JP2010019714A - Displacement measuring equipment, seal member shape measuring apparatus using it and displacement detecting device used for them - Google Patents

Displacement measuring equipment, seal member shape measuring apparatus using it and displacement detecting device used for them Download PDF

Info

Publication number
JP2010019714A
JP2010019714A JP2008181019A JP2008181019A JP2010019714A JP 2010019714 A JP2010019714 A JP 2010019714A JP 2008181019 A JP2008181019 A JP 2008181019A JP 2008181019 A JP2008181019 A JP 2008181019A JP 2010019714 A JP2010019714 A JP 2010019714A
Authority
JP
Japan
Prior art keywords
light
measured
light receiving
reflected
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008181019A
Other languages
Japanese (ja)
Other versions
JP5337419B2 (en
Inventor
Atsuro Tanuma
敦郎 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2008181019A priority Critical patent/JP5337419B2/en
Publication of JP2010019714A publication Critical patent/JP2010019714A/en
Application granted granted Critical
Publication of JP5337419B2 publication Critical patent/JP5337419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To configure a light projecting part, a condensing function lens and a light receiving part so that they ensure a wide measuring range and meet the conditions of the Scheimpflug principle, to provide a shielding mask which prevents incidence of reflected light from the bottom of a measuring object having transmitting properties, and to prevent the occurrence of multiple reflection on the screening mask and the light receiving part. <P>SOLUTION: In this displacement measuring equipment, the measuring object, the condensing function lens 3 and the light receiving part 20 are disposed at positions where they meet the conditions of the Scheimpflug principle mutually, and an optical path of the reflected light from the surface of the measuring object to the light receiving part through the condensing function lens is provided at an angle exceeding 45 degrees to a normal on the surface of the measuring object. Moreover, the screening mask 6 is provided at a position where it blocks reverse-side reflected light transmitted through the measuring object, reflected on the reverse side of the object and passed through the condensing function lens from being incident on the light receiving surface of the light receiving part, and which is located within the range of an angle formed by adding an angle of incidence of condensed light to a normal on the light receiving surface and an angle of reflection of the condensed light incident at the angle of incidence to the normal. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被測定物の表面に光(ビーム)を照射して走査しつつその反射光を受けることにより、被測定物の表面の変位を三角測量する変位測定装置、それを用いたシール部材形状測定装置及び変位検出装置に関する。特に、本発明は、シャインプルークの条件(Ssheimpfiug Principle)を満足するように構成された光学系によって、被測定物として薄い、透明体の表面形状を測定するときに、その透明体の裏面からの不要反射による測定への影響を防止できる変位測定技術に係る。   The present invention relates to a displacement measuring device that triangulates the displacement of the surface of the object to be measured by irradiating the surface of the object to be measured with light (beam) and receiving the reflected light, and a seal member using the same The present invention relates to a shape measuring device and a displacement detecting device. In particular, according to the present invention, when measuring the surface shape of a thin transparent body as an object to be measured by an optical system configured so as to satisfy the conditions of Scheimpfig Principle, the surface from the back surface of the transparent body is measured. The present invention relates to a displacement measurement technique that can prevent the influence of unnecessary reflection on measurement.

従来、三角測量により変位測定する装置として、特許文献1の従来技術に示されるものがあった。この特許文献1の技術は、光変位センサ(例えば、PSD;Position Sensitive Detector)の上下に設けた溝に遮蔽マスク(体)を移動可能に設けて、被測定物の変位に応じて位置検出センサにおける受光位置(スポット)が移動するのに伴って、その遮光体を移動させて、位置検出センサへの不要な光の入射を防止するものである。   Conventionally, as a device for measuring displacement by triangulation, there is one shown in the prior art of Patent Document 1. The technique of this patent document 1 is provided with a shielding mask (body) movably provided in grooves provided above and below an optical displacement sensor (for example, PSD; Position Sensitive Detector), and a position detection sensor according to the displacement of the object to be measured. As the light receiving position (spot) moves, the light blocking body is moved to prevent unnecessary light from entering the position detection sensor.

ところで、被測定物が、薄い、透明体の形状を測定する場合がある。例えば、液晶画面を製造するときに、透明板に塗布されたシール部材で形成された堤内に液晶を収容することが行われるが、そのシール部材の形状を測定することがある。そのときのシール部材を形状測定するにあっては、そのシール部材を透過した光が透明板の裏面で反射して生ずる反射光が不要反射光として、位置検出センサに入る恐れがあるので、これを防止する必要がある。しかし、上記特許文献1にそこまでの記載はない。   By the way, the object to be measured may measure the shape of a thin transparent body. For example, when a liquid crystal screen is manufactured, liquid crystal is stored in a bank formed by a sealing member applied to a transparent plate, and the shape of the sealing member may be measured. When measuring the shape of the sealing member at that time, the reflected light generated by the light transmitted through the sealing member being reflected by the back surface of the transparent plate may enter the position detection sensor as unnecessary reflected light. Need to prevent. However, there is no description up to that point in Patent Document 1.

図6及び図7を用いて従来技術について説明する。一般的な光変位センサ103の構成を図6(A1)に示す。図6(A1)において、光変位センサ103は、投光部10と受光レンズ3と受光部20とで構成され、それらの配置関係は筐体(不図示)で一体的に固定され、被測定物101に対して相対的に移動できる構成にされて走査が可能にされている。図6(A1)では、入射光と反射光をほぼ含む平面に直交する方向(紙面の奥行き方向)に主走査される。図6(A1)の矢視A2の位置で、被測定物101周辺を見たのが図6(A2)で、測定点(イ)、測定点(ロ)の順で主走査方向に主走査したときの、入射光(走査光)と反射光の様子を示している。   The prior art will be described with reference to FIGS. A structure of a general optical displacement sensor 103 is shown in FIG. In FIG. 6 (A1), the optical displacement sensor 103 includes a light projecting unit 10, a light receiving lens 3, and a light receiving unit 20, and the arrangement relationship thereof is integrally fixed by a housing (not shown), and the measured object. It is configured to be able to move relative to the object 101 so that scanning is possible. In FIG. 6A1, main scanning is performed in a direction (depth direction of the paper) perpendicular to a plane substantially including incident light and reflected light. FIG. 6A2 shows the area around the device under test 101 at the position indicated by the arrow A2 in FIG. 6A1, and the main scanning is performed in the main scanning direction in the order of the measuring point (A) and the measuring point (B). The state of incident light (scanning light) and reflected light is shown.

図6(A1)で、投光部10は、光(レーザビーム)を発生する光源LD、光源LDからの光を平行光に変換するコリメータレンズ1、その平行光を集光して被測定物101へ入射させる集光レンズ2を備えている。そして、受光レンズ3が、被測定物101からの反射光を受光部20へ集光して、結像させる。このとき、被測定物101の変位に応じて、位置検出手段PSDを含む受光部20の受光面が受ける反射光の位置が変わるので、その受光部20で反射光を受ける位置が変化しても受光面で良く結像させるためには、受光部20の受光面(実効的には位置検出手段PSDの受光面)、受光レンズ3の主面(主たる面)及び投光部10による入射光の関係を、それら延長線が一点で交わるように構成(上記のシャインプルークの条件)することが必要である。そのような構成の光学系において、透明な被測定物101の底部からの不要反射光の受光部20への入射を防止する遮蔽マスク9を設けている。   In FIG. 6A1, the light projecting unit 10 includes a light source LD that generates light (laser beam), a collimator lens 1 that converts the light from the light source LD into parallel light, and the object to be measured by condensing the parallel light. A condensing lens 2 to be incident on 101 is provided. The light receiving lens 3 collects the reflected light from the DUT 101 on the light receiving unit 20 and forms an image. At this time, since the position of the reflected light received by the light receiving surface of the light receiving unit 20 including the position detecting means PSD changes according to the displacement of the object to be measured 101, even if the position of the light receiving unit 20 receiving the reflected light changes. In order to form an image well on the light receiving surface, the light receiving surface of the light receiving unit 20 (effectively the light receiving surface of the position detecting means PSD), the main surface (main surface) of the light receiving lens 3, and the incident light from the light projecting unit 10 It is necessary to configure the relationship so that these extension lines intersect at one point (the above Shine-Pluke condition). In the optical system having such a configuration, a shielding mask 9 is provided to prevent the unnecessary reflected light from entering the light receiving unit 20 from the bottom of the transparent object 101 to be measured.

