JPH09257467A - Optical displacement-measuring apparatus - Google Patents

Optical displacement-measuring apparatus

Info

Publication number
JPH09257467A
JPH09257467A JP8065891A JP6589196A JPH09257467A JP H09257467 A JPH09257467 A JP H09257467A JP 8065891 A JP8065891 A JP 8065891A JP 6589196 A JP6589196 A JP 6589196A JP H09257467 A JPH09257467 A JP H09257467A
Authority
JP
Japan
Prior art keywords
light
detected
lens
objective lens
projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8065891A
Other languages
Japanese (ja)
Inventor
Shinya Otsuki
真也 大槻
Yuichi Inoue
祐一 井上
Toshitaka Sato
俊孝 佐藤
Hiroshi Tarukawa
啓 樽川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP8065891A priority Critical patent/JPH09257467A/en
Publication of JPH09257467A publication Critical patent/JPH09257467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical displacement-measuring apparatus which has a large tolerance to an inclination of a face to be measured (object to be detected) or a setting angle thereof, small detection errors and is hard to generate noises. SOLUTION: The apparatus is provided with a light-projecting means 1 for projecting light beams to an object 90 to be detected, a condensing means 2 spaced a predetermined distance sideways of the projecting means 1 for condensing a reflecting light of light beams from the object 90, and a PSD (light spot position-detecting element) 3 arranged at a condensing face of the condensing means 2 for outputting a pair of detection signals consequent to the movement of a condensed light spot. The light-projecting means 1 consists of an LD (light- projecting element) 11, a collimator lens 12, an objective lens 13, a circular opening 14, and an optical filter 15. The circular opening 14 is placed on an optical path between the collimator lens 12 and objective lens 13. An opening diameter of the circular opening 14 is set to be smaller than an entrance pupil of the objective lens 13. An intensity distribution of projected light sports to the object 90 is rendered approximately flat.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、三角測量方式にて
被検知物体を検出する光学式変位測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical displacement measuring device for detecting an object to be detected by a triangulation method.

【0002】[0002]

【従来の技術】この種の光学式変位測定装置の中で、距
離を測定する装置や物体を検知する装置としては、特開
昭59−138916号公報や特公平6−5165号公
報に記載されたものがある。前者の公報に記載された
「距離測定装置」は、対象面からの反射ビームを、シャ
インプルーフ条件を満たすように配した撮像レンズを介
して一次元光検出器に結像し、電気的処理により距離を
検出するものにおいて、撮像レンズの面を観察軸に対し
て観察側に鋭角に傾けて配したものである。つまり、シ
ャインプルーフ条件を満たす検出光学系において、撮像
レンズ(受光レンズ)の受光面を傾けることによって、
半導体位置検知素子(PSD)に対する入射角を小さく
し、表面反射による受光量劣化を防ぎ、S/N比を改善
しようとするものである。
2. Description of the Related Art Among the optical displacement measuring devices of this type, a device for measuring a distance and a device for detecting an object are described in JP-A-59-138916 and JP-B-6-5165. There is something. The "distance measuring device" described in the former publication forms an image of the reflected beam from the target surface on a one-dimensional photodetector through an imaging lens arranged so as to satisfy the Scheimpflug condition. In the case of detecting the distance, the surface of the imaging lens is arranged with an acute angle to the observation axis with respect to the observation axis. That is, in the detection optical system that satisfies the Scheimpflug condition, by tilting the light receiving surface of the imaging lens (light receiving lens),
The present invention aims to improve the S / N ratio by reducing the incident angle to the semiconductor position detecting element (PSD), preventing the deterioration of the amount of received light due to surface reflection.

【0003】又、後者の公報に記載された「光電式物体
検知装置」は、投光手段の側方に所定間隔を置いて配設
され、被検知物体による光ビームの反射光を集光する集
光手段を、凸レンズよりなる受光レンズと、受光レンズ
の前面側に設けたスリット板とで構成し、スリット板の
スリットを縦長とし、集光スポットの移動方向の収差が
小さくなるようにしたものである。
The "photoelectric object detection device" described in the latter publication is arranged on the side of the light projecting means at a predetermined interval and collects the reflected light of the light beam by the detected object. Condensing means is composed of a light receiving lens consisting of a convex lens and a slit plate provided on the front side of the light receiving lens, and the slit of the slit plate is vertically long so that the aberration in the moving direction of the focused spot is reduced. Is.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前者の
公報に記載されたものでは、同一受光レンズ径であって
も、対象面からみた立体角が小さくなるので、対象面の
傾き角或いは装置の対象面との設置角度の許容量が小さ
いという問題点がある。後者の公報に記載されたもので
も、同一受光レンズ径であっても、対象面からみた立体
角が小さくなるので、対象面の傾き角或いは装置の対象
面との設置角度の許容量が小さい。又、スリット板によ
り受光量を遮断しているので、反射率の小さい被検知物
体では、S/N比の低下が生じる。この結果、被検知物
体に色むらがある場合や、被検知物体のエッジにおい
て、検出誤差が生じるという問題点がある。
However, in the former publication, the solid angle seen from the target surface is small even with the same light-receiving lens diameter, so the tilt angle of the target surface or the target of the device is reduced. There is a problem that the allowance of the installation angle with respect to the surface is small. Even in the latter publication, even if the diameter of the light receiving lens is the same, the solid angle viewed from the target surface is small, and therefore the allowable amount of the tilt angle of the target surface or the installation angle of the device with the target surface is small. Further, since the amount of received light is blocked by the slit plate, the S / N ratio is lowered in the detected object having a small reflectance. As a result, there are problems that the detected object has color unevenness and that a detection error occurs at the edge of the detected object.

【0005】更に、前者のものでは、シャインプルーフ
条件を満たす検出光学系において、対象面に平行ビーム
光を投光しているが、平行ビーム光の一部が投光素子と
しての半導体レーザに戻ることがある。このような場
合、雑音が発生し、発光パワーが変動してしまうという
問題点がある。このことは、例えば「半導体レーザの自
己結合効果とその応用に関する研究」、三橋氏、電総研
報告書、No.866, May, 1986 、「半導体レーザの戻り光
誘起雑音」、藤田他、NATIONAL TECHNICALREPORT, VOL.
32, NO.2, 1986に記載されている周知事項である。
Further, in the former case, in the detection optical system satisfying the Scheimpflug condition, parallel beam light is projected onto the target surface, but part of the parallel beam light returns to the semiconductor laser as a light projecting element. Sometimes. In such a case, there is a problem that noise is generated and the light emission power fluctuates. This is, for example, "Self-coupling effect of semiconductor laser and its application", Dr. Mitsuhashi, AIST report, No.866, May, 1986, "Return light induced noise of semiconductor laser", Fujita et al., NATIONAL TECHNICAL REPORT, VOL.
32, No. 2, 1986.

【0006】一方、平行ビーム光でなくて集光ビーム光
にしても、距離測定の場合は、一旦平行光にした後、集
光レンズにて集光ビーム光にしたり、或いは戻り光雑音
を抑圧するための対策に高周波重畳によるレーザの多モ
ード化を用いたりするが、いずれもコストが上昇するだ
けでなく、完全に雑音を抑圧できないという問題点があ
る。
On the other hand, even if a condensed beam light is used instead of the parallel beam light, in the case of distance measurement, the beam is once converted into a parallel beam and then converted into a condensed beam beam by a condenser lens, or return light noise is suppressed. As a countermeasure for this, a multimode laser is used by superimposing a high frequency. However, both of them not only increase the cost, but also have the problem that noise cannot be completely suppressed.

