間の距離、Sは可動部電極5の面積である。   At this time, the bias potential V is applied between the first electrode 2 and the movable part electrode 5, whereby a force F (N) acts on the movable part electrode 5 by Coulomb force. This force F (N) is expressed by the following equation. In the following equation, d is the distance between the gaps, and S is the area of the movable part electrode 5.

Figure 2009139173
Figure 2009139173

バイアス電位V(V)の変化と、クーロン力による力F(N)は、図5に示すように、バイアス電位V(V)の変化にほぼ追従して変化するので、共振しなくともクーロン力による力F(N)に応じてギャップ間の距離が変化する。バイアス電位V(V)の周波数fが微小構造体1の可動部電極5の共振周波数と一致すると、可動部電極5の変位量が大きくなるので、第1電極2と可動部電極5との間の容量変化が大きくなり、電流波形の変化が大きくなるが、これは付随的な効果である。   As shown in FIG. 5, the change in the bias potential V (V) and the force F (N) due to the Coulomb force change almost following the change in the bias potential V (V). The distance between the gaps changes in accordance with the force F (N) due to. When the frequency f of the bias potential V (V) coincides with the resonance frequency of the movable part electrode 5 of the microstructure 1, the displacement amount of the movable part electrode 5 increases, so that the distance between the first electrode 2 and the movable part electrode 5 is increased. However, this is an attendant effect.

可動部電極5に力F(N)が作用すると、可動部電極5は可動部バネ54,55による一定のバネ定数に基づいて変位するので、図3に示した第1電極2の櫛歯状部21と可動部電極5の可動部櫛歯状電極52との間のギャップG1,G2が変化する。可動部バネ54,55のバネ定数が大きければ、図6に示すギャップGの立上がり立下りが急峻になる。可動部電極5の可動部櫛歯状電極52が第1電極2の櫛歯状部21に引き寄せられることによるギャップG(d)と静電容量C(F)の変化は次式で示される。   When a force F (N) is applied to the movable part electrode 5, the movable part electrode 5 is displaced based on a constant spring constant by the movable part springs 54 and 55, so that the comb-like shape of the first electrode 2 shown in FIG. The gaps G1 and G2 between the portion 21 and the movable portion comb-like electrode 52 of the movable portion electrode 5 change. If the spring constants of the movable part springs 54 and 55 are large, the rise and fall of the gap G shown in FIG. Changes in the gap G (d) and the capacitance C (F) due to the movable part comb-like electrode 52 of the movable part electrode 5 being attracted to the comb-like part 21 of the first electrode 2 are expressed by the following equations.

Figure 2009139173
Figure 2009139173

また、図6に示すように、静電容量C(F)とギャップG(d)とが時間的に変化する。図6に示すように、ギャップG(d)が小さければ静電容量C(F)が大きくなり、ギャップG(d)が大きければ静電容量C(F)が小さくなる。   Further, as shown in FIG. 6, the capacitance C (F) and the gap G (d) change with time. As shown in FIG. 6, the capacitance C (F) is increased when the gap G (d) is small, and the capacitance C (F) is decreased when the gap G (d) is large.

バイアス電位V(V)の変化に伴って静電容量C(F)が変化すると図7に示すように、電流I2(A)に歪が生じる、図7に示す電流I(A)はバイアス電位V(V)が正弦波のときに流れる電流波形である。   When the capacitance C (F) changes with the change of the bias potential V (V), as shown in FIG. 7, the current I2 (A) is distorted. The current I (A) shown in FIG. This is a current waveform that flows when V (V) is a sine wave.

図1に示した電流測定回路30は、図7に示す歪を生じた電流I2(A)を測定し、電流変化検出判別回路40は測定した電流に基づいて、微小構造体1がバイアス電位、すなわちクーロン力によって、可動部バネ54,55による所定のバネ定数に基づいて変化しているかどうかを判別する。電流波形の変化の検出および判別には、例えばFFTによる周波数解析、歪率計による歪率の計測を適用できる。   The current measurement circuit 30 shown in FIG. 1 measures the current I2 (A) that causes the distortion shown in FIG. 7, and the current change detection determination circuit 40 determines that the microstructure 1 has a bias potential based on the measured current. That is, it is determined whether or not the coulomb force is changed based on a predetermined spring constant by the movable part springs 54 and 55. For example, frequency analysis by FFT and distortion rate measurement by a distortion rate meter can be applied to the detection and discrimination of changes in the current waveform.