一方、投光部10から被測定物101への入射光、及び被測定物101からの反射光の被測定物101の表面における法線に対する入射角及び反射角(傾斜範囲)によって、受光部20の幅(図6(A1)の奥行き)で測定可能な範囲に広狭が生ずる。つまり、図6(B1)示すように法線に対する反射角θ1が急峻な場合、図6(B1)の矢視B2から見た図である図6(B2)に示すように、反射光が受光部20で受けない場合であっても、図6(C1)のように反射角θ2が大きい場合は、図6(C1)の矢視C2から見た図である図6(C2)のように、受光部20の幅が図6(B2)と同じであれば反射光を受光できることがある。つまり、図6(C1)のように反射角を大きくした方が図6(B1)のように反射角を小さくした方より、受光部20の幅方向に対する測定範囲が広くなる。さらに言い換えると、図6(B2)と図6(C2)から、被測定物101と受光部20との法線方向の距離が短い程、受光部20の幅方向に対する測定範囲が広くなることが言える。なお、この測定範囲の広狭については法線に対する反射光の反射角の影響が大きいが、受光部20が直接反射光及び散乱した反射光を受光するのであれば、一般的に、ほぼ、入射光の入射角と反射光の反射角とは等しくなるように受光部20、投光部10を配置されるので、その場合は、入射角についても反射角と同様のことが言える。   On the other hand, the light receiving unit 20 is determined by the incident angle and the reflection angle (inclination range) of the incident light from the light projecting unit 10 to the measured object 101 and the reflected light from the measured object 101 with respect to the normal on the surface of the measured object 101. The range that can be measured with the width (the depth in FIG. 6A1) is wide and narrow. That is, when the reflection angle θ1 with respect to the normal is steep as shown in FIG. 6 (B1), the reflected light is received as shown in FIG. 6 (B2) as viewed from the arrow B2 in FIG. 6 (B1). Even when not received by the portion 20, when the reflection angle θ2 is large as shown in FIG. 6 (C1), as shown in FIG. 6 (C2), which is a view seen from the arrow C2 of FIG. 6 (C1). If the width of the light receiving portion 20 is the same as that in FIG. 6B2, reflected light may be received. That is, when the reflection angle is increased as shown in FIG. 6C1, the measurement range in the width direction of the light receiving unit 20 is wider than when the reflection angle is reduced as shown in FIG. 6B1. In other words, from FIG. 6 (B2) and FIG. 6 (C2), the shorter the distance in the normal direction between the DUT 101 and the light receiving unit 20, the wider the measurement range in the width direction of the light receiving unit 20. I can say that. In addition, although the influence of the reflection angle of the reflected light with respect to the normal is large for the wide and narrow of the measurement range, generally, if the light receiving unit 20 receives the directly reflected light and the scattered reflected light, the incident light is generally approximately. Since the light receiving unit 20 and the light projecting unit 10 are arranged so that the incident angle of the reflected light and the reflected angle of the reflected light are equal to each other, the incident angle can be said to be the same as the reflected angle.

なお、「被測定物101の表面における法線」とは、ここでは、いわゆる「法線を立てようとする表面の位置における接線に直交する線」という厳密な意味での法線ではなく、測定対象する表面の平均的な平面、或いは主たる平面に対して直交する線である。したがって、例えば、被測定物101が平坦な平面に搭載されていれば、その平面を主たる平面としてそれに対する法線であっても良い。また、その平坦な平面が水平で在れば垂線であっても良い。以下、「・・・における法線」は、上記と同様の意味を有するものとする。   Note that the “normal line on the surface of the object to be measured 101” is not a normal line in the strict sense here, but a so-called “line perpendicular to the tangent at the position of the surface where the normal line is to be set”. It is a line orthogonal to the average plane of the target surface or the main plane. Therefore, for example, if the DUT 101 is mounted on a flat plane, the plane may be a normal line with the plane as the main plane. Moreover, if the flat plane is horizontal, it may be a perpendicular line. Hereinafter, “normal line in...” Has the same meaning as described above.

上記のことから、測定範囲の問題から反射光の反射角を大きくして、図6(A)のように交点30で、受光部20の受光面、受光レンズ3の主面、及び投光部210からの入射光の各延長線が交わるような配置構成にしてシャインプルークの条件を満足させるためには、受光部20の受光面における法線に対する反射光の入射角が大きくなる。   From the above, the reflection angle of the reflected light is increased due to the problem of the measurement range, and the light receiving surface of the light receiving unit 20, the main surface of the light receiving lens 3, and the light projecting unit at the intersection 30 as shown in FIG. In order to satisfy the Shine-Pluke condition by arranging the extended lines of incident light from 210 to intersect, the incident angle of the reflected light with respect to the normal line on the light receiving surface of the light receiving unit 20 becomes large.

ところで、受光部20と遮蔽マスク9は、図7(A)のように配置、構成されている。図7(A)において、受光部20は、保護のため光を透過する透明蓋8を有するケース7に位置検出手段PSDを収容している。そして、遮蔽マスク9は、その透明蓋8の上に、被測定物101の底部から反射してきた不要反射光の入射を防止する位置に配置されている。なお、図6(A1)における被測定物101が透過性を有し、かつ基台102が非透明体であるなら、「被測定物101の底部からの反射」とは、被測定物101の裏面からの反射であるが、基台102も透明体であるなら、基台102の裏面からの反射であることがある。   Incidentally, the light receiving unit 20 and the shielding mask 9 are arranged and configured as shown in FIG. In FIG. 7A, the light receiving unit 20 houses the position detecting means PSD in a case 7 having a transparent lid 8 that transmits light for protection. The shielding mask 9 is disposed on the transparent lid 8 at a position for preventing the incidence of unnecessary reflected light reflected from the bottom of the device under test 101. Note that if the DUT 101 in FIG. 6A1 is transmissive and the base 102 is a non-transparent material, “reflection from the bottom of the DUT 101” means that the DUT 101 The reflection from the back surface may be the reflection from the back surface of the base 102 if the base 102 is also a transparent body.

このような受光部20の構成において、上記のように広い測定範囲を確保し、かつシャインプルークの条件を満足させるために受光部20の受光面に立てた法線に対する反射光の入射角を大きくすると、図7(A)に示すように被測定物101からの反射光が、一旦、位置検出手段PSDで受光され、その後、その位置検出手段PSDで受光された位置で生じた反射が、遮蔽マスク9の裏面に当たって、再び位置検出手段PSDに入射して、不要光を発生させる。このように位置検出手段PSDと遮蔽マスク9との間で多重反射して生じた不要光を位置検出手段PSDが受光すると、変位測定上の誤差を生じさせる。   In such a configuration of the light receiving unit 20, the incident angle of the reflected light with respect to the normal line standing on the light receiving surface of the light receiving unit 20 is increased in order to ensure a wide measurement range as described above and satisfy the Shine-Pluke condition. Then, as shown in FIG. 7A, the reflected light from the object to be measured 101 is once received by the position detecting means PSD, and then the reflection generated at the position received by the position detecting means PSD is shielded. The light hits the back surface of the mask 9 and again enters the position detecting means PSD to generate unnecessary light. When the position detection means PSD receives unnecessary light generated by multiple reflection between the position detection means PSD and the shielding mask 9 in this way, an error in displacement measurement is caused.