【0007】従って、本発明は、そのような問題点に着
目してなされたもので、対象面(被検知物体)の傾きや
装置の設置角度の許容量が大きく、検出誤差が小さく、
雑音が生じ難い光学式変位測定装置を提供することを目
的とする。
Therefore, the present invention has been made by paying attention to such a problem, and the tolerance of the inclination of the target surface (object to be detected) and the installation angle of the device is large, and the detection error is small.
An object of the present invention is to provide an optical displacement measuring device that is less likely to generate noise.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明の請求項1記載の光学式変位測定装置は、被
検知物体に対して光ビームを投光する投光手段と、この
投光手段の側方に所定間隔を置いて配設され、被検知物
体による光ビームの反射光を集光する集光手段と、この
集光手段の集光面に配設され、集光スポットの移動によ
り一対の検知信号を出力する光点位置検出素子と、この
光点位置検出素子の一対の検知信号に基づいて被検知物
体を判別する判別手段とを備えるものにおいて、前記投
光手段が、投光素子と、投光素子からの光ビームを平行
光にするコリメータレンズと、コリメータレンズを通過
した光を被検知物体に投光する対物レンズと、コリメー
タレンズと対物レンズとの間の光路上に配置された円形
開口とで構成され、前記円形開口の開口径を対物レンズ
の入射瞳径よりも小さくし、被検知物体に対する投光ス
ポットの強度分布がほぼフラットになるようにしたこと
を特徴とする。
In order to achieve the above object, an optical displacement measuring apparatus according to claim 1 of the present invention comprises a light projecting means for projecting a light beam onto an object to be detected. Condensing means, which are arranged on the side of the light projecting means at a predetermined interval and condense the reflected light of the light beam by the object to be detected, and a condensing surface which is arranged on the condensing surface of the condensing means. In which a light spot position detecting element that outputs a pair of detection signals by movement of the light spot and a discriminating means that discriminates a detected object based on the pair of detection signals of the light spot position detecting element are provided. , A light projecting element, a collimator lens that collimates the light beam from the light projecting element, an objective lens that projects the light that has passed through the collimator lens onto an object to be detected, and the light between the collimator lens and the objective lens. Consists of circular openings arranged on the street Wherein the opening diameter of the circular opening smaller than the entrance pupil diameter of the objective lens, wherein the intensity distribution of the projected light spot with respect to the detected object has to be substantially flat.

【0009】又、請求項2記載の光学式変位測定装置
は、被検知物体に対して光ビームを投光する投光手段
と、この投光手段の側方に所定間隔を置いて配設され、
被検知物体による光ビームの反射光を集光する集光手段
と、この集光手段の集光面に配設され、集光スポットの
移動により一対の検知信号を出力する光点位置検出素子
と、この光点位置検出素子の一対の検知信号に基づいて
被検知物体を判別する判別手段とを備えるものにおい
て、前記投光手段が、投光素子と、投光素子からの光ビ
ームを平行光にするコリメータレンズと、コリメータレ
ンズを通過した光を被検知物体に投光する対物レンズ
と、投光素子とコリメータレンズとの間の光路上に配置
された円形開口とで構成され、前記円形開口の開口径を
コリメータレンズの入射瞳径よりも小さくし、コリメー
タレンズを通過する光の強度分布がほぼフラットになる
ようにしたことを特徴とする。
The optical displacement measuring apparatus according to a second aspect of the present invention is arranged such that a light projecting means for projecting a light beam onto the object to be detected and a predetermined space beside the light projecting means. ,
Condensing means for condensing the reflected light of the light beam by the object to be detected, and a light spot position detecting element arranged on the condensing surface of this condensing means and outputting a pair of detection signals according to the movement of the converging spot. A light emitting element and a light beam from the light projecting element, the light projecting means collimating the light beam from the light projecting element into parallel light. A collimator lens, an objective lens that projects light that has passed through the collimator lens onto an object to be detected, and a circular aperture that is arranged on the optical path between the light projecting element and the collimator lens. The aperture diameter is smaller than the entrance pupil diameter of the collimator lens so that the intensity distribution of the light passing through the collimator lens becomes substantially flat.

【0010】この請求項1及び請求項2記載の装置で
は、いずれも投光手段が投光素子、コリメータレンズ、
対物レンズ及び円形開口で構成され、そのうちの円形開
口が請求項1ではコリメータレンズと対物レンズとの間
の光路上に、請求項2では投光素子とコリメータレンズ
との間の光路上に、それぞれ配置されている。そして、
それぞれ円形開口の開口径を対物レンズ(請求項1)や
コリメータレンズ(請求項2)の入射瞳径よりも小さく
し、被検知物体に対する投光スポットの強度分布(請求
項1)やコリメータレンズを通過する光の強度分布(請
求項2)がほぼフラットになるようにしてある。つま
り、投光手段をコリメータ系とし、開口径の小さい円形
開口(ピンホール)を設け、ビーム光の強度分布の中心
部分のみを投光し、周辺部の光をカットすることによっ
て、対象面(被検知物体)に投光されるビームの強度分
布を矩形状としてある。この結果、対象面の傾きや装置
の設置角度の許容量が大きくなり、検出誤差が小さくな
る。
In each of the apparatus of the first and second aspects, the light projecting means is a light projecting element, a collimator lens,
It is composed of an objective lens and a circular aperture, of which the circular aperture is on the optical path between the collimator lens and the objective lens in claim 1, and in the optical path between the light projecting element and the collimator lens in claim 2, respectively. It is arranged. And
The aperture diameter of each circular aperture is made smaller than the entrance pupil diameter of the objective lens (Claim 1) or the collimator lens (Claim 2), and the intensity distribution of the projected spot (Claim 1) and the collimator lens with respect to the object to be detected are set. The intensity distribution of passing light (claim 2) is made substantially flat. That is, a collimator system is used as the light projecting means, a circular opening (pinhole) having a small opening diameter is provided, and only the central portion of the intensity distribution of the beam light is projected, and the light in the peripheral portion is cut off. The intensity distribution of the beam projected onto the object to be detected) is rectangular. As a result, the tolerance of the inclination of the target surface and the installation angle of the device increases, and the detection error decreases.

【0011】請求項3記載の装置では、投光手段、コリ
メータレンズ及び円形開口を結ぶ光軸に対して、対物レ
ンズの光軸を、対物レンズの主点を中心に傾けて配置し
てあるので、雑音が生じ難く、発光パワーの変動が安定
する。請求項4記載の装置では、対物レンズの光出射側
に光学フィルタを配置し、対物レンズと光学フィルタを
一体化してあるので、組立調整が容易で、装置が安価に
なる。
In the apparatus according to the third aspect, the optical axis of the objective lens is arranged so as to be inclined with respect to the principal point of the objective lens with respect to the optical axis connecting the light projecting means, the collimator lens and the circular aperture. , Noise is less likely to occur, and fluctuations in light emission power are stable. In the apparatus according to the fourth aspect, since the optical filter is arranged on the light emitting side of the objective lens and the objective lens and the optical filter are integrated, the assembly and adjustment are easy and the apparatus becomes inexpensive.