電流変化検出判別回路40は、予め正常に動作する微小構造体1の正常と判定可能な範囲内の静電容量値に対応した、電流波形に対する波形の変形量の差、歪量の差、電流波形のピーク値に対する電圧差、電流波形に対する位相差などのいずれかを記憶しており、検査時に検査対象の微小構造体1の測定した測定値が、記憶されている値の範囲内にあるかどうかを判別すれば、検査対象の微小構造体1が正常であるかどうかを判別できる。   The current change detection discriminating circuit 40 corresponds to a capacitance value within a range in which the microstructure 1 that normally operates normally can be determined to be normal, a difference in waveform deformation amount relative to a current waveform, a difference in distortion amount, a current Whether the voltage difference with respect to the peak value of the waveform or the phase difference with respect to the current waveform is stored, and whether the measured value of the microstructure 1 to be inspected at the time of inspection is within the range of stored values By determining whether or not, it is possible to determine whether or not the microstructure 1 to be inspected is normal.

なお、バイアス電位V(V)として、直流電圧または矩形波を第1電極2と可動部電極5との間に印加した場合、直流電圧を印加すると微小構造体1の第1電極2と可動部電極5との間で形成される静電容量C(F)に電荷がチャージされる間、一定の時定数をもった電流が流れる、この過程で第1電極2と可動部電極5との間にクーロン力F(N)が発生し、可動部電極5が変位する場合としない場合とで、電流が減少する時定数に変化が生じる。この電流波形の変化から微小構造体が電圧、すなわちクーロン力F(N)によって所定のバネ定数に基づいて変化しているかどうかを検出できる。   When a DC voltage or a rectangular wave is applied between the first electrode 2 and the movable part electrode 5 as the bias potential V (V), the first electrode 2 and the movable part of the microstructure 1 are applied when the DC voltage is applied. While a charge is charged in the capacitance C (F) formed between the electrodes 5, a current having a constant time constant flows, and in this process, between the first electrode 2 and the movable part electrode 5. When the Coulomb force F (N) is generated and the movable part electrode 5 is displaced, there is a change in the time constant at which the current decreases. It can be detected from this change in the current waveform whether the microstructure is changing based on a predetermined spring constant by the voltage, that is, the Coulomb force F (N).

以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示された実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.

この発明の一実施例における微小構造体の容量変化測定装置を示すブロック図である。It is a block diagram which shows the capacitance change measuring apparatus of the microstructure in one Example of this invention. バイアス電位と容量変化を示す波形図である。It is a wave form diagram which shows a bias potential and a capacitance change. 図1に示した微小構造体の構造を示す図であり、(A)は平面図を示し、(B)は図3(A)の線IIIB−IIIBから見た断面図である。2A and 2B are diagrams illustrating the structure of the microstructure shown in FIG. 1, in which FIG. 3A is a plan view, and FIG. 3B is a cross-sectional view taken along line IIIB-IIIB in FIG. バイアス電位を印加したときに電極間距離が変わらない場合の電圧Vと電流Iの波形の変化を示す波形図である。It is a wave form diagram which shows the change of the waveform of the voltage V and the electric current I when the distance between electrodes does not change when a bias potential is applied. バイアス電位V(V)の波形と、クーロン力により第1電極2と可動部電極5との間に働く力F(N)の変化を示す波形図である。It is a wave form diagram which shows the change of the waveform of bias electric potential V (V), and force F (N) which acts between the 1st electrode 2 and the movable part electrode 5 by Coulomb force. 可動部電極5が引き寄せられることによる櫛歯状部21と共振ビーム52との間のギャップG(d)と静電容量C(F)との変化を示す波形図である。It is a wave form diagram which shows the change of the gap G (d) and the electrostatic capacitance C (F) between the comb-tooth shaped part 21 and the resonance beam 52 by the movable part electrode 5 being drawn. 正弦波信号のバイアス電位V(V)が印加されたときに流れる電流I(A)の波形と、歪を生じた電流I2(A)の波形を示す波形図である。It is a wave form diagram which shows the waveform of the electric current I (A) which flows when the bias electric potential V (V) of a sine wave signal is applied, and the electric current I2 (A) which produced the distortion.

符号の説明Explanation of symbols

1 微小構造体、2 第1電極、3 第2電極、4 固定部電極、5 可動部電極、10 基板、11 酸化絶縁膜、20 バイアス発生回路、21,31 櫛歯状部、22 バイアス印加パッド、30 電流測定回路、40 電流変化検出判別回路、32 検出電極パッド、50 検出回路、51 可動部電極の錘部、52,53 可動部櫛歯状電極、54,55 可動部バネ、56,57 アンカー部。   DESCRIPTION OF SYMBOLS 1 Micro structure, 2 1st electrode, 3 2nd electrode, 4 Fixed part electrode, 5 Movable part electrode, 10 Substrate, 11 Oxide insulating film, 20 Bias generation circuit, 21, 31 Comb-like part, 22 Bias application pad , 30 Current measurement circuit, 40 Current change detection discrimination circuit, 32 Detection electrode pad, 50 Detection circuit, 51 Weight part of movable part electrode, 52, 53 Movable part comb-like electrode, 54, 55 Movable part spring, 56, 57 Anchor part.