図7(B)にその誤差の例を示す。図7(B)は、図6(A)において、光変位センサ103(投光部10、受光レンズ3、及び受光部20)と被測定物101の一方を、基準位置(距離)から垂直方向に距離を増減して移動させて(変化させて)、そのとき光変位センサ103で変位(距離)を測定したものである。移動させた距離を別手段で確認したものが図7(B)の横軸であり、光変位センサ103で測定した変位が縦軸である。各値をプロットすれば、正常で誤差がなければ、これらの値は一対一の関係にあるはずである。しかしながら、図7(B)の測定範囲の中の「誤差部分」示すように、不要光により、測定範囲内で直線性が崩れ、誤差が発生している。   FIG. 7B shows an example of the error. FIG. 7B shows a vertical direction of one of the optical displacement sensor 103 (the light projecting unit 10, the light receiving lens 3, and the light receiving unit 20) and the object to be measured 101 in FIG. 6A from the reference position (distance). In this case, the displacement (distance) is measured by the optical displacement sensor 103. The horizontal axis in FIG. 7B confirms the distance moved by another means, and the displacement measured by the optical displacement sensor 103 is the vertical axis. If each value is plotted, these values should be in a one-to-one relationship if normal and error free. However, as shown in the “error part” in the measurement range of FIG. 7B, the linearity is broken in the measurement range due to unnecessary light, and an error occurs.

特開平9−3198315号公報JP-A-9-3198315

本発明の目的は、投光部、集光機能レンズ(上記の受光レンズを含む機能)、及び受光部(PSDを含む)を広い測定範囲を確保し、かつシャインプルークの条件を満足する構成にしたうえで、透過性を有する被測定物の底部からの反射光の入射を防止する遮蔽マスクを、その遮蔽マスクとPSDで生じる多重反射を防止する技術を提供することである。   An object of the present invention is to secure a wide measurement range for the light projecting unit, the condensing function lens (including the above-described light receiving lens), and the light receiving unit (including the PSD), and to satisfy the Scheinpluke conditions. In addition, it is an object of the present invention to provide a technique for preventing a multiple reflection caused by the shielding mask and the PSD from a shielding mask that prevents the incidence of reflected light from the bottom of the object to be measured having transparency.

上記目的を達成するために、請求項1に記載の発明は、透光性を有する被測定物に、該被測定物の表面に光を照射する投光部(10)と、該被測定物の表面からの反射光を受けて集光する集光機能レンズ(3)と、該集光機能レンズが前記集光する位置に配置され、該集光された光を受けたときの集光位置に応じた信号を出力する受光部(20)と、を備え、該被測定物、前記集光機能レンズ及び前記受光部は、相互にシャインプルークの条件を満たす位置に配置された変位測定装置であって、該被測定物を透過して該被測定物の底部側で反射し前記集光機能レンズを経てきた裏面反射光が前記受光部に入るのを遮る位置であって、該受光部の表面における法線に対する前記集光された光の入射角度と、該入射角度で入射された該集光された光が該受光部の表面で反射したときの該法線に対する反射角度とを加えた角度範囲内の位置に設けられた遮蔽マスク(6)と、を備えた。   In order to achieve the above object, the invention according to claim 1 is directed to a light projecting unit (10) for irradiating a light-transmitting object to be measured to the surface of the object, and the object to be measured. A condensing function lens (3) that receives and collects reflected light from the surface of the lens, and a condensing position when the condensing function lens is disposed at the condensing position and receives the condensed light A light receiving unit (20) that outputs a signal according to the above, and the object to be measured, the condensing functional lens, and the light receiving unit are displacement measuring devices arranged at positions that satisfy the conditions of Shine-Pluke mutually. A position where the light reflected from the back side of the object to be measured is reflected on the bottom side of the object to be measured and is blocked from entering the light receiving unit by the back surface reflected light passing through the condenser lens. The incident angle of the focused light with respect to the normal at the surface, and the focused light incident at the incident angle There provided with a shielding mask (6) provided in a position within the angular range plus a reflective angle to the normal line when reflected by the surface of the light receiving portion.

請求項2に記載の発明は、請求項1に記載の発明において、断面形状が3辺からなるプリズムであって、該3辺の内、最長の第1の辺が、前記受光部の表面に対面して、かつ前記被測定物の変位に応じて前記集光位置が移動する方向に沿うように配置され、配置されたときに前記3辺の内、前記集光機能レンズ側に面する第2の辺に、該第2の辺に沿った面を有する前記遮蔽マスクが設けられたプリズム(5)を備えた。   The invention according to claim 2 is the prism according to claim 1, wherein the cross-sectional shape is a prism having three sides, and the longest first side among the three sides is on the surface of the light receiving unit. It is arranged along the direction in which the condensing position moves according to the displacement of the object to be measured and faces the condensing function lens side among the three sides when arranged. A prism (5) provided with the shielding mask having a surface along the second side is provided on the second side.

請求項3に記載の発明は、請求項2に記載の発明において、前記受光部は、前記集光された光を受けて前記被測定物の変位とともに移動する前記集光位置を検出して、該集光位置に応じた信号を出力する前記位置検出手段(PSD)と、該位置検出手段を収容し、前記集光機能レンズからの集光された前記反射光を受光し透過して該位置検出手段へ入射させる透過面を有する収容ケース(7)を備え、前記プリズムは前記第1の辺を該透過面に密着して取り付けられ、前記集光機能レンズからの集光された前記反射光は該プリズムを経由して前記位置検出手段へ入射させる構成とした。   According to a third aspect of the present invention, in the second aspect of the invention, the light receiving unit receives the condensed light and detects the condensing position that moves with the displacement of the object to be measured. The position detecting means (PSD) for outputting a signal corresponding to the light collecting position, and the position detecting means are received, and the reflected light condensed from the light collecting function lens is received and transmitted to the position. A receiving case (7) having a transmission surface that is incident on the detection means, wherein the prism is attached with the first side in close contact with the transmission surface, and the reflected light collected from the condensing function lens; Is configured to enter the position detecting means via the prism.

請求項4に記載の発明は、請求項1〜3のいずれかかの発明において、前記被測定物の表面から前記集光機能レンズを経て前記受光部までの反射光の光路は、該被測定物の表面における法線に対し45度を越える角度に設けられた構成とした。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the optical path of the reflected light from the surface of the object to be measured through the condenser lens to the light receiving unit is the measured object. It was set as the structure provided in the angle over 45 degree | times with respect to the normal line in the surface of an object.

請求項5に記載の発明は、透明板に塗布されたシール部材であって液晶画面装置における液晶を収容するための堤を成すシール部材に、該シール部材の表面に光を照射する投光部(10)と、該シール部材の表面からの反射光を受けて集光する集光機能レンズ(3)と、該集光機能レンズが前記集光する集光位置に配置される受光面を有し、該集光された光を受けて該シール部材の表面形状の変位とともに移動する該集光位置を検出して、該集光位置に応じた信号を出力する受光部(20)と、を備え、該シール部材、前記集光機能レンズ及び前記受光部は、相互にシャインプルークの条件を満たす位置に配置されており、前記位置検出手段が出力する信号を基に前記シール部材の形状を測定するシール部材形状測定装置であって、該シール部材の表面から前記集光機能レンズを経て前記受光部までの反射光の光路は、該シール部材の表面における法線に対し45度を越える角度に設けられており、さらに、該シール部材及び前記透明板を透過して該透明板の裏面で反射し前記集光機能レンズを経てきた裏面反射光が前記受光部の前記受光面に入るのを遮る位置であって、前記受光面における法線に対する前記集光された光の入射角度と該入射角度で入射された該集光された光の該法線に対する反射角度とを加えた角度範囲内の位置に設けられた遮蔽マスク(6)を備えた。   According to a fifth aspect of the present invention, there is provided a light projecting unit that irradiates light on a surface of a sealing member applied to a transparent plate and forming a bank for accommodating liquid crystal in a liquid crystal screen device (10), a condensing function lens (3) that receives and collects reflected light from the surface of the seal member, and a light receiving surface that is disposed at the condensing position where the condensing function lens condenses. A light receiving portion (20) that receives the collected light, detects the light collecting position that moves with the displacement of the surface shape of the seal member, and outputs a signal corresponding to the light collecting position; The seal member, the condensing function lens, and the light receiving unit are arranged at positions satisfying the conditions of Shine-Pluke and measure the shape of the seal member based on a signal output from the position detection means An apparatus for measuring a shape of a seal member, wherein the seal The optical path of the reflected light from the surface of the material through the condensing function lens to the light receiving unit is provided at an angle exceeding 45 degrees with respect to the normal line on the surface of the seal member. A position where the back surface reflected light that has passed through the transparent plate and reflected by the back surface of the transparent plate and passed through the condensing function lens is blocked from entering the light receiving surface of the light receiving unit, and is relative to the normal line on the light receiving surface A shielding mask (6) provided at a position within an angle range obtained by adding an incident angle of the collected light and a reflection angle of the collected light incident at the incident angle with respect to the normal line; It was.