【0012】一方、請求項7記載の光学式変位測定装置
は、被検知物体に対して光ビームを投光する投光手段
と、この投光手段の側方に所定間隔を置いて配設され、
被検知物体による光ビームの反射光を集光する集光手段
と、この集光手段の集光面に配設され、集光スポットの
移動により一対の検知信号を出力する光点位置検出素子
と、この光点位置検出素子の一対の検知信号に基づいて
被検知物体を判別する判別手段とを備えるものにおい
て、前記光点位置検出素子を集光手段の光軸に平行にス
ライドさせる凹凸のレール構造を備え、光点位置検出素
子をスライドさせることにより、集光手段と光点位置検
出素子とがシャインプルーフ条件を満たすように配置さ
れていることを特徴とする。
On the other hand, an optical displacement measuring apparatus according to a seventh aspect of the present invention is arranged such that a light projecting means for projecting a light beam onto an object to be detected and a side portion of the light projecting means are arranged at a predetermined interval. ,
Condensing means for condensing the reflected light of the light beam by the object to be detected, and a light spot position detecting element arranged on the condensing surface of this condensing means and outputting a pair of detection signals according to the movement of the converging spot. A discriminating means for discriminating an object to be detected based on a pair of detection signals of the light spot position detecting element, wherein the uneven rail for sliding the light spot position detecting element in parallel with the optical axis of the light collecting means. It is characterized in that the light condensing means and the light spot position detecting element are arranged so as to satisfy the Scheimpflug condition by providing a structure and sliding the light spot position detecting element.

【0013】この請求項7記載の装置では、凹凸のレー
ル構造により光点位置検出素子が集光手段の光軸に平行
に移動できるので、集光手段と光点位置検出素子との位
置関係をシャインプルーフ条件に合うように容易に調整
することができる。
In the apparatus according to the present invention, since the light spot position detecting element can be moved in parallel with the optical axis of the light collecting means by the uneven rail structure, the positional relationship between the light collecting means and the light spot position detecting element is determined. It can be easily adjusted to meet Scheimpflug conditions.

【0014】[0014]

【発明の実施の形態】以下、本発明を実施の形態に基づ
いて説明する。その一実施形態に係る光学式変位測定装
置の外観斜視図を図1に、その模式的上面図を図2に示
す。この測定装置は、被検知物体90に対して光ビーム
を投光する投光手段1と、この投光手段1の側方に所定
間隔を置いて配設され、被検知物体90による光ビーム
の反射光を集光する集光手段2と、この集光手段2の集
光面に配設され、集光スポットの移動により一対の検知
信号を出力する光点位置検出素子3と、この光点位置検
出素子3の一対の検知信号に基づいて被検知物体90を
判別する判別手段(図示せず)とを備える。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 shows an external perspective view of an optical displacement measuring device according to one embodiment, and FIG. 2 shows a schematic top view thereof. This measuring device is provided with a light projecting means 1 for projecting a light beam onto the object 90 to be detected and a light beam from the object 90 to be detected, which is arranged at a side of the light projecting means 1 at a predetermined interval. Condensing means 2 for condensing the reflected light, light spot position detecting element 3 disposed on the condensing surface of this condensing means 2 and outputting a pair of detection signals by the movement of the converging spot, and this light spot. And a determination unit (not shown) that determines the detected object 90 based on the pair of detection signals of the position detection element 3.

【0015】投光手段1と受光手段2は、図示のような
形状のベース7に取付けられ、各々の投光軸L1 と受光
軸L2 が交差するように、互いに内向きに配置されてい
る。投光手段1は、投光素子として例えば半導体レーザ
(LD)11と、LD11からの光ビームを平行光にす
るコリメータレンズ12と、コリメータレンズ12を通
過した光を被検知物体90に投光する対物レンズ13
と、コリメータレンズ12と対物レンズ13との間の光
路上に配置された円形開口14と、更に対物レンズ13
の光出射側に配置された光学フィルタ15とで構成され
る。円形開口14の開口径は対物レンズ13の入射瞳径
よりも小さく、被検知物体90に対する投光スポットの
強度分布がほぼフラットになるようにしてある。
The light projecting means 1 and the light receiving means 2 are attached to a base 7 having a shape as shown in the drawing, and are arranged inwardly so that the light projecting axis L 1 and the light receiving axis L 2 intersect each other. There is. The light projecting means 1 projects, for example, a semiconductor laser (LD) 11 as a light projecting element, a collimator lens 12 that makes a light beam from the LD 11 parallel light, and light that has passed through the collimator lens 12 onto a detected object 90. Objective lens 13
A circular aperture 14 arranged on the optical path between the collimator lens 12 and the objective lens 13, and the objective lens 13
And an optical filter 15 disposed on the light emission side of the. The diameter of the circular aperture 14 is smaller than the diameter of the entrance pupil of the objective lens 13 so that the intensity distribution of the projected light spot on the detected object 90 becomes substantially flat.

【0016】LD11はLD基板41に実装され、LD
基板41はネジ42によりLDホルダ43に固定され、
更にLDホルダ43は、これをベース7から絶縁して電
気的ノイズからLD11を保護するための部材45を介
してネジ44によりベース7に固定されている。LDホ
ルダ43は、LD11に対面して配置されたコリメータ
レンズ12を有し、コリメータレンズ12は、LDホル
ダ43にネジ47によって固定された金具46により所
定位置に押圧固定されている。
The LD 11 is mounted on the LD substrate 41, and the LD
The substrate 41 is fixed to the LD holder 43 with screws 42,
Further, the LD holder 43 is fixed to the base 7 with a screw 44 via a member 45 for insulating the LD holder 43 from the base 7 and protecting the LD 11 from electrical noise. The LD holder 43 has a collimator lens 12 arranged to face the LD 11, and the collimator lens 12 is pressed and fixed at a predetermined position by a metal fitting 46 fixed to the LD holder 43 by a screw 47.

【0017】コリメータレンズ12に円形開口14を介
して対面する対物レンズ13は、対物レンズホルダ48
に接着固定され、この対物レンズホルダ48に光学フィ
ルタ15が接着固定されている。又、対物レンズホルダ
48の平行光入射側に円形開口14が配されている。こ
の円形開口14、対物レンズ13及び光学フィルタ15
が一体構造となった対物レンズホルダ48は、ベース7
の前部71に嵌挿され、例えば植込ボルトによって前部
71に固定されている。
The objective lens 13 facing the collimator lens 12 through the circular opening 14 is an objective lens holder 48.
The optical filter 15 is adhesively fixed to the objective lens holder 48. Further, the circular opening 14 is arranged on the parallel light incident side of the objective lens holder 48. The circular aperture 14, the objective lens 13, and the optical filter 15
The objective lens holder 48 in which the
Is inserted into the front portion 71 and is fixed to the front portion 71 by, for example, a stud bolt.