Claims (6)

固定部電極と、前記固定部電極に対向して配置され、前記固定部電極との間に静電容量を有する可動部電極とを含む微小構造体の静電容量の変化を測定する容量変化測定装置であって、
前記固定部電極と前記可動部電極との間に電圧を印加する電圧印加手段と、
前記電圧印加手段によって電圧を印加したときに、前記固定部電極と前記可動部電極との間に流れる電流を検出する電流検出手段と、
前記電流検出手段によって検出された電流の時間変化に基づいて、前記固定部電極と前記可動部電極との間の静電容量の変化を検出する容量変化検出手段とを備える、微小構造体の容量変化測定装置。
Capacitance change measurement for measuring a change in capacitance of a microstructure including a fixed portion electrode and a movable portion electrode disposed opposite to the fixed portion electrode and having a capacitance between the fixed portion electrode and the fixed portion electrode. A device,
Voltage applying means for applying a voltage between the fixed part electrode and the movable part electrode;
Current detecting means for detecting a current flowing between the fixed part electrode and the movable part electrode when a voltage is applied by the voltage applying means;
Capacitance of the microstructure including a capacitance change detecting means for detecting a change in capacitance between the fixed part electrode and the movable part electrode based on a time change of the current detected by the current detecting means. Change measuring device.
前記容量変化検出手段は、前記微小構造体の正常動作時における静電容量に対応する所定の範囲内の測定値を記憶しており、測定時の測定値が前記記憶している測定値の範囲内にあるかどうかにより、当該微小構造体が正常に動作するかどうかを検出する、請求項1に記載の微小構造体の容量変化測定装置。   The capacitance change detecting means stores a measured value within a predetermined range corresponding to the capacitance during normal operation of the microstructure, and the measured value at the time of measurement is the range of the stored measured value The capacitance change measuring device for a microstructure according to claim 1, wherein whether or not the microstructure operates normally is detected depending on whether or not it is inside. 前記記憶している所定の範囲内の測定値は、前記微小構造体の正常動作時における、電流波形に対する波形の変形量の差、歪量の差、電流波形のピーク値に対する電圧差、電流波形に対する位相差のいずれかである、請求項2に記載の微小構造体の容量変化測定装置。   The stored measurement values within the predetermined range are the difference in the amount of deformation of the waveform with respect to the current waveform, the difference in the amount of distortion, the voltage difference with respect to the peak value of the current waveform, and the current waveform during normal operation of the microstructure. The capacity | capacitance change measuring apparatus of the micro structure of Claim 2 which is either the phase difference with respect to. 前記電圧印加手段は、時間的にレベルが変化する交流電圧を前記固定部電極と前記可動部電極との間に印加する、請求項1から3のいずれかに記載の微小構造体の容量変化測定装置。   The capacitance change measurement of the microstructure according to any one of claims 1 to 3, wherein the voltage applying unit applies an alternating voltage whose level changes with time between the fixed part electrode and the movable part electrode. apparatus. 固定部電極と、前記固定部電極に対向して配置され、前記固定部電極との間に静電容量を有する可動部電極とを含む微小構造体の容量変化測定方法であって、
前記固定部電極と前記可動部電極との間に電圧を印加するステップと、
前記電圧を印加したときに、前記固定部電極と前記可動部電極との間に流れる電流を検出するステップと、
前記検出された電流の時間変化に基づいて、前記固定部電極と前記可動部電極との間の静電容量の変化を検出するステップとを備える、微小構造体の容量変化測定方法。
A capacitance change measurement method for a microstructure including a fixed part electrode and a movable part electrode disposed opposite to the fixed part electrode and having a capacitance between the fixed part electrode,
Applying a voltage between the fixed part electrode and the movable part electrode;
Detecting a current flowing between the fixed part electrode and the movable part electrode when the voltage is applied;
And detecting a change in capacitance between the fixed part electrode and the movable part electrode based on the time change of the detected current.
前記検出した静電容量の変化が、予め記憶している前記微小構造体の正常動作時における測定値内であるかどうかに基づいて、当該測定している微小構造体が正常に動作するかどうかを判断するステップを含む、請求項5に記載の微小構造体の容量変化測定方法。   Whether or not the measured microstructure operates normally based on whether or not the detected change in capacitance is within the measured value of the microstructure stored in advance during normal operation The method for measuring a change in capacitance of a microstructure according to claim 5, comprising a step of determining
JP2007314453A 2007-12-05 2007-12-05 Device and method for measuring capacity variation of microstructure Pending JP2009139173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007314453A JP2009139173A (en) 2007-12-05 2007-12-05 Device and method for measuring capacity variation of microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314453A JP2009139173A (en) 2007-12-05 2007-12-05 Device and method for measuring capacity variation of microstructure