請求項6に記載の発明は、入射された被測定光を受光する受光面を有し、該受光面で該被測定光を受光した受光位置に応じた信号を出力する位置検出手段(PSD)と、該位置検出手段を収容し、該被測定光を該受位置検出手段へ入射させる透過面を有する収容ケース(7)と、断面が3辺からなるプリズムであって、該3辺の内、最長の第1の辺が、前記位置検出手段の前記受光面に対面して、かつ前記受光位置が移動する方向に沿うように密着して取り付けられたプリズム(5)と、該プリズムの前記3辺の内、前記被測定光が到来する側に面する第2の辺に沿って設けられ、該受光面における法線に対する被測定光の入射角より下回る入射角で到来する不要反射光の入射を遮る遮蔽マスク(6)と、を備え、該遮蔽マスクは、前記受光面における法線に対する前記被測定光の入射角度と該入射角度で入射された該被測定光の該法線に対する反射角度とを加えた角度範囲内の位置に設けられた構成とした。   According to a sixth aspect of the present invention, there is provided a position detection means (PSD) having a light receiving surface for receiving incident measurement light and outputting a signal corresponding to the light receiving position at which the measurement light is received by the light receiving surface. A receiving case (7) having a transmitting surface for receiving the position detecting means and allowing the light to be measured to enter the receiving position detecting means, and a prism having a cross section of three sides, A prism (5) attached so that the longest first side faces the light receiving surface of the position detecting means and is along the moving direction of the light receiving position, and the prism Among the three sides, provided along the second side facing the side on which the light to be measured arrives, unwanted reflected light arriving at an incident angle lower than the angle of incidence of the light to be measured with respect to the normal on the light receiving surface A shielding mask (6) for blocking incidence, the shielding mask receiving the light receiving It has a structure which is positioned within the angular range of plus and reflection angle with respect to 該被 measurement light normal line of the incident at an incident angle and the incident angle of the light to be measured with respect to normal at.

本発明の構成によれば、投光部、集光機能レンズ、及び受光部(PSDを含む)をシャインプルークの条件を満足する構成にすることで、測定精度を維持し、かつ被測定物における法線に対する大きい角度の反射角をもたせる構成にすることで測定範囲を確保したうえで、遮蔽マスクを前記集光された光の入射角度と被測定物からの反射光の反射角度とを加えた角度範囲内の位置に設けたので、多重反射による不要光の発生が防止でき、誤差を軽減して測定することができる。   According to the configuration of the present invention, the light projecting unit, the condensing function lens, and the light receiving unit (including PSD) are configured to satisfy the Shine-Pluke conditions, thereby maintaining measurement accuracy and in the object to be measured. After ensuring a measurement range by providing a large reflection angle with respect to the normal, the shielding mask was added with the incident angle of the collected light and the reflection angle of the reflected light from the object to be measured. Since it is provided at a position within the angular range, generation of unnecessary light due to multiple reflection can be prevented, and measurement can be performed with reduced errors.

本発明の実施形態を、図を用いて説明する。図1は、本発明に係る光変位センサの実施形態を説明するための模式的な構成図である。図2は変位検出装置の構成と示すとともに、多重反射の防止を説明するための図である。図3は変位測定部(変位測定装置)の構成を示す図である。図4は、形状検査装置としての検査部の構成を示す図である。図5は、被測定物としてのシール部材の構成を示す図である。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram for explaining an embodiment of an optical displacement sensor according to the present invention. FIG. 2 is a diagram illustrating the configuration of the displacement detection device and illustrating the prevention of multiple reflection. FIG. 3 is a diagram showing a configuration of a displacement measuring unit (displacement measuring device). FIG. 4 is a diagram illustrating a configuration of an inspection unit as a shape inspection apparatus. FIG. 5 is a diagram illustrating a configuration of a seal member as an object to be measured.

[光変位センサ及び変位検出装置]
ここでは、図1(A)における光源LD、コリメータレンズ1及び集光レンズ2で構成される投光部10と、受光レンズ(機能レンズ)、並びに、受光部20、遮蔽マスク6及びプリズム5受光素子で構成される変位検出装置について、説明する。図1(A)(B)及び図2における各要部(要素)であって、図6及び図7における要部と同一符号のものは、作用、機能も同一である。したがって、ここでは、図6や図7と異なる部分を主として、及び発明に係る部分を中心に説明する。
[Optical displacement sensor and displacement detector]
Here, the light projecting unit 10 including the light source LD, the collimator lens 1 and the condenser lens 2 in FIG. 1A, the light receiving lens (functional lens), the light receiving unit 20, the shielding mask 6 and the prism 5 are received. A displacement detection device composed of elements will be described. Each part (element) in FIGS. 1A, 1B, and 2 that has the same reference numerals as those in FIGS. 6 and 7 has the same function and function. Therefore, here, a description will be given mainly of parts different from FIG. 6 and FIG.

図1(A)で、投光部10は、光源LDからの光(レーザビーム)を被測定物101の表面へ入射させるが、そのときの被測定物101の表面における法線に対する入射角θは、45度以上にして、次の述べる反射角θと同じになるように配置されている。被測定物101の表面で反射された光であって、被測定物101の表面でほぼ反射角θで反射した光を受光レンズ3で集光して受光部20へ結像させている。この被測定物101の表面から受光レンズ3を経て受光部20へまでの反射光の光路が、被測定物101における法線と成す反射角θは、45度以上約70度までの間のいずれかに設定されている。これは、上記したように、受光部20における位置検出手段PSDの横幅(図1(A)における紙面の奥行き方向(主走査方向)の幅)に対する測定範囲を広げるためである。 In FIG. 1A, the light projecting unit 10 causes the light (laser beam) from the light source LD to be incident on the surface of the object to be measured 101, and the incident angle θ with respect to the normal line on the surface of the object to be measured 101 at that time. 0 is set to 45 degrees or more so as to be the same as the reflection angle θ described below. The light reflected by the surface of the object to be measured 101 and reflected by the surface of the object to be measured 101 at the reflection angle θ 0 is condensed by the light receiving lens 3 and formed on the light receiving unit 20. The reflection angle θ 0 formed by the optical path of the reflected light from the surface of the object to be measured 101 to the light receiving unit 20 through the light receiving lens 3 is between 45 degrees and about 70 degrees. It is set to either. As described above, this is to widen the measurement range with respect to the lateral width of the position detection means PSD in the light receiving unit 20 (the width in the depth direction (main scanning direction) in FIG. 1A).

投光部10から被測定物101の表面への入射光、受光レンズ3の主面(受光レンズ3の厚さ方向のセンタにおける面)、及び受光部20の受光面の各延長線は、1つの交点30で交差するように配置されている。つまりシャインプルークの条件を満足するので、反射光、例えば、図1(A)で被測定物101の傾斜により反射光の反射角θが変化しても、いずれの反射光も受光部20で結像することができる。したがって精度の良い位置情報を得ることができる。 The incident light from the light projecting unit 10 to the surface of the object 101, the main surface of the light receiving lens 3 (the surface at the center in the thickness direction of the light receiving lens 3), and each extension line of the light receiving surface of the light receiving unit 20 are 1 The two intersections 30 are arranged so as to intersect. In other words, since the conditions of Shine-Pluke are satisfied, even if the reflection angle θ 0 of the reflected light changes due to the inclination of the measured object 101 in FIG. An image can be formed. Therefore, accurate position information can be obtained.