【0018】この実施形態では、図5に示すように対物
レンズホルダ48は、対物レンズ13の光軸L3が投光
軸L1 に対して対物レンズ13の主点を中心に4度下向
きに傾くように配置してある。こうすることで、LD1
1への戻り光(被検知物体90からの反射光の一部がL
D11に戻る光)を完全になくすことができるので、雑
音が生じ難く、発光パワーの変動が安定する。又、LD
基板41は、図に矢印で示す方向、即ち投光軸L1 に平
行な位置と垂直な位置を微調整することができる。これ
は、例えばLD基板41のネジ42用の孔をやや大きめ
に形成することで実現できる。
In this embodiment, as shown in FIG. 5, in the objective lens holder 48, the optical axis L3 of the objective lens 13 is tilted downward by 4 degrees about the principal point of the objective lens 13 with respect to the projection axis L 1 . It is arranged as follows. By doing this, LD1
Return light to 1 (a part of the reflected light from the detected object 90 is L
Since the light returning to D11) can be completely eliminated, noise is less likely to occur and the fluctuation of the emission power is stable. Also, LD
The substrate 41 can be finely adjusted in a direction indicated by an arrow in the drawing, that is, a position parallel to the light projecting axis L 1 and a position perpendicular thereto. This can be realized, for example, by forming the holes for the screws 42 of the LD substrate 41 to be slightly larger.

【0019】受光手段2は、受光レンズ21と、受光レ
ンズ21の光入射側に配置された光学フィルタ22とで
構成され、受光レンズ21は受光レンズホルダ51に接
着固定されると共に、光学フィルタ22も受光レンズホ
ルダ51の反射光入射側に接着固定されている。この受
光レンズ21と光学フィルタ22が一体構造となった受
光レンズホルダ51は、ベース7の前部71に嵌挿さ
れ、例えば植込ボルトによって前部71に固定されてい
る。受光レンズ21の光軸は、受光軸L2 と合致し且つ
平行に設定されている。
The light receiving means 2 comprises a light receiving lens 21 and an optical filter 22 arranged on the light incident side of the light receiving lens 21. The light receiving lens 21 is adhesively fixed to a light receiving lens holder 51 and at the same time, the optical filter 22. Is also fixed to the reflected light incident side of the light receiving lens holder 51 by adhesion. The light receiving lens holder 51 in which the light receiving lens 21 and the optical filter 22 are integrally formed is fitted into the front portion 71 of the base 7 and fixed to the front portion 71 by, for example, a stud bolt. The optical axis of the light receiving lens 21 coincides with the light receiving axis L 2 and is set to be parallel.

【0020】受光レンズ21を通過した光を受光する光
点位置検出素子3は、例えばPIN型ホトダイオードに
属する半導体位置検知素子(PSD)であり、このPS
D3はPSD基板52に実装されている。PSD基板5
2はPSDホルダ53にネジ54により固定される。P
SDホルダ53には、PSD基板52が受光軸L2 に対
して角度α(図3参照)だけ傾いた方向に平行にスライ
ドできるように、PSD基板52との接触面に直線状の
溝55が形成されている。なお、PSD基板52の背面
側には、PSD3のプリアンプ回路をシールドするため
のフィルムシールド56が固着されている。
The light spot position detecting element 3 for receiving the light passing through the light receiving lens 21 is, for example, a semiconductor position detecting element (PSD) belonging to a PIN type photodiode.
D3 is mounted on the PSD substrate 52. PSD board 5
2 is fixed to the PSD holder 53 with a screw 54. P
The SD holder 53 has a linear groove 55 on the contact surface with the PSD substrate 52 so that the PSD substrate 52 can slide parallel to the direction inclined by the angle α (see FIG. 3) with respect to the light receiving axis L 2 . Has been formed. A film shield 56 for shielding the preamplifier circuit of the PSD 3 is fixed to the back side of the PSD substrate 52.

【0021】更に、図6〔斜視図(a)、及び要部拡大
断面図(b)〕に示すように、PSDホルダ53の底面
には、PSDホルダ53が受光軸L2 と平行にスライド
できるように、長方形状の凸部57が設けられ、この凸
部57に対応して、ベース7には凹溝58が形成されて
いる。凹溝58は、その長手方向の長さが凸部57の長
さより長く設定されており、凸部57を凹溝58に嵌め
込むことで、PSDホルダ53を受光軸L2 に平行にス
ライドさせることができる。但し、凹溝58は、ベース
7を貫通していてもよい。PSDホルダ53のネジ60
用の孔59は2箇所に形成され、ネジ孔59はそれぞれ
受光軸L2 から等距離に位置する。このため、PSDホ
ルダ53をベース7上でスライドさせる力がネジ孔59
に加わっても、PSDホルダ53はヨーイングすること
なく受光軸L2 と平行にスライドする。更に、PSDホ
ルダ53の位置を調整した後、ネジ60による締結力で
PSDホルダ53の位置がずれないように、ネジ孔59
はスライド調整する力点も兼ねている。
Further, as shown in FIG. 6 [perspective view (a) and enlarged sectional view of essential parts (b)], the PSD holder 53 can be slid on the bottom surface of the PSD holder 53 in parallel with the light receiving axis L 2. Thus, the rectangular convex portion 57 is provided, and the concave groove 58 is formed in the base 7 corresponding to the convex portion 57. The length of the concave groove 58 in the longitudinal direction is set longer than the length of the convex portion 57, and by fitting the convex portion 57 into the concave groove 58, the PSD holder 53 is slid parallel to the light receiving axis L 2 . be able to. However, the groove 58 may penetrate the base 7. Screw 60 of PSD holder 53
The holes 59 for use are formed at two locations, and the screw holes 59 are located equidistant from the light receiving axis L 2 . Therefore, the force for sliding the PSD holder 53 on the base 7 is the screw hole 59.
, The PSD holder 53 slides in parallel with the light receiving axis L 2 without yawing. Further, after adjusting the position of the PSD holder 53, a screw hole 59 is provided so that the position of the PSD holder 53 is not displaced by the fastening force of the screw 60.
Also serves as a power point for slide adjustment.