Publications (1)

Publication Number Publication Date
JP2009139173A true JP2009139173A (en) 2009-06-25

Family

ID=40869930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314453A Pending JP2009139173A (en) 2007-12-05 2007-12-05 Device and method for measuring capacity variation of microstructure

Country Status (1)

Country Link
JP (1) JP2009139173A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346572A (en) * 1989-07-13 1991-02-27 Fujitsu Ltd Capacitance measuring circuit
JPH09257856A (en) * 1996-03-26 1997-10-03 Honda Motor Co Ltd Power supply device and method for detecting deterioration
JPH10239196A (en) * 1997-02-24 1998-09-11 Mitsubishi Electric Corp Capacitance type sensor-interface circuit
JP2001083202A (en) * 1999-09-17 2001-03-30 Shizuki Electric Co Inc Capacitor device
JP2001311757A (en) * 2000-04-28 2001-11-09 Nec Corp Inspecting device for array type electronic component
JP2005114440A (en) * 2003-10-06 2005-04-28 Japan Aviation Electronics Industry Ltd Acceleration sensor of capacitance detection type capable of diagnosing malfunction
JP2006010594A (en) * 2004-06-29 2006-01-12 Yamamoto Denki Instrument Kk Capacitance sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346572A (en) * 1989-07-13 1991-02-27 Fujitsu Ltd Capacitance measuring circuit
JPH09257856A (en) * 1996-03-26 1997-10-03 Honda Motor Co Ltd Power supply device and method for detecting deterioration
JPH10239196A (en) * 1997-02-24 1998-09-11 Mitsubishi Electric Corp Capacitance type sensor-interface circuit
JP2001083202A (en) * 1999-09-17 2001-03-30 Shizuki Electric Co Inc Capacitor device
JP2001311757A (en) * 2000-04-28 2001-11-09 Nec Corp Inspecting device for array type electronic component
JP2005114440A (en) * 2003-10-06 2005-04-28 Japan Aviation Electronics Industry Ltd Acceleration sensor of capacitance detection type capable of diagnosing malfunction
JP2006010594A (en) * 2004-06-29 2006-01-12 Yamamoto Denki Instrument Kk Capacitance sensor

Similar Documents

Publication Publication Date Title
JP4510068B2 (en) Displacement measuring apparatus and displacement measuring method for microstructure
Tang Electrostatic comb drive for resonant sensor and actuator applications
JP4899781B2 (en) Capacitive mechanical quantity detector
US5618989A (en) Acceleration sensor and measurement method
CN103582607B (en) calibration of MEMS sensor
US7543473B2 (en) Sensor self-test transfer standard
JP5024803B2 (en) Detection sensor
JP2008164611A (en) Method and system for calibrating microelectromechanical system (mems) based sensor using tunneling current sensing
US7059189B2 (en) Acceleration sensor and method for detecting an acceleration
US9174837B2 (en) System and method for detecting surface charges of a MEMS device
US8402827B2 (en) Sensor element and method for operating a sensor element
JP6199574B2 (en) Voltage sensor
CN103033552B (en) Mechanical property degradation detection method for microstructure material
JPH10185787A (en) Fatigue test device
JP2009139173A (en) Device and method for measuring capacity variation of microstructure
JP2007240393A (en) Surface electrometer and surface potential measuring method
JP2009085729A (en) Sensor element and physical sensor device
Perahia et al. Electric gradient force drive mechanism for novel microscale all-dielectric gyroscope
Kranz et al. In situ wafer-level polarization of electret films in MEMS acoustic sensor arrays
US20110109327A1 (en) Sensor for capacitive detection of a mechanical deflection
JP2007240449A (en) Pressure sensor, pressure detector, and pressure detection method
JP5193541B2 (en) Angular velocity detector
Fletcher et al. Piezoresistive geometry for maximizing microcantilever array sensitivity
Nobunaga et al. Isolated voltage sensing using micro-resonator
RU2244271C1 (en) Method for controlling quality of manufacture of micro-mechanical devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Effective date: 20110906

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110