受光部20、プリズム5及び遮蔽マスク6は、変位検出装置を構成するが、図2(A)にその具体的構成を示す。図2(A)において、受光部20は、位置検出手段PSDと、その位置検出手段PSDを収容するケース7と、そのケース7に、ガラス等でなる光を透過する透明蓋8を備えている。そして、断面が三角形状のプリズム5が、その最大長辺の面を透明蓋8に接着されて、その三角形状の残りの2辺の内、被測定物101からの反射光を受ける側の辺に遮蔽マスク6が固着されている。遮蔽マスク6は、被測定物101の底部からの反射光が位置検出手段PSDへ入射するのを防止する位置であって、被測定物101からの反射光と透明蓋8における法線と成す入射角θと、被測定物101からの反射光が位置検出手段PSDの表面で反射した反射光と法線となす角θを合わせた角度範囲(図2(A)では法線を中心とした±θ)に設定される。したがって、遮蔽マスク6と位置検出手段PSDの表面での多重反射が防止でき、多重反射に起因した測定誤差を防止できる。   The light receiving unit 20, the prism 5, and the shielding mask 6 constitute a displacement detection device. FIG. 2A shows a specific configuration thereof. 2A, the light receiving unit 20 includes a position detection unit PSD, a case 7 that houses the position detection unit PSD, and a transparent lid 8 that transmits light made of glass or the like in the case 7. . Then, the prism 5 having a triangular cross section is bonded to the transparent lid 8 on the surface with the longest long side, and the side on the side receiving the reflected light from the object 101 to be measured among the remaining two sides of the triangular shape. A shielding mask 6 is fixed to the surface. The shielding mask 6 is a position for preventing the reflected light from the bottom of the object to be measured 101 from entering the position detecting means PSD, and is incident between the reflected light from the object to be measured 101 and the normal line on the transparent lid 8. An angle range obtained by combining the angle θ and the angle θ between the reflected light from the object to be measured 101 and the reflected light reflected by the surface of the position detecting means PSD and the normal line (in FIG. θ). Therefore, multiple reflections on the surfaces of the shielding mask 6 and the position detection means PSD can be prevented, and measurement errors due to multiple reflections can be prevented.

位置検出手段PSDの両端からは、図2(A)に示すように反射光の受光位置を表す情報を含む信号である、出力A及び出力Bが出力される。これらの信号は、被測定物101の表面における変位に対応した情報が含まれており、その使い方は後記の「変位測定装置」で説明する。   Outputs A and B, which are signals including information indicating the light receiving position of the reflected light, are output from both ends of the position detecting means PSD as shown in FIG. These signals include information corresponding to the displacement on the surface of the object 101 to be measured, and how to use it will be described later in “Displacement measuring device”.

遮蔽マスク6による被測定物101の底部(図1(A)の基台102は透明なので基台102の裏面)からの反射光(細かい点線)を遮蔽マスク6により遮光する態様と、位置検出手段PSD受光面における反射光に基づく再反射光の態様とを図1(A)に示す。図1(A)で、被測定物101からの反射光は受光部20(位置検出手段PSD)で受光されると同時に一部がその表面で再反射して、プリズム5の3辺の内、最大長辺と被測定物101に面する側の辺を除く、残りの一辺を介して外部へ抜けるので、多重反射が軽減できる。一方で、被測定物101の底部からの不要反射光は、遮蔽マスク6により受光部20への入射が遮られる。なお、基台102が不透明な場合は、不要反射光は基台102からの反射光となる。   An aspect in which reflected light (fine dotted lines) from the bottom of the object 101 to be measured by the shielding mask 6 (the back surface of the base 102 because the base 102 in FIG. 1A is transparent) is shielded by the shielding mask 6 and position detection means A mode of re-reflected light based on reflected light on the PSD light-receiving surface is shown in FIG. In FIG. 1A, the reflected light from the object to be measured 101 is received by the light receiving unit 20 (position detecting means PSD) and at the same time, part of the reflected light is re-reflected on the surface, and among the three sides of the prism 5, Multiple reflections can be reduced because the longest side and the other side excluding the side facing the object to be measured 101 are removed to the outside. On the other hand, unnecessary reflected light from the bottom of the DUT 101 is blocked from entering the light receiving unit 20 by the shielding mask 6. When the base 102 is opaque, unnecessary reflected light is reflected from the base 102.

また、上記のように、プリズム5を用いるのは、それ自体が光を通過するので位置検出手段PSDによる反射光の受光に影響しないことと、遮蔽マスク6を上記のように被測定物101からの反射光と透明蓋8における法線と成す入射角θと、被測定物101からの反射光が位置検出手段PSDの表面で反射した反射光と法線となす角θを合わせた角度範囲に設定するのが容易だからである。遮蔽マスク6を支えるのは、プリズム5に限らず図2(B)のように位置検出手段PSDを挟むように受光部20の幅方向の両辺にマスク支柱6aを固定して設け、それに遮蔽マスク6を設ける構造であっても良い。また、遮蔽マスク6は固着したが、プリズム5もしくはマスク支柱6aのマスク取り付け面にガイドレールを設け、位置を可変できる構造にしても良い。   Further, as described above, the use of the prism 5 does not affect the reception of the reflected light by the position detection means PSD because it passes light itself, and the shielding mask 6 is removed from the object to be measured 101 as described above. The angle of incidence θ formed by the reflected light and the normal to the transparent lid 8 and the angle θ formed by the reflected light reflected from the object to be measured 101 reflected by the surface of the position detecting means PSD and the normal θ are combined. This is because it is easy to set. Supporting the shielding mask 6 is not limited to the prism 5, and as shown in FIG. 2 (B), mask struts 6 a are fixedly provided on both sides in the width direction of the light receiving unit 20 so as to sandwich the position detecting means PSD, and the shielding mask 6 6 may be provided. Further, although the shielding mask 6 is fixed, a guide rail may be provided on the mask mounting surface of the prism 5 or the mask column 6a to change the position.

なお、図1(A)で受光レンズ3を用いていたが、受光レンズ3に代えて図1(B)の構成を採用することもできる。つまり、被測定物101からの反射光をコリメータレンズ3aで平行光に変換して集光レンズ3bで集光させて受光部20へ結像させる構成を採用することもできる。請求項における「集光機能レンズ」と言う表現を用いているは、そのためであって、同一機能・性能を単一のレンズ或いは複数のレンズで達成できることから、それら全体を表すためである。   Although the light receiving lens 3 is used in FIG. 1A, the configuration shown in FIG. 1B can be employed instead of the light receiving lens 3. That is, it is possible to adopt a configuration in which the reflected light from the object to be measured 101 is converted into parallel light by the collimator lens 3a, condensed by the condenser lens 3b, and imaged on the light receiving unit 20. The expression “condensing function lens” in the claims is used for that purpose, and the same function and performance can be achieved by a single lens or a plurality of lenses, and therefore they are expressed as a whole.

[変位測定装置]
図3を基に、上記説明した光変位センサ103を使用した変位測定装置の実施形態について説明する。
[Displacement measuring device]
An embodiment of a displacement measuring device using the above-described optical displacement sensor 103 will be described with reference to FIG.

図3において、光変位センサ103は、上記図1,2で説明した光変位センサ103と同じであり、それを簡単に表現したものである。この光変位センサ103には、代表して図1における光源LDと、位置検出手段PSDが記載されている。図7において、制御部105、走査機構104、演算器106及びデータ処理部107は、変位測定部100を構成している。   In FIG. 3, the optical displacement sensor 103 is the same as the optical displacement sensor 103 described with reference to FIGS. In the optical displacement sensor 103, the light source LD and the position detecting means PSD in FIG. 1 are representatively described. In FIG. 7, the control unit 105, the scanning mechanism 104, the computing unit 106, and the data processing unit 107 constitute a displacement measuring unit 100.

図3の制御部105は、予め被測定物101の表面を走査して測定するために必要な、被測定物101の表面に係るレイアウト情報(表面を測定する範囲の座標(位置)情報を含む)を有し、そのレイアウトに基づいて、主走査範囲とその回数、主走査方向(図1の紙面方向)に直交する方向への副走査範囲とその回数を決定し、走査機構104に対して指示するとともに、走査開始を指示する。一方、走査しているときの位置の情報、つまり測定点の位置情報を出力している。   The control unit 105 in FIG. 3 includes layout information (coordinate (position) information of a range in which the surface is measured) necessary for scanning and measuring the surface of the device 101 in advance. ) And the sub-scanning range in the direction orthogonal to the main scanning direction (paper surface direction in FIG. 1) and the number of times are determined based on the layout. Instructed to start scanning. On the other hand, position information during scanning, that is, position information of measurement points is output.