【0022】この凹凸のレール構造により、PSDホル
ダ53(即ちPSD3)の位置を調整することで、後記
のように集光手段2とPSD3とがシャインプルーフ条
件を満たすように配置できる。このように構成した光学
式変位測定装置において、LD11からの発散光はコリ
メータレンズ12で最外縁部が除去されて平行光にな
る。この平行光の光強度分布は、図4に示すようなガウ
ス分布になる。ここで、平行光の光強度がピーク値の1
3.5%になるビーム径をWとし、円形開口14の開口
径をDとし、円形開口14の開口径を対物レンズ13の
入射瞳径よりも小さくする。具体的には円形開口14の
開口径Dがビーム径Wの10〜40%の範囲の場合、即
ち0.1<D/W<0.4の場合、対物レンズ13に
は、図4に示されたような光強度の立ち上がりの急峻な
ビーム径Dの平行光(白抜き部分)が入射する。その結
果、入射してきた光強度分布が円形開口14で削除され
ない場合に比べて、ビーム径がより一様な分布に近くな
るため、対物レンズ13は、エアリアパターンと呼ばれ
る光強度分布に近いスポットに光学フィルタ15を通し
て被検知物体90に集光する。従って、被検知物体90
上には、円形開口14でビームの周辺部がカットされた
急峻で且つフラットに近い光強度分布を持つスポットが
形成される。因みに、D/Wを0.1よりも小さくした
り、或いは0.4よりも大きくすると、エアリアパター
ンの光強度分布が得られ難い。
By adjusting the position of the PSD holder 53 (that is, PSD3) by this uneven rail structure, the condensing means 2 and PSD3 can be arranged so as to satisfy the Scheimpflug condition as described later. In the optical displacement measuring device configured as described above, the outermost edge of the divergent light from the LD 11 is removed by the collimator lens 12 to become parallel light. The light intensity distribution of this parallel light has a Gaussian distribution as shown in FIG. Here, the light intensity of the parallel light has a peak value of 1
The beam diameter at which 3.5% is W is W, the aperture diameter of the circular aperture 14 is D, and the aperture diameter of the circular aperture 14 is smaller than the entrance pupil diameter of the objective lens 13. Specifically, when the aperture diameter D of the circular aperture 14 is in the range of 10 to 40% of the beam diameter W, that is, 0.1 <D / W <0.4, the objective lens 13 is shown in FIG. The parallel light (white portion) having the beam diameter D with a sharp rise of the light intensity as described above is incident. As a result, compared with the case where the incident light intensity distribution is not deleted by the circular aperture 14, the beam diameter becomes closer to a more uniform distribution, so that the objective lens 13 becomes a spot close to the light intensity distribution called an aerial pattern. The light is focused on the detected object 90 through the optical filter 15. Therefore, the detected object 90
On the upper side, a spot having a steep and nearly flat light intensity distribution in which the peripheral portion of the beam is cut by the circular aperture 14 is formed. Incidentally, if D / W is made smaller than 0.1 or larger than 0.4, it is difficult to obtain the light intensity distribution of the aerial pattern.

【0023】又、PSDホルダ53(即ちPSD3)の
位置、投光軸L1 、受光軸L2 、シャインプルーフ条件
の相関関係を図3に示す。この図3において、被検知物
体90からの反射光は、光学フィルタ22によって外乱
光が除去されて、受光レンズ21で一次元位置検出素子
のPSD3上に結像する。ここで、対物レンズ13から
スポットまでの距離を例えば39.0mm、中心のx軸
と受光軸L2 がなす角度をθ、PSD3の位置検出方向
と受光軸L2 がなす角度をα、スポットから受光レンズ
21の受光面までの距離をa、PSD3の検出面から受
光レンズ21までの距離をbとすると、シャインプルー
フ条件(共役結像条件)は、次のような関係式で表され
る。但し、シャインプルーフ条件は、図3に示す構成で
は、受光レンズ21の受光面方向とPSD3の位置検出
方向との交点が投光軸L1 上に位置することである(点
線参照)。
FIG. 3 shows the correlation between the position of the PSD holder 53 (that is, the PSD 3), the light projecting axis L 1 , the light receiving axis L 2 , and the Scheimpflug condition. In FIG. 3, the reflected light from the detected object 90 has its ambient light removed by the optical filter 22, and is imaged on the PSD 3 of the one-dimensional position detecting element by the light receiving lens 21. Here, the distance from the objective lens 13 to the spot is, for example, 39.0 mm, the angle between the central x-axis and the light receiving axis L 2 is θ, the angle between the position detection direction of the PSD 3 and the light receiving axis L 2 is α, and the spot is If the distance to the light receiving surface of the light receiving lens 21 is a and the distance from the detection surface of the PSD 3 to the light receiving lens 21 is b, the Scheimpflug condition (conjugate imaging condition) is expressed by the following relational expression. However, the Scheimpflug condition is that, in the configuration shown in FIG. 3, the intersection of the light receiving surface direction of the light receiving lens 21 and the position detection direction of the PSD 3 is located on the light projection axis L 1 (see the dotted line).

【0024】 tanα=(tan2θ)/M ・・・・・・・(1) M=b/a ・・・・・・・・・・・・・・・・(2) (1/a)+(1/b)=1/f ・・・・・・(3) (f:受光レンズ21の焦点距離) (M:受光レンズ21による基準倍率) これらの関係式(1)〜(3)を満たすa,b,α,θ
を一義的に決定するのであるが、受光レンズ21をスポ
ットから距離aの位置に固定すると、結像面のPSD3
の位置は上記式で表されるbとαで決定される。
Tan α = (tan 2θ) / M (1) M = b / a (2) (1 / a) + (1 / b) = 1 / f (3) (f: focal length of light receiving lens 21) (M: reference magnification by light receiving lens 21) These relational expressions (1) to (3) Satisfy a, b, α, θ
However, if the light receiving lens 21 is fixed at a position a from the spot, the PSD 3 of the image plane will be determined.
The position of is determined by b and α represented by the above equation.

【0025】受光レンズ21の焦点距離fは一義的に与
えられるので、受光レンズ21のベース7に対する距離
aも一義的に決まる。これにより、式(3)から受光レ
ンズ21とPSD3との間隔bも一義的に決まり、更に
式(2)より受光レンズ21による基準倍率Mが一義的
に決まる。従って、式(1)よりPSD3の位置検出方
向と受光軸L2 とのなす角度αが一義的に決まる。以上
から、式(1)〜(3)を同時に満足する距離a,b及
び角度α,θは、一義的にしか決まらない。つまり、こ
の一義的に決まる値からのずれが検出誤差になる。
Since the focal length f of the light receiving lens 21 is uniquely given, the distance a of the light receiving lens 21 to the base 7 is also uniquely determined. Accordingly, the distance b between the light receiving lens 21 and the PSD 3 is uniquely determined by the expression (3), and the reference magnification M by the light receiving lens 21 is uniquely determined by the expression (2). Therefore, the angle α formed by the position detection direction of the PSD 3 and the light receiving axis L 2 is uniquely determined from the equation (1). From the above, the distances a and b and the angles α and θ that simultaneously satisfy the expressions (1) to (3) can be uniquely determined. That is, the deviation from the value that is uniquely determined becomes the detection error.

【0026】よって、上記実施形態では、角度αとθ及
び距離aを固定値とし、前記した凹凸のレール構造によ
りPSDホルダ53を移動可能とし、距離bのみを調整
することで、他の全てのファクターのばらつきを吸収す
る構成にしてある。より具体的には、a,b,α,θは
光学組立をするときに調整するのであるが、PSD3を
y軸に沿ってスライドさせ、変位中心30mmのときに
受光軸L2がPSD3の位置検出面の中心(半分の位
置)に調整する。従って、調整のステップは、まずa,
b,αを機械的に固定する。即ち、受光レンズ21を距
離aの位置に、PSD3を受光軸L2 上に配置する。次
に、受光軸L2 がPSD3の位置検出面の中心に位置す
るように、PSD3をy軸方向にスライドさせ、その位
置を調整する。続いて、PSD3をz軸方向にスライド
させ、距離bの位置に調整する。
Therefore, in the above embodiment, the angles α and θ and the distance a are set to fixed values, the PSD holder 53 can be moved by the uneven rail structure, and only the distance b is adjusted, so that all other distances can be adjusted. It is configured to absorb variations in factors. More specifically, a, b, α, and θ are adjusted at the time of optical assembly, but the PSD 3 is slid along the y axis, and when the displacement center is 30 mm, the light receiving axis L 2 is at the position of the PSD 3. Adjust to the center of the detection surface (half position). Therefore, the adjustment steps are as follows:
b and α are mechanically fixed. That is, the light receiving lens 21 is arranged at the position of the distance a, and the PSD 3 is arranged on the light receiving axis L 2 . Next, the PSD 3 is slid in the y-axis direction so that the light receiving axis L 2 is located at the center of the position detection surface of the PSD 3, and the position is adjusted. Subsequently, the PSD 3 is slid in the z-axis direction and adjusted to the position of the distance b.

【0027】なお、上記実施形態では、円形開口14
は、コリメータレンズ12と対物レンズ13との間の光
路上に配置してあるが、LD11とコリメータレンズ1
2との間の光路上に配置してもよい。この場合は、円形
開口14の開口径をコリメータレンズ12の入射瞳径よ
りも小さくし、コリメータレンズ12を通過する光の強
度分布がほぼフラットになるようにすれば、つまり円形
開口14の開口径をD、コリメータレンズ12の入射瞳
面に入射する発散光の強度分布をガウス分布と仮定した
ときのビーム径をWとすると、同様に 0.1<D/W<0.4 の関係を満足させることで、前記した通り対物レンズ1
3にはビーム径Dの平行光が入射する。
In the above embodiment, the circular opening 14
Is arranged on the optical path between the collimator lens 12 and the objective lens 13, but the LD 11 and the collimator lens 1
It may be arranged on the optical path between the two. In this case, if the aperture diameter of the circular aperture 14 is made smaller than the entrance pupil diameter of the collimator lens 12 so that the intensity distribution of the light passing through the collimator lens 12 becomes substantially flat, that is, the aperture diameter of the circular aperture 14 will become smaller. Is D and the beam diameter is W when the intensity distribution of the divergent light incident on the entrance pupil plane of the collimator lens 12 is assumed to be Gaussian distribution, then the relationship of 0.1 <D / W <0.4 is similarly satisfied. By doing so, as described above, the objective lens 1
Collimated light with a beam diameter D is incident on 3.

【0028】[0028]

【発明の効果】【The invention's effect】

(1)以上説明したように、本発明の請求項1及び請求
項2記載の光学式変位測定装置によれば、いずれも投光
手段をコリメータ系とし、開口径の小さい円形開口(ピ
ンホール)を設け、ビーム光の強度分布の中心部分のみ
を投光し、周辺部の光をカットする構成であるので、下
記の効果〜が得られる。 受光レンズによる光点位置検出素子上への結像スポッ
トの実効的なスポット径を小さくすることができるの
で、被検知物体の色むらによる検出誤差やエッジでの検
出誤差を小さくすることができる。 受光レンズを正対して配置できるので、対象面(被検
知物体)の傾きや装置の設置角度の許容値を広く取れ
る。 受光レンズの口径を大きくすることができるので、反
射率の小さい被検知物体であっても確実に検出できる。 投光ビームの強度分布の変化が小さいので、即ち焦点
深度を深く取れるので、測定範囲を長く設定できる。 投光ビームの焦点深度とビーム径を円形開口の開口径
だけでコントロールできるので、装置の設計自由度が高
く、製品のばらつき管理が容易になり、コストを低減で
きる。 (2)請求項3記載の装置によれば、投光手段、コリメ
ータレンズ及び円形開口を結ぶ光軸に対して、対物レン
ズの光軸を、対物レンズの主点を中心に傾けて配置して
あるので、下記の効果〜が得られる。 投光素子への戻り光を完全になくすことができるの
で、投光素子の発光パワーの変動が安定する。 投光スポットの位置がずれない。 無反射膜が不要となるので、装置を安価にできる。 (3)請求項4記載の装置によれば、対物レンズの光出
射側に光学フィルタを配置し、対物レンズと光学フィル
タを一体化してあるので、組立調整が容易で、装置が安
価になる。 (4)請求項7記載の装置によれば、光点位置検出素子
を集光手段の光軸に平行にスライドさせる凹凸のレール
構造を備え、光点位置検出素子をスライドさせることに
より、集光手段と光点位置検出素子とがシャインプルー
フ条件を満たすように配置されているので、集光手段と
光点位置検出素子との位置関係をシャインプルーフ条件
に合うように容易に調整することができる。
(1) As described above, according to the optical displacement measuring device of the first and second aspects of the present invention, the light projecting means is a collimator system, and a circular opening (pinhole) having a small opening diameter is used. Is provided and only the central portion of the intensity distribution of the beam light is projected, and the light in the peripheral portion is cut off, so that the following effects 1 to 4 are obtained. Since the effective spot diameter of the image forming spot on the light spot position detecting element by the light receiving lens can be reduced, the detection error due to the color unevenness of the detected object and the detection error at the edge can be reduced. Since the light-receiving lens can be arranged so as to face it, a wide tolerance of the inclination of the target surface (object to be detected) and the installation angle of the device can be taken. Since the diameter of the light receiving lens can be increased, even a detected object having a low reflectance can be detected reliably. Since the change in the intensity distribution of the projected beam is small, that is, the depth of focus can be deep, the measurement range can be set long. Since the depth of focus and the beam diameter of the projected beam can be controlled only by the diameter of the circular aperture, the degree of freedom in designing the device is high, the product variation management is easy, and the cost can be reduced. (2) According to the apparatus of claim 3, the optical axis of the objective lens is arranged so as to be inclined with respect to the principal point of the objective lens with respect to the optical axis connecting the light projecting means, the collimator lens and the circular aperture. Therefore, the following effects are obtained. Since the return light to the light projecting element can be completely eliminated, the fluctuation of the light emitting power of the light projecting element becomes stable. The position of the projected spot does not shift. Since the anti-reflection film is unnecessary, the device can be inexpensive. (3) According to the apparatus of claim 4, since the optical filter is arranged on the light emitting side of the objective lens and the objective lens and the optical filter are integrated, the assembly and adjustment are easy and the apparatus is inexpensive. (4) According to the apparatus of claim 7, the light spot position detecting element is provided with an uneven rail structure for sliding the light spot position detecting element in parallel with the optical axis of the light collecting means, and the light spot position detecting element is slid to collect light. Since the means and the light spot position detecting element are arranged so as to satisfy the Scheimpflug condition, the positional relationship between the light collecting means and the light spot position detecting element can be easily adjusted to meet the Scheimpflug condition. .

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施形態に係る光学式変位測定装置の外観斜
視図である。
FIG. 1 is an external perspective view of an optical displacement measuring device according to an embodiment.

【図2】図1の装置の模式的上面図である。2 is a schematic top view of the device of FIG. 1. FIG.

【図3】図1の装置における各要素、投光軸、受光軸、
シャインプルーフ条件の相関関係を示す図である。
FIG. 3 is a view showing each element, a light emitting axis, a light receiving axis,
It is a figure which shows the correlation of Scheimpflug conditions.

【図4】投光素子からのビーム径と光強度分布(ガウス
分布)との関係を示す図である。
FIG. 4 is a diagram showing a relationship between a beam diameter from a light projecting element and a light intensity distribution (Gaussian distribution).

【図5】図1の装置における対物レンズホルダの投光軸
に対する傾き具合を示す要部拡大断面図である。
5 is an enlarged cross-sectional view of a main part showing the degree of inclination of the objective lens holder with respect to the projection axis in the apparatus of FIG.

【図6】図1の装置におけるPSDホルダとベースを示
す斜視図(a)、及びPSDホルダの凸部とベースの凹
部を示す要部拡大断面図(b)である。
6 is a perspective view (a) showing a PSD holder and a base in the apparatus of FIG. 1, and an enlarged sectional view (b) of a main part showing a convex portion of the PSD holder and a concave portion of the base.

【符号の説明】[Explanation of symbols]

1 投光手段 2 受光手段 3 光点位置検出素子(PSD) 11 半導体レーザ(投光素子) 12 コリメータレンズ 13 対物レンズ 14 円形開口 15,22 光学フィルタ 21 受光レンズ DESCRIPTION OF SYMBOLS 1 Light emitting means 2 Light receiving means 3 Light spot position detecting element (PSD) 11 Semiconductor laser (light emitting element) 12 Collimator lens 13 Objective lens 14 Circular aperture 15,22 Optical filter 21 Light receiving lens

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樽川 啓 京都府京都市右京区花園土堂町10番地 オ ムロン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kei Tarukawa 10 Ouron Co., Ltd., Hanazono Dodocho, Ukyo-ku, Kyoto City, Kyoto Prefecture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】被検知物体に対して光ビームを投光する投
光手段と、この投光手段の側方に所定間隔を置いて配設
され、被検知物体による光ビームの反射光を集光する集
光手段と、この集光手段の集光面に配設され、集光スポ
ットの移動により一対の検知信号を出力する光点位置検
出素子と、この光点位置検出素子の一対の検知信号に基
づいて被検知物体を判別する判別手段とを備える光学式
変位測定装置において、 前記投光手段は、投光素子と、投光素子からの光ビーム
を平行光にするコリメータレンズと、コリメータレンズ
を通過した光を被検知物体に投光する対物レンズと、コ
リメータレンズと対物レンズとの間の光路上に配置され
た円形開口とで構成され、前記円形開口の開口径を対物
レンズの入射瞳径よりも小さくし、被検知物体に対する
投光スポットの強度分布がほぼフラットになるようにし
たことを特徴とする光学式変位測定装置。
1. A light projecting means for projecting a light beam onto an object to be detected, and a light beam reflected by the object to be detected, which is arranged at a side of the light projecting means at a predetermined interval. Converging means for emitting light, a light spot position detecting element which is disposed on the light collecting surface of the light collecting means, and which outputs a pair of detection signals according to the movement of the condensing spot, and a pair of detecting points of this light spot position detecting element. In the optical displacement measuring device, which comprises a discriminating means for discriminating a detected object based on a signal, the light projecting means comprises a light projecting element, a collimator lens for collimating a light beam from the light projecting element into parallel light, and a collimator. The objective lens is configured to project the light passing through the lens onto the object to be detected, and a circular aperture arranged on the optical path between the collimator lens and the objective lens. The diameter of the circular aperture is incident on the objective lens. Smaller than the pupil diameter, An optical displacement measuring device, characterized in that the intensity distribution of the projected light spot is substantially flat.
【請求項2】被検知物体に対して光ビームを投光する投
光手段と、この投光手段の側方に所定間隔を置いて配設
され、被検知物体による光ビームの反射光を集光する集
光手段と、この集光手段の集光面に配設され、集光スポ
ットの移動により一対の検知信号を出力する光点位置検
出素子と、この光点位置検出素子の一対の検知信号に基
づいて被検知物体を判別する判別手段とを備える光学式
変位測定装置において、 前記投光手段は、投光素子と、投光素子からの光ビーム
を平行光にするコリメータレンズと、コリメータレンズ
を通過した光を被検知物体に投光する対物レンズと、投
光素子とコリメータレンズとの間の光路上に配置された
円形開口とで構成され、前記円形開口の開口径をコリメ
ータレンズの入射瞳径よりも小さくし、コリメータレン
ズを通過する光の強度分布がほぼフラットになるように
したことを特徴とする光学式変位測定装置。
2. A light projecting means for projecting a light beam onto an object to be detected, and a light beam reflected by the object to be detected, which is arranged laterally of the light projecting means at a predetermined interval. Converging means for emitting light, a light spot position detecting element which is disposed on the light collecting surface of the light collecting means, and which outputs a pair of detection signals according to the movement of the condensing spot, and a pair of detecting points of this light spot position detecting element. In the optical displacement measuring device, which comprises a discriminating means for discriminating a detected object based on a signal, the light projecting means comprises a light projecting element, a collimator lens for collimating a light beam from the light projecting element into parallel light, and a collimator. The objective lens that projects the light that has passed through the lens onto the object to be detected, and a circular aperture that is arranged on the optical path between the light projecting element and the collimator lens, and the aperture diameter of the circular aperture is the diameter of the collimator lens. It is smaller than the entrance pupil diameter and collimation An optical displacement measuring device characterized in that the intensity distribution of light passing through the lens is made substantially flat.
【請求項3】前記投光手段、コリメータレンズ及び円形
開口を結ぶ光軸に対して、前記対物レンズの光軸を、対
物レンズの主点を中心に傾けて配置したことを特徴とす
る請求項1又は請求項2記載の光学式変位測定装置。
3. The optical axis of the objective lens is arranged so as to be inclined with respect to the principal point of the objective lens with respect to the optical axis connecting the light projecting means, the collimator lens and the circular aperture. The optical displacement measuring device according to claim 1 or 2.
【請求項4】前記対物レンズの光出射側に光学フィルタ
を配置し、対物レンズと光学フィルタを一体化したこと
を特徴とする請求項1又は請求項2記載の光学式変位測
定装置。
4. The optical displacement measuring device according to claim 1, wherein an optical filter is arranged on the light emitting side of the objective lens, and the objective lens and the optical filter are integrated.
【請求項5】前記円形開口の開口径をD、対物レンズの
入射瞳面に入射する平行光の強度分布をガウス分布と仮
定したときのビーム径をWとすると、 0.1<D/W<0.4 なる関係を満たすことを特徴とする請求項1記載の光学
式変位測定装置。
5. Assuming that the aperture diameter of the circular aperture is D and the beam diameter when the intensity distribution of the parallel light incident on the entrance pupil plane of the objective lens is Gaussian distribution is W, then 0.1 <D / W The optical displacement measuring device according to claim 1, wherein the relation <0.4 is satisfied.
【請求項6】前記円形開口の開口径をD、コリメータレ
ンズの入射瞳面に入射する発散光の強度分布をガウス分
布と仮定したときのビーム径をWとすると、 0.1<D/W<0.4 なる関係を満たすことを特徴とする請求項2記載の光学
式変位測定装置。
6. Assuming that the diameter of the circular aperture is D and the beam diameter when the intensity distribution of the divergent light incident on the entrance pupil plane of the collimator lens is Gaussian distribution is W, then 0.1 <D / W The optical displacement measuring device according to claim 2, wherein the relationship <0.4 is satisfied.
【請求項7】被検知物体に対して光ビームを投光する投
光手段と、この投光手段の側方に所定間隔を置いて配設
され、被検知物体による光ビームの反射光を集光する集
光手段と、この集光手段の集光面に配設され、集光スポ
ットの移動により一対の検知信号を出力する光点位置検
出素子と、この光点位置検出素子の一対の検知信号に基
づいて被検知物体を判別する判別手段とを備える光学式
変位測定装置において、 前記光点位置検出素子を集光手段の光軸に平行にスライ
ドさせる凹凸のレール構造を備え、光点位置検出素子を
スライドさせることにより、集光手段と光点位置検出素
子とがシャインプルーフ条件を満たすように配置されて
いることを特徴とする光学式変位測定装置。
7. A light projecting means for projecting a light beam onto an object to be detected, and a light beam reflected by the object to be detected are arranged at a side of the light projecting means at a predetermined interval. Converging means for emitting light, a light spot position detecting element which is disposed on the light collecting surface of the light collecting means, and which outputs a pair of detection signals according to the movement of the condensing spot, and a pair of detecting points of this light spot position detecting element. An optical displacement measuring device comprising: a discriminating means for discriminating an object to be detected based on a signal, comprising an uneven rail structure for sliding the light spot position detecting element parallel to the optical axis of the condensing means, and the light spot position. An optical displacement measuring device characterized in that the light condensing means and the light spot position detecting element are arranged so as to satisfy the Scheimpflug condition by sliding the detecting element.
JP8065891A 1996-03-22 1996-03-22 Optical displacement-measuring apparatus Pending JPH09257467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8065891A JPH09257467A (en) 1996-03-22 1996-03-22 Optical displacement-measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8065891A JPH09257467A (en) 1996-03-22 1996-03-22 Optical displacement-measuring apparatus

Publications (1)

Publication Number Publication Date
JPH09257467A true JPH09257467A (en) 1997-10-03

Family

ID=13300049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8065891A Pending JPH09257467A (en) 1996-03-22 1996-03-22 Optical displacement-measuring apparatus

Country Status (1)

Country Link
JP (1) JPH09257467A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145160A (en) * 2006-12-07 2008-06-26 Keyence Corp Optical displacement sensor and its adjusting method
JP2008175604A (en) * 2007-01-17 2008-07-31 Anritsu Corp Optical displacement sensor and displacement measuring device using it
JP2010019714A (en) * 2008-07-11 2010-01-28 Anritsu Corp Displacement measuring equipment, seal member shape measuring apparatus using it and displacement detecting device used for them
JP2010071926A (en) * 2008-09-22 2010-04-02 Yamatake Corp Reflective photoelectric sensor and object detecting method
JP2011106896A (en) * 2009-11-16 2011-06-02 Mitsutoyo Corp Non-contact probe and measuring machine
WO2012042944A1 (en) * 2010-09-30 2012-04-05 オムロン株式会社 Method for adjusting optical displacement sensor and method for manufacturing optical displacement sensor
WO2012042943A1 (en) * 2010-09-30 2012-04-05 オムロン株式会社 Method for adjusting floodlight beam
JP2012211842A (en) * 2011-03-31 2012-11-01 Mitsutoyo Corp Shape measuring apparatus
KR20210117763A (en) * 2020-03-20 2021-09-29 김진형 Optical Sensor for Long-Distance Measuring Instrument Focus-Aligned by Zig, Long-Distance Measuring Instrument having the Same and Method of Fabricating the Same
CN116202425A (en) * 2022-06-15 2023-06-02 武汉鑫岳光电科技有限公司 Laser ranging device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145160A (en) * 2006-12-07 2008-06-26 Keyence Corp Optical displacement sensor and its adjusting method
JP2008175604A (en) * 2007-01-17 2008-07-31 Anritsu Corp Optical displacement sensor and displacement measuring device using it
JP2010019714A (en) * 2008-07-11 2010-01-28 Anritsu Corp Displacement measuring equipment, seal member shape measuring apparatus using it and displacement detecting device used for them
JP2010071926A (en) * 2008-09-22 2010-04-02 Yamatake Corp Reflective photoelectric sensor and object detecting method
JP2011106896A (en) * 2009-11-16 2011-06-02 Mitsutoyo Corp Non-contact probe and measuring machine
US8704154B2 (en) 2009-11-16 2014-04-22 Mitutoyo Corporation Non-contact probe with an optical filter and measuring machine including the same
WO2012042943A1 (en) * 2010-09-30 2012-04-05 オムロン株式会社 Method for adjusting floodlight beam
JP2012078152A (en) * 2010-09-30 2012-04-19 Omron Corp Light projection beam adjusting method
JP2012078153A (en) * 2010-09-30 2012-04-19 Omron Corp Optical displacement sensor adjusting method, and optical displacement sensor manufacturing method
WO2012042944A1 (en) * 2010-09-30 2012-04-05 オムロン株式会社 Method for adjusting optical displacement sensor and method for manufacturing optical displacement sensor
JP2012211842A (en) * 2011-03-31 2012-11-01 Mitsutoyo Corp Shape measuring apparatus
KR20210117763A (en) * 2020-03-20 2021-09-29 김진형 Optical Sensor for Long-Distance Measuring Instrument Focus-Aligned by Zig, Long-Distance Measuring Instrument having the Same and Method of Fabricating the Same
CN116202425A (en) * 2022-06-15 2023-06-02 武汉鑫岳光电科技有限公司 Laser ranging device
CN116202425B (en) * 2022-06-15 2023-09-12 武汉鑫岳光电科技有限公司 Laser ranging device

Similar Documents

Publication Publication Date Title
US9316495B2 (en) Distance measurement apparatus
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
JP4093971B2 (en) Optical movement information detection apparatus, movement information detection system, electronic apparatus and encoder
EP1985973B1 (en) Optical displacement measuring apparatus
US7330278B2 (en) Optical displacement measurement device
WO2010058322A1 (en) Laser self-mixing differential doppler velocimetry and vibrometry
US5111056A (en) Optical measurement system determination of an object profile
JPH09257467A (en) Optical displacement-measuring apparatus
US4711576A (en) Wave front aberration measuring apparatus
JPH11257917A (en) Reflection type optical sensor
EP0234562B1 (en) Displacement sensor
US20040207835A1 (en) Auto-collimator
US6707053B2 (en) Tilt detector
JP4127579B2 (en) Light wave distance meter
JP2007025068A (en) Focus detector
JP4812153B2 (en) Photoelectric switch
EP0227136B1 (en) Arrangement for optically measuring a surface profile
EP3936817A1 (en) Close-range electronic distance measurement
JPH11201718A (en) Sensor device and distance measuring equipment
US6002483A (en) Non-contact interference optical system for measuring the length of a moving surface with a large N.A. collector optical system
JPH01185410A (en) Optical length measuring method
KR920010908B1 (en) Mirror detection head
JP2000121725A (en) Distance measuring apparatus
KR19980050455A (en) Non-contact lens vertex position and tilt measuring device for optical system
JPS6153510A (en) Apparatus for detecting position

Legal Events

Date Code Title Description
FPAY Renewal fee payment

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080416

FPAY Renewal fee payment

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090416

FPAY Renewal fee payment

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090416

FPAY Renewal fee payment

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100416

LAPS Cancellation because of no payment of annual fees