走査機構104は、制御部105の指示にしたがって、光変位センサ103と被測定物101を相対的に主走査方向に移動させ、及び副走査方向に移動させる駆動機構及び手段を備える。例えば、それらの手段は、光変位センサ103を主走査方向に直線的に移動させることにより主走査させ、その1つの主走査が終わると主走査方向と直交方向に被測定物101を移動させることにより、光変位センサ103が測定する測定点を、相対的に走査する。   The scanning mechanism 104 includes a driving mechanism and means for moving the optical displacement sensor 103 and the object 101 to be measured relatively in the main scanning direction and in the sub scanning direction in accordance with an instruction from the control unit 105. For example, these means perform main scanning by linearly moving the optical displacement sensor 103 in the main scanning direction, and move the object to be measured 101 in a direction orthogonal to the main scanning direction when one main scanning is completed. Thus, the measurement point measured by the optical displacement sensor 103 is relatively scanned.

演算器106は、受光素子である位置検出手段PSDが出力する信号である、出力A,Bを基に変位情報としての出力L=(A−B)/(A+B)を演算して出力する。   The computing unit 106 computes and outputs an output L = (A−B) / (A + B) as displacement information based on the outputs A and B, which are signals output from the position detecting means PSD which is a light receiving element.

変位測定装置として、測定点と変位をプロットするだけであれば、データ処理部107は、演算器106の出力(変位z)を制御部105からの測定点の位置情報(x、y)に対してプロットすることにより得られる。データ処理部107は、演算器106の出力と制御部105の位置情報を基に、被測定物101の表面形状を3次元画像として、或いは主走査した箇所の断面形状を再現するためのものである。主走査方向、副走査方向及び変位方向を3次元又は2次元とする形状を表す形状データとして出力する。   If only the measurement point and the displacement are plotted as the displacement measuring device, the data processing unit 107 outputs the output (displacement z) of the computing unit 106 with respect to the position information (x, y) of the measurement point from the control unit 105. And plot it. The data processing unit 107 is for reproducing the cross-sectional shape of the surface of the measured object 101 as a three-dimensional image or a main-scanned portion based on the output of the computing unit 106 and the position information of the control unit 105. is there. It is output as shape data representing a shape in which the main scanning direction, the sub-scanning direction, and the displacement direction are three-dimensional or two-dimensional.

[シール部材形状測定装置]
前記変位測定装置の一具体的実施例として、液晶画面装置を生産するときに、板状の面に堤(シール部材)を設けてその中に液晶を薄く収容するが、そのシール部材を被測定物101として、その形状の変位を測定し、その断面形状を求める例について説明する。
[Seal member shape measuring device]
As one specific embodiment of the displacement measuring device, when producing a liquid crystal screen device, a dike (seal member) is provided on a plate-like surface and the liquid crystal is thinly accommodated therein. An example in which the displacement of the shape of the object 101 is measured to obtain the cross-sectional shape will be described.

図1から図3の基本構成は、そのまま使用できる。ここでは、被測定物101の概要と走査を主体として説明する。   1 to 3 can be used as they are. Here, the outline and scanning of the DUT 101 will be mainly described.

被測定物101であるシール部材101aを図5(A)(B)に示す。図5(B)は図5(A)のA−A*の部分における断面を示す。図1のように被測定物101としてのシール部材101aは、液晶画面を構成する透明なガラス101bとその四角枠状に周囲に沿って塗布された透明なシール部材101aで構成されている。これを例えば、図5(A)の下から上方向へ光変位センサ103を主走査して、四角枠状の横辺のシール部材101aの形状、つまり図5(B)のようなシール部材101aの断面形状を測定する。シール部材101aの長さ方向における全部の断面形状を測定するのであれば、長さ方向に副走査して位置を変更して、主走査する必要があるが、一部の断面形状だけであれば、副走査はしない。また、図5(A)の左側から右側へ主走査すれば、四角枠状の縦辺におけるシール部材101aの断面形状を測定する。   FIGS. 5A and 5B show a seal member 101a that is a device under test 101. FIG. FIG. 5B shows a cross section taken along the line AA * in FIG. As shown in FIG. 1, the seal member 101a as the object to be measured 101 is composed of a transparent glass 101b constituting a liquid crystal screen and a transparent seal member 101a applied along the periphery thereof in a square frame shape. For example, the optical displacement sensor 103 is main-scanned from the bottom to the top in FIG. 5A, and the shape of the seal member 101a on the side of the square frame shape, that is, the seal member 101a as shown in FIG. Measure the cross-sectional shape. If the entire cross-sectional shape in the length direction of the seal member 101a is to be measured, it is necessary to perform sub-scan in the length direction to change the position and perform the main scan. Sub-scanning is not performed. Further, when main scanning is performed from the left side to the right side in FIG. 5A, the cross-sectional shape of the seal member 101a on the vertical side of the square frame shape is measured.

ガラス101bの下には図示しない保持台が置かれるので、この場合は、ガラス101bの底部(基台102もガラスなので、基台102が保持台の表面と接触する面)からの反射光が不要反射光として遮蔽マスク6で遮光される。   Since a holding table (not shown) is placed under the glass 101b, in this case, the reflected light from the bottom of the glass 101b (the surface where the base 102 comes into contact with the surface of the holding table is unnecessary). The reflected light is shielded by the shielding mask 6.

そして、データ処理部107で演算器106からの出力Lを主走査位置に応じてプロットすすることによりシールの断面形状を示す形状データを求めることができる。   The data processing unit 107 plots the output L from the computing unit 106 according to the main scanning position, thereby obtaining shape data indicating the cross-sectional shape of the seal.

[形状検査装置]
図4を基に、上記説明した光変位センサ103を使用した変位測定装置を利用して被測定物101の表面の変位を検査する形状検査装置に利用した実施形態について説明する。例えば、そのシール部材101aを被測定物101として、その形状の変位を測定し、その良否判定を行う検査を行う場合について説明する。制御部105、比較手段202、判定手段203及び表示手段204は、検査部200を構成している。光変位センサ103を使用したシール部材101aの変位測定装置としては図3の形態がそのまま使用できる。
[Shape inspection device]
An embodiment used for a shape inspection apparatus that inspects the displacement of the surface of the object to be measured 101 using the displacement measuring apparatus using the optical displacement sensor 103 described above will be described with reference to FIG. For example, a case will be described in which the seal member 101a is used as the object to be measured 101, the displacement of the shape thereof is measured, and an inspection for determining whether the seal is good is performed. The control unit 105, the comparison unit 202, the determination unit 203, and the display unit 204 constitute an inspection unit 200. As the displacement measuring device for the seal member 101a using the optical displacement sensor 103, the embodiment shown in FIG. 3 can be used as it is.

比較手段202は、制御部105からシール部材101aの断面形状に係る設計値等をレファレンス(高さ、或いは面積)として受けて、データ処理部107から受けた画像データとレファレンスとの差を演算し出力する。なお、形状データに変換することなく、その測定点において測定した変位(測定したシール部材101aの高さ)とレファレンス(設計上のシール部材101aの高さ)との差を出力しても良い。   The comparison unit 202 receives a design value or the like related to the cross-sectional shape of the seal member 101a from the control unit 105 as a reference (height or area), and calculates a difference between the image data received from the data processing unit 107 and the reference. Output. Note that the difference between the displacement measured at the measurement point (the measured height of the seal member 101a) and the reference (designed height of the seal member 101a) may be output without converting into shape data.

判定手段203は、レファレンスに対応してその許容値を制御部105から受けて、比較手段202からの出力と比較し、比較手段202の出力が、許容値内であれば合格とし、許容値外であれば不良(否)と判定する。   The determination unit 203 receives the allowable value corresponding to the reference from the control unit 105 and compares it with the output from the comparison unit 202. If the output of the comparison unit 202 is within the allowable value, the determination unit 203 determines that the output is acceptable. If so, it is determined to be defective (no).

表示手段204は、判定手段203の判定結果を表示する。また、制御部105からレイアウト情報(例えば、シール部材101aの形態、位置を示す配置図)を受けて表示し、レイアウトのどの位置が不良(否)であり、合格であるかを識別可能に表示してもよい。また、それらと別に或いは併せて、データ処理部107で生成した形状データに基づく画像を表示させて、どの箇所が不良であり、合格であるかを識別可能に表示させることもできる。   The display unit 204 displays the determination result of the determination unit 203. In addition, layout information (for example, a layout drawing showing the form and position of the seal member 101a) is received from the control unit 105 and displayed so that it is possible to identify which position in the layout is defective (or not) and passed. May be. In addition to or in combination with them, an image based on the shape data generated by the data processing unit 107 can be displayed so that it is possible to identify which part is defective and passed.

本発明に係る光変位センサの実施形態を説明するための模式的な構成図である。It is a typical block diagram for demonstrating embodiment of the optical displacement sensor which concerns on this invention. 変位検出装置の構成と示すとともに、多重反射の防止を説明するための図である。It is a figure for showing prevention of multiple reflection while showing with the composition of a displacement detection device. 変位測定部(変位測定装置)の構成を示す図である。It is a figure which shows the structure of a displacement measuring part (displacement measuring apparatus). 形状検査装置としての検査部の構成を示す図である。It is a figure which shows the structure of the test | inspection part as a shape test | inspection apparatus. 被測定物としてのシール部材の構成を示す図である。It is a figure which shows the structure of the sealing member as a to-be-measured object. 従来技術の構成を示す図である。It is a figure which shows the structure of a prior art. 従来技術の欠点を説明するための図である。It is a figure for demonstrating the fault of a prior art.

符号の説明Explanation of symbols

1 コリメータレンズ、 2 集光レンズ、 3 受光レンズ(集光機能レンズ)、
3a コリメータレンズ、3b 集光レンズ、5 プリズム、6 遮蔽マスク、
6a マスク支柱、7 ケース、8 透明蓋、9 遮蔽マスク、
10 投光部、20 受光部、30 交点、
100 変位測定部(変位測定装置)、101 被測定物、 101a シール部材、
101b ガラス、 102 基台、103 光変位センサ、
104 走査機構、105 制御部、106 演算器、 107 データ処理部、
200 検査部、202 比較手段、203 判定手段、204 表示手段、
LD 光源、PSD 位置検出手段
1 collimator lens, 2 condensing lens, 3 light receiving lens (condensing function lens),
3a collimator lens, 3b condenser lens, 5 prism, 6 shielding mask,
6a Mask post, 7 Case, 8 Transparent lid, 9 Shielding mask,
10 light emitter, 20 light receiver, 30 intersection,
DESCRIPTION OF SYMBOLS 100 Displacement measurement part (displacement measuring apparatus), 101 to-be-measured object, 101a sealing member
101b glass, 102 base, 103 optical displacement sensor,
104 scanning mechanism, 105 control unit, 106 arithmetic unit, 107 data processing unit,
200 inspection unit 202 comparison unit 203 determination unit 204 display unit
LD light source, PSD position detection means

Claims (6)

透光性を有する被測定物に、該被測定物の表面に光を照射する投光部(10)と、該被測定物の表面からの反射光を受けて集光する集光機能レンズ(3)と、該集光機能レンズが前記集光する位置に配置され、該集光された光を受けたときの集光位置に応じた信号を出力する受光部(20)と、を備え、該被測定物、前記集光機能レンズ及び前記受光部は、相互にシャインプルークの条件を満たす位置に配置された変位測定装置であって、
該被測定物を透過して該被測定物の底部側で反射し前記集光機能レンズを経てきた裏面反射光が前記受光部に入るのを遮る位置であって、該受光部の表面における法線に対する前記集光された光の入射角度と、該入射角度で入射された該集光された光が該受光部の表面で反射したときの該法線に対する反射角度とを加えた角度範囲内の位置に設けられた遮蔽マスク(6)と、を備えたことを特徴とする変位測定装置。
A light projecting unit (10) for irradiating light onto the surface of the object to be measured and a condensing function lens for receiving and converging the reflected light from the surface of the object to be measured (translucent object to be measured) 3) and a light receiving unit (20) that outputs the signal according to the light collecting position when the light collecting functional lens is disposed at the light collecting position and receives the condensed light, The object to be measured, the condensing function lens, and the light receiving unit are displacement measuring devices arranged at positions that satisfy the conditions of Shine-Pluke mutually,
A position on the surface of the light-receiving unit, which is a position where the back-surface reflected light that has passed through the object to be measured and reflected on the bottom side of the object to be measured passes through the condenser lens and enters the light-receiving unit. An angle range obtained by adding an incident angle of the collected light with respect to a line and a reflection angle with respect to the normal line when the collected light incident at the incident angle is reflected by the surface of the light receiving unit And a shielding mask (6) provided at the position of.
断面形状が3辺からなるプリズムであって、該3辺の内、最長の第1の辺が、前記受光部の表面に対面して、かつ前記被測定物の変位に応じて前記集光位置が移動する方向に沿うように配置され、配置されたときに前記3辺の内、前記集光機能レンズ側に面する第2の辺に、該第2の辺に沿った面を有する前記遮蔽マスクが設けられたプリズム(5)を備えたことを特徴とする請求項1に記載の変位測定装置。   The prism has a cross-sectional shape of three sides, and the longest first side among the three sides faces the surface of the light receiving unit, and the condensing position according to the displacement of the object to be measured. The shield having a surface along the second side on the second side facing the condenser lens, among the three sides when arranged along the moving direction of the lens The displacement measuring device according to claim 1, further comprising a prism (5) provided with a mask. 前記受光部は、前記集光された光を受けて前記被測定物の変位とともに移動する前記集光位置を検出して、該集光位置に応じた信号を出力する前記位置検出手段(PSD)と、該位置検出手段を収容し、前記集光機能レンズからの集光された前記反射光を受光し透過して該位置検出手段へ入射させる透過面を有する収容ケース(7)を備え、前記プリズムは前記第1の辺を該透過面に密着して取り付けられ、前記集光機能レンズからの集光された前記反射光は該プリズムを経由して前記位置検出手段へ入射させることを特徴とする請求項2に記載の変位測定装置。   The light receiving unit receives the collected light, detects the light collecting position that moves with the displacement of the object to be measured, and outputs a signal corresponding to the light collecting position (PSD). And a receiving case (7) having a transmitting surface for receiving the position detecting means, receiving the transmitted reflected light from the condensing function lens, and transmitting the reflected light to the position detecting means. The prism is attached with the first side in close contact with the transmission surface, and the reflected light collected from the condenser lens is incident on the position detecting means via the prism. The displacement measuring device according to claim 2. 前記被測定物の表面から前記集光機能レンズを経て前記受光部までの反射光の光路は、該被測定物の表面における法線に対し45度を越える角度に設けられたことを特徴とする請求項1〜3のいずれか一つに記載の変位測定装置。   The optical path of the reflected light from the surface of the object to be measured through the condenser lens to the light receiving unit is provided at an angle exceeding 45 degrees with respect to the normal line on the surface of the object to be measured. The displacement measuring apparatus as described in any one of Claims 1-3. 透明板に塗布されたシール部材であって液晶画面装置における液晶を収容するための堤を成すシール部材に、該シール部材の表面に光を照射する投光部(10)と、該シール部材の表面からの反射光を受けて集光する集光機能レンズ(3)と、該集光機能レンズが前記集光する集光位置に配置される受光面を有し、該集光された光を受けて該シール部材の表面形状の変位とともに移動する該集光位置を検出して、該集光位置に応じた信号を出力する受光部(20)と、を備え、該シール部材、前記集光機能レンズ及び前記受光部は、相互にシャインプルークの条件を満たす位置に配置されており、前記位置検出手段が出力する信号を基に前記シール部材の形状を測定するシール部材形状測定装置であって、
該シール部材の表面から前記集光機能レンズを経て前記受光部までの反射光の光路は、該シール部材の表面における法線に対し45度を越える角度に設けられており、さらに、
該シール部材及び前記透明板を透過して該透明板の裏面で反射し前記集光機能レンズを経てきた裏面反射光が前記受光部の前記受光面に入るのを遮る位置であって、前記受光面における法線に対する前記集光された光の入射角度と該入射角度で入射された該集光された光の該法線に対する反射角度とを加えた角度範囲内の位置に設けられた遮蔽マスク(6)を備えたことを特徴とするシール部材形状測定装置。
A sealing member applied to a transparent plate and forming a bank for accommodating liquid crystal in a liquid crystal screen device, a light projecting section (10) for irradiating light on the surface of the sealing member, and a sealing member A condensing function lens (3) for receiving and reflecting the reflected light from the surface; and a light receiving surface disposed at the condensing position where the condensing function lens condenses the collected light. A light receiving portion (20) for detecting the condensing position that moves with the displacement of the surface shape of the seal member and outputs a signal corresponding to the condensing position. The functional lens and the light receiving unit are arranged at positions satisfying the conditions of Shine pluke with each other, and are a seal member shape measuring device that measures the shape of the seal member based on a signal output from the position detecting means. ,
The optical path of the reflected light from the surface of the seal member through the condensing function lens to the light receiving unit is provided at an angle exceeding 45 degrees with respect to the normal line on the surface of the seal member,
A position where the back surface reflected light transmitted through the sealing member and the transparent plate and reflected by the back surface of the transparent plate and passed through the condenser lens is blocked from entering the light receiving surface of the light receiving unit; A shielding mask provided at a position within an angle range obtained by adding the incident angle of the collected light with respect to the normal to the surface and the reflection angle of the collected light incident at the incident angle with respect to the normal (6) The sealing member shape measuring apparatus characterized by the above-mentioned.
入射された被測定光を受光する受光面を有し、該受光面で該被測定光を受光した受光位置に応じた信号を出力する位置検出手段(PSD)と、
該位置検出手段を収容し、該被測定光を該受位置検出手段へ入射させる透過面を有する収容ケース(7)と、
断面が3辺からなるプリズムであって、該3辺の内、最長の第1の辺が、前記位置検出手段の前記受光面に対面して、かつ前記受光位置が移動する方向に沿うように密着して取り付けられたプリズム(5)と、
該プリズムの前記3辺の内、前記被測定光が到来する側に面する第2の辺に沿って設けられ、該受光面における法線に対する被測定光の入射角より下回る入射角で到来する不要反射光の入射を遮る遮蔽マスク(6)と、を備え、該遮蔽マスクは、前記受光面における法線に対する前記被測定光の入射角度と該入射角度で入射された該被測定光の該法線に対する反射角度とを加えた角度範囲内の位置に設けられたことを特徴とする変位検出装置。
A position detecting means (PSD) having a light receiving surface for receiving incident light to be measured, and outputting a signal corresponding to the light receiving position at which the light to be measured is received by the light receiving surface;
A housing case (7) having a transmission surface for housing the position detecting means and allowing the light to be measured to enter the receiving position detecting means;
The prism has a cross section of three sides, and the longest first side of the three sides faces the light receiving surface of the position detecting unit and is along the direction in which the light receiving position moves. A closely attached prism (5);
Among the three sides of the prism, the prism is provided along the second side facing the side on which the light to be measured arrives, and arrives at an incident angle lower than the incident angle of the light to be measured with respect to the normal line on the light receiving surface. A shielding mask (6) for blocking incidence of unnecessary reflected light, and the shielding mask includes an incident angle of the measured light with respect to a normal line on the light receiving surface and the measured light incident at the incident angle. A displacement detection device provided at a position within an angle range including a reflection angle with respect to a normal line.
JP2008181019A 2008-07-11 2008-07-11 Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor Expired - Fee Related JP5337419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008181019A JP5337419B2 (en) 2008-07-11 2008-07-11 Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008181019A JP5337419B2 (en) 2008-07-11 2008-07-11 Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor

Publications (2)

Publication Number Publication Date
JP2010019714A true JP2010019714A (en) 2010-01-28
JP5337419B2 JP5337419B2 (en) 2013-11-06

Family

ID=41704772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008181019A Expired - Fee Related JP5337419B2 (en) 2008-07-11 2008-07-11 Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor

Country Status (1)

Country Link
JP (1) JP5337419B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185630A (en) * 2010-03-05 2011-09-22 Kanto Auto Works Ltd Device for monitoring of sealer application shape
CN102749040A (en) * 2011-04-18 2012-10-24 株式会社三丰 Shape measurement device
CN102749039A (en) * 2011-04-18 2012-10-24 株式会社三丰 Shape measurement device
JP2021523343A (en) * 2018-02-22 2021-09-02 トレルボルグ・シーリング・ソリューションズ・ユーエス,インコーポレーテッド Systems and methods for detecting the condition of the seal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259212A (en) * 1988-04-08 1989-10-16 Fuji Electric Co Ltd Distance measuring instrument
JPH03231103A (en) * 1990-02-07 1991-10-15 Mizojiri Kogaku Kogyosho:Kk Optical measuring method for coated thin film of transparent plate
JPH09257467A (en) * 1996-03-22 1997-10-03 Omron Corp Optical displacement-measuring apparatus
JPH09318315A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Optical displacement-measuring apparatus
JP2005201708A (en) * 2004-01-14 2005-07-28 Anritsu Corp Laser displacement gage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259212A (en) * 1988-04-08 1989-10-16 Fuji Electric Co Ltd Distance measuring instrument
JPH03231103A (en) * 1990-02-07 1991-10-15 Mizojiri Kogaku Kogyosho:Kk Optical measuring method for coated thin film of transparent plate
JPH09257467A (en) * 1996-03-22 1997-10-03 Omron Corp Optical displacement-measuring apparatus
JPH09318315A (en) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd Optical displacement-measuring apparatus
JP2005201708A (en) * 2004-01-14 2005-07-28 Anritsu Corp Laser displacement gage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185630A (en) * 2010-03-05 2011-09-22 Kanto Auto Works Ltd Device for monitoring of sealer application shape
CN102749040A (en) * 2011-04-18 2012-10-24 株式会社三丰 Shape measurement device
CN102749039A (en) * 2011-04-18 2012-10-24 株式会社三丰 Shape measurement device
JP2021523343A (en) * 2018-02-22 2021-09-02 トレルボルグ・シーリング・ソリューションズ・ユーエス,インコーポレーテッド Systems and methods for detecting the condition of the seal
JP7254825B2 (en) 2018-02-22 2023-04-10 トレレボリ シーリング ソリューションズ ジャーマニー ゲー・エム・ベー・ハー System and method for detecting seal condition

Also Published As

Publication number Publication date
JP5337419B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
US4483618A (en) Laser measurement system, virtual detector probe and carriage yaw compensator
JP5337419B2 (en) Displacement measuring device, seal member shape measuring device using the same, and displacement detecting device used therefor
JP2009150690A (en) Reflection-type optical sensor
CN111721235A (en) Photoelectric edge detection system and detection method thereof
JP2010271133A (en) Optical scanning type plane inspection device
JPH08114421A (en) Non-contact type measuring device for measuring thickness ofmaterial body comprising transparent material
US20200378803A1 (en) Optical encoder
JP4275661B2 (en) Displacement measuring device
JPH02278103A (en) Method and device for three-dimensionally inspecting printed circuit substrate
JP5219487B2 (en) Defect inspection apparatus and defect inspection program
JP2008175604A (en) Optical displacement sensor and displacement measuring device using it
US6856388B2 (en) Optical sensor for measuring the distance and/or inclination of a surface
JP4334380B2 (en) Shape measuring device
JP2010164354A (en) Autocollimator
JP4995041B2 (en) Printed solder inspection method and printed solder inspection apparatus
US11774239B1 (en) Optical measurement device and calibration method thereof
JPH03218442A (en) Differential refractometer
JP3168480B2 (en) Foreign matter inspection method and foreign matter inspection device
WO2022201910A1 (en) Foreign matter inspection device and foreign matter inspection method
CN111220095B (en) Method and device for detecting verticality of optical axis of divergent light beam with high precision
JP2009264778A (en) Optical spot displacement detection apparatus and measuring apparatus
JPH0765967B2 (en) Mounted board visual inspection device
JP5129689B2 (en) Printed solder inspection apparatus and printed solder inspection method
JP2522191B2 (en) IC lead height measuring device
JP4492309B2 (en) Inclination measuring method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees