JPH09255477A - Composite quartz crucible for silicon melting and production of single crystal using the same - Google Patents

Composite quartz crucible for silicon melting and production of single crystal using the same

Info

Publication number
JPH09255477A
JPH09255477A JP6557596A JP6557596A JPH09255477A JP H09255477 A JPH09255477 A JP H09255477A JP 6557596 A JP6557596 A JP 6557596A JP 6557596 A JP6557596 A JP 6557596A JP H09255477 A JPH09255477 A JP H09255477A
Authority
JP
Japan
Prior art keywords
crucible
quartz
single crystal
silicon
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6557596A
Other languages
Japanese (ja)
Inventor
Yoshinori Shirakawa
義徳 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP6557596A priority Critical patent/JPH09255477A/en
Publication of JPH09255477A publication Critical patent/JPH09255477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a quartz crucible for melting silicon, capable of preventing breakage of a single crystal growth. SOLUTION: The complex quartz crucible for melting silicon is a quartz crucible 1 for melting silicon inserted in the interior of carbon crucible 4 as crucible having double structure and the cylindrical part 1a and the bottom 1c are made of translucent quartz glass and a part containing a bending part 1b in the lower part is made of transparent quartz glass. This method for producing silicon single crystal compresses melting a silicon raw material on an inert atmosphere under reduced pressure and coagulating the melt while upwardly pulling by using seed crystal. In this case, the crystal is pulled up by using the composite quartz crucible as quartz crucible inserted in the interior of the carbon crucible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、シリコン単結晶
を引上げ中に発生する単結晶成長切れを防止することの
できるシリコン溶融用石英坩堝とその坩堝を用いた大径
シリコン単結晶の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a quartz crucible for melting silicon capable of preventing single crystal growth breakage that occurs during pulling of a silicon single crystal, and a method for producing a large-diameter silicon single crystal using the crucible. It is a thing.

【0002】[0002]

【従来の技術】シリコン単結晶を製造するには、高純度
シリコン原料を減圧下のアルゴン雰囲気で溶融し、種結
晶を用いて上方に引き上げながら凝固させる方法が多用
されている。
2. Description of the Related Art In order to manufacture a silicon single crystal, a method of melting a high-purity silicon raw material in an argon atmosphere under reduced pressure and solidifying it while pulling it upward with a seed crystal is widely used.

【0003】図2は、引き上げながら凝固させるシリコ
ン単結晶の製造装置を示す縦断面図である。図中の符号
8 はシリコン単結晶11の引上げ雰囲気を減圧するチャン
バーであり、チャンバーの内部には二重構造の溶融坩堝
5 が配置され、坩堝の外側にはこれを囲んで誘導加熱コ
イルなどで構成された加熱用ヒーター6 が、更にその外
側に断熱材で円筒状に構成された保温筒7 が配設されて
いる。溶融坩堝内にはヒーターにより溶融された結晶育
成用原料、つまりシリコン原料の溶融液9 が収容されて
いる。その溶融液の表面に引上げワイヤ12の先に取り付
けた種結晶10の下端を接触させ、この種結晶を上方に引
き上げることによって、その下端に溶融液が凝固したシ
リコン単結晶11を成長させていく。
FIG. 2 is a longitudinal sectional view showing an apparatus for producing a silicon single crystal which is solidified while being pulled up. Symbols in the figure
Reference numeral 8 is a chamber for depressurizing the pulling atmosphere of the silicon single crystal 11, and inside the chamber is a double-structured melting crucible.
5, a heating heater 6 composed of an induction heating coil and the like is provided around the outer side of the crucible, and a heat insulating cylinder 7 formed of a heat insulating material in a cylindrical shape is further disposed outside thereof. . In the melting crucible, a raw material for crystal growth that is melted by a heater, that is, a molten silicon raw material 9 is stored. The lower end of the seed crystal 10 attached to the tip of the pulling wire 12 is brought into contact with the surface of the melt, and the seed crystal is pulled upward to grow a silicon single crystal 11 in which the melt is solidified at the lower end. .

【0004】このとき溶融坩堝は回転軸15で、シリコン
単結晶は引上げワイヤの上部に設けた回転機構(図示せ
ず)によって、お互いに反対方向に回転させられる。溶
融坩堝は二重構造であり、内側が石英ガラス製の容器1
(以下、これを「石英坩堝」という)、外側がカーボン
製の容器4 (以下、これを「カーボン坩堝」という)か
ら構成されている。
At this time, the melting crucible is rotated by the rotating shaft 15, and the silicon single crystal is rotated by the rotating mechanism (not shown) provided above the pulling wire in opposite directions. The melting crucible has a double structure and the inside is made of quartz glass.
(Hereinafter, this is referred to as "quartz crucible"), and the outside is made up of a carbon container 4 (hereinafter referred to as "carbon crucible").

【0005】チャンバー内は、約 10 torr に減圧さ
れ、ガス供給口13からアルゴンガスを供給し、シリコン
溶融液の表面から発生するSiO ガスおよびカーボン坩堝
やヒーターから発生するCOガスなどをアルゴンガスとと
もにガス排気口14から排出する。SiO ガスやCOガスなど
の凝縮不純物が単結晶成長界面に取り込まれると、単結
晶の成長が途中で途絶え、多結晶化する現象(以下、こ
れを「DF切れ」という)が発生する。
The inside of the chamber is depressurized to about 10 torr, argon gas is supplied from the gas supply port 13, and SiO gas generated from the surface of the silicon melt and CO gas generated from the carbon crucible and the heater are mixed with the argon gas. Exhaust from the gas exhaust port 14. When condensed impurities such as SiO gas and CO gas are taken into the single crystal growth interface, the growth of the single crystal is interrupted halfway, and a phenomenon of polycrystallization (hereinafter referred to as “DF break”) occurs.

【0006】近年、直径の大きな(8インチから12イン
チ)シリコン単結晶の要望が多くなり、引き上げられる
シリコン単結晶が大径化され、DF切れによる単結晶の
歩留りが低下することになる。通常、シリコン単結晶の
引き上げ中は、シリコン融液と結晶との境界をチャンバ
ーの側壁に設けたカメラによって監視しており、DF切
れが発生すると引上げを中止する。このため、残湯の処
理やDF切れによる単結晶の歩留り低下という問題があ
り、これを防止することが、特に、大径化された単結晶
の引上げにおいて重要課題である。
In recent years, there has been an increasing demand for silicon single crystals having a large diameter (8 to 12 inches), the silicon single crystals to be pulled have a large diameter, and the yield of single crystals due to DF breakage decreases. Usually, during the pulling of the silicon single crystal, the boundary between the silicon melt and the crystal is monitored by a camera provided on the side wall of the chamber, and the pulling is stopped when a DF break occurs. Therefore, there is a problem that the yield of the single crystal is reduced due to the treatment of the residual hot water or the breakage of DF, and preventing this is an important issue especially in pulling the single crystal having a large diameter.

【0007】DF切れの発生を防止するには、単結晶成
長界面に不純物を取り込まなくすることであり、この対
策には種々提案、実施されている。石英坩堝に関して
は、石英ガラス中に微量に含まれている酸素や気泡がシ
リコン溶融液に溶出し、DF切れの原因になりえること
から、下記の提案がなされている。
In order to prevent the occurrence of DF breakage, it is necessary to prevent impurities from being introduced into the single crystal growth interface, and various countermeasures have been proposed and implemented. Regarding the quartz crucible, the following proposals have been made because oxygen and bubbles contained in a small amount in the quartz glass can be dissolved in the silicon melt and cause DF breakage.

【0008】(1) 実開昭62-175077 号公報には、半透明
石英ガラスからなる有底円筒体に、透明石英ガラスから
なる有底または非有底の円筒体を嵌合して両者を加熱一
体化することによって、転位の発生や不純物の混入が少
なく、酸素濃度の分布が均一である単結晶を引き上げる
ことのできる石英坩堝が提案されている。
(1) In Japanese Utility Model Publication No. 62-175077, a bottomed cylinder made of semitransparent quartz glass is fitted with a bottomed or non-bottomed cylinder made of transparent quartz glass, and both There has been proposed a quartz crucible capable of pulling a single crystal having a uniform oxygen concentration distribution with less generation of dislocations and mixing of impurities by heating and integrating.

【0009】(2) 特開平6-329493号公報には、坩堝の周
壁内部が実質的に気泡を内在しない透明ガラス層および
外側部分が気泡を内在する半透明ガラス層からなり、か
つ底部が実質的に気泡を内在しない透明ガラス層からな
る坩堝とすることによって、熱伝導率が良く、単結晶化
歩留りを向上することのできる石英坩堝が提案されてい
る。
(2) JP-A-6-329493 discloses that the inner wall of the crucible is composed of a transparent glass layer in which substantially no bubbles are contained and an outer portion is a semitransparent glass layer in which bubbles are contained, and the bottom part is substantially formed. There has been proposed a quartz crucible that has good thermal conductivity and can improve the yield of single crystallization by using a crucible made of a transparent glass layer having no bubbles therein.

【0010】(3) 特開平7-53295 号公報には、石英ガラ
ス坩堝の少なくとも底部が半透明であり、かつ石英ガラ
ス坩堝の外面全体の中心線平均粗さRaを0.1 μm〜50μ
mとすることにより、カーボン坩堝との接触をよくして
シリコン単結晶引上げの歩留り(単結晶化率)を向上さ
せることのできる石英坩堝が提案されている。
(3) In Japanese Patent Laid-Open No. 7-53295, at least the bottom of the quartz glass crucible is semitransparent, and the center line average roughness Ra of the entire outer surface of the quartz glass crucible is 0.1 μm to 50 μm.
There has been proposed a quartz crucible capable of improving contact with a carbon crucible and improving yield (single crystallization rate) of pulling a silicon single crystal by setting m.

【0011】(4) 加賀美、林監修「高純度シリカの応用
技術」1991.3.1 シーエムシー発行 p.187には、透明化
部が厚くなるに従い、坩堝上縁からの熱放射が増加し加
熱電力が増し、坩堝内温度分布が大きくなるので、坩堝
胴上半分程度の半透明化が試みられている。
(4) Kagami and Hayashi's supervision "Applied technology of high-purity silica" 1991.3.1 CMC published p.187 shows that as the transparentized part becomes thicker, the heat radiation from the upper edge of the crucible increases and the heating power The temperature distribution in the crucible increases and the temperature distribution inside the crucible increases. Therefore, it has been attempted to make the upper half of the crucible half transparent.

【0012】図3は、上記の公知文献に提案された石英
坩堝の構成を示す縦断面図であり、(a) および(b) は文
献(2) に示された坩堝、(c) および(d) は文献(1) に示
された坩堝、(e) は文献(3) に示された坩堝、(f) は文
献(4) に示された坩堝の構成を示す縦断面図である。
FIG. 3 is a longitudinal sectional view showing the structure of the quartz crucible proposed in the above-mentioned publicly known document. (A) and (b) are the crucible, (c) and () shown in document (2). d) is a crucible shown in Document (1), (e) is a crucible shown in Document (3), and (f) is a longitudinal sectional view showing the structure of the crucible shown in Document (4).

【0013】[0013]

【発明が解決しようとする課題】本発明の目的は、石英
坩堝からの気泡の溶出を軽減して、有転位化しない単結
晶を引き上げることのできる石英坩堝およびそれを用い
た製造方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a quartz crucible capable of reducing elution of bubbles from the quartz crucible and pulling a single crystal which does not have dislocations, and a manufacturing method using the same. Especially.

【0014】[0014]

【課題を解決するための手段】本発明者は、シリコン単
結晶のDF切れの原因について種々研究した結果、石英
ガラスの透明度の高いほど、即ち気泡の存在率の低いほ
どシリコン中への気泡の溶け込みが少なく、また底部の
屈曲部に透明度の高い石英ガラスを使用することによっ
て、DF切れの発生が少なくなることを見いだし、本発
明を完成した。本発明の要旨は、図1に示す下記のシ
リコン溶融用石英坩堝および下記に示すシリコン単結
晶の製造方法にある。
As a result of various studies on the cause of DF breakage of a silicon single crystal, the present inventor has found that the higher the transparency of silica glass, that is, the lower the abundance of air bubbles, the more the air bubbles in silicon are formed. The inventors have found that the occurrence of DF breakage is reduced by using quartz glass with a low penetration and high transparency in the bent portion of the bottom, and thus the present invention has been completed. The gist of the present invention resides in the following silicon melting quartz crucible shown in FIG. 1 and a method for producing a silicon single crystal shown below.

【0015】二重構造坩堝としてカーボン坩堝4 の内
部に挿入されるシリコン溶融用石英坩堝1 であって、直
胴部1aおよび底部1cが半透明石英ガラス、下部の屈曲部
1bを含む部分が透明石英ガラスであるシリコン溶融用複
合石英坩堝。
A quartz crucible 1 for melting silicon, which is inserted into a carbon crucible 4 as a double-structured crucible, in which a straight body portion 1a and a bottom portion 1c are semitransparent quartz glass, and a lower bent portion.
A compound quartz crucible for melting silicon, in which the portion including 1b is transparent quartz glass.

【0016】シリコン原料を減圧された不活性雰囲気
中で溶融し、種結晶を用いて上方に引き上げながら凝固
させるシリコン単結晶の製造方法において、カーボン坩
堝の内部に挿入される石英坩堝として、直胴部および底
部が半透明石英ガラス、下部の屈曲部を含む部分が透明
石英ガラスである複合石英坩堝を用いて結晶を引き上げ
るシリコン単結晶の製造方法。
In a method for producing a silicon single crystal in which a silicon raw material is melted in a depressurized inert atmosphere and is solidified while being pulled upward by using a seed crystal, a quartz crucible to be inserted into a carbon crucible is used as a straight cylinder. A method for producing a silicon single crystal in which a crystal is pulled using a compound quartz crucible in which the bottom and the bottom are semitransparent quartz glass and the portion including the lower bent portion is transparent quartz glass.

【0017】ここで透明石英ガラスとは気泡の存在率が
容積率で0.01%(以下、これを「vol.% 」と記す)以
下、半透明石英とは0.1 vol.% 以上であることを意味す
る。
Here, transparent quartz glass means that the abundance of bubbles is 0.01% (hereinafter referred to as “vol.%”) Or less in volume ratio, and semitransparent quartz is 0.1 vol.% Or more. To do.

【0018】[0018]

【発明の実施の形態】図1は、本発明の石英坩堝を挿入
したシリコン溶融用坩堝を示す縦断面図である。同図に
示すように、本発明の溶融坩堝5 は、外側のカーボン坩
堝4 の内部に石英坩堝1 が挿入された二重構造坩堝であ
る。
1 is a longitudinal sectional view showing a silicon melting crucible having a quartz crucible of the present invention inserted therein. As shown in the figure, the melting crucible 5 of the present invention is a double-structured crucible in which the quartz crucible 1 is inserted inside the outer carbon crucible 4.

【0019】石英坩堝は、直胴部1aおよび底部1cが半透
明石英ガラスで構成され、下部の屈曲部1bを含む部分が
気泡の存在率0.01vol.% 以下の透明石英ガラスで構成さ
れているので、気泡に存在するアルカリ金属などの不純
物の溶出が少ない。
In the quartz crucible, the straight body portion 1a and the bottom portion 1c are made of semitransparent quartz glass, and the portion including the lower bent portion 1b is made of transparent quartz glass having a bubble existence rate of 0.01 vol.% Or less. Therefore, the elution of impurities such as alkali metals present in the bubbles is small.

【0020】坩堝の下部の屈曲部を含む部分を透明石英
ガラスとすることとしたのは、発明者らの種々の試験結
果から、石英坩堝において屈曲部からの気泡の溶出が特
に多いことを見出したためである。その理由は、シリコ
ン溶融液の流れに影響されていると考えられる。また、
底部は上記による影響が少ないため、透明ガラスを使用
する必要がない、と考えた。
From the results of various tests conducted by the inventors, it was found that the amount of bubbles eluted from the bent portion was particularly large in the quartz crucible, because the transparent quartz glass was used for the portion including the bent portion in the lower portion of the crucible. It is due to the fact. The reason is considered to be influenced by the flow of the silicon melt. Also,
Since the bottom is less affected by the above, it was considered that it is not necessary to use transparent glass.

【0021】後述の実施例で詳述するように、種々の材
質の石英ガラスを組み合わせて石英坩堝を製作し、シリ
コン単結晶の引上げ試験を実施した結果によれば、直胴
部および底部が半透明石英ガラスで構成され、下部の屈
曲部を含む部分が透明石英ガラスであるシリコン溶融用
複合石英坩堝を使用した場合、気泡の溶出によるDF切
れの発生が少ないことがわかった。
As will be described in detail in Examples below, a quartz crucible was manufactured by combining quartz glass of various materials, and a pulling test of a silicon single crystal was conducted. It was found that when a composite quartz crucible for melting silicon, which is composed of transparent quartz glass and the lower bent portion is transparent quartz glass, the occurrence of DF breakage due to elution of bubbles is small.

【0022】本発明の石英坩堝は、通常のアーク溶融法
で石英粉を溶融成形して製作され、従来からあるような
下記の方法を用いることができる。
The quartz crucible of the present invention is manufactured by melting and molding quartz powder by a usual arc melting method, and the following conventional methods can be used.

【0023】モールド内周面に原料の石英粉を堆積させ
る。この際、坩堝の下部の屈曲部を含む部分を構成する
石英粉の粒度を、直胴部および底部を構成する石英粉の
粒度より充分小さくすることにより、下部の屈曲部を含
む部分の透明化を促すことができる。次いで、モールド
底面に一定の厚さで堆積させた石英粉を、例えばアーク
加熱などによって溶融し、堆積した石英層の表面が溶融
してガラス化するとともにモールド側から減圧し、モー
ルドに設けた通気孔を通じて石英層内部の空気を外部に
吸引して石英層表面部分に透明ガラス層を形成する。そ
の後、加熱源の位置を調整し、加熱源を屈曲部を含む部
分に近づけ、減圧下で屈曲部を含む部分を再溶融するこ
とにより、屈曲部を含む部分を透明化する。
Quartz powder as a raw material is deposited on the inner peripheral surface of the mold. At this time, by making the grain size of the quartz powder forming the portion including the lower bent portion of the crucible sufficiently smaller than the grain diameter of the quartz powder forming the straight body portion and the bottom portion, the portion including the lower bent portion is made transparent. Can be encouraged. Next, the quartz powder deposited on the bottom surface of the mold with a certain thickness is melted by, for example, arc heating, the surface of the deposited quartz layer is melted and vitrified, and the pressure is reduced from the mold side. Air inside the quartz layer is sucked through the pores to form a transparent glass layer on the surface of the quartz layer. After that, the position of the heating source is adjusted, the heating source is brought close to the portion including the bending portion, and the portion including the bending portion is remelted under reduced pressure to make the portion including the bending portion transparent.

【0024】この方法で製作された石英坩堝は、透明部
と半透明部の接合部には明確な境界が顕れず、前記気泡
の存在率が変化することにより確認される。
In the quartz crucible manufactured by this method, no clear boundary appears at the joint between the transparent portion and the semi-transparent portion, and it is confirmed that the abundance ratio of the bubbles changes.

【0025】[0025]

【実施例】図1および図3に示す溶融用石英坩堝を配置
した図2に示すシリコン単結晶製造装置を用い、直径20
0 mmの単結晶を製造した。
EXAMPLE A silicon single crystal manufacturing apparatus shown in FIG. 2 in which the melting quartz crucible shown in FIGS.
A 0 mm single crystal was produced.

【0026】内径560 mm、高さ360 mm、厚さ 12 mmの石
英坩堝を、上記の方法で表1に示す坩堝を製作した。透
明石英ガラス部には合成石英を使用し、気泡の存在率が
0.01vol.% 以下の範囲のものとした。また、半透明石英
ガラス部には天然石英を使用し、気泡の存在率が0.1 vo
l.% 以上の範囲のものとした。
A quartz crucible having an inner diameter of 560 mm, a height of 360 mm and a thickness of 12 mm, and the crucible shown in Table 1 were manufactured by the above method. Synthetic quartz is used for the transparent quartz glass part,
The range was 0.01 vol.% Or less. In addition, natural quartz is used for the semi-transparent quartz glass part, and the existence rate of bubbles is 0.1 vo.
The range is l.% or more.

【0027】[0027]

【表1】 [Table 1]

【0028】上記の石英坩堝をカーボン坩堝に挿入した
二重構造溶融坩堝を使用し、100 kgの多結晶シリコンを
溶融し、 1000 mm長さの単結晶を製造した。また、比較
例として図3に示すような報文に記載された石英坩堝を
用い、同様のシリコン単結晶を製造した。得られたシリ
コン単結晶の上部T、中央部Mおよび底部Bについての
酸素濃度結果とDF切れ率(多結晶化されている部分の
長さを全長で除した値)をそれぞれ3体を調査し、表1
に示した。
Using a double-structured melting crucible in which the above quartz crucible was inserted into a carbon crucible, 100 kg of polycrystalline silicon was melted to produce a single crystal having a length of 1000 mm. Further, as a comparative example, a similar silicon single crystal was manufactured using the quartz crucible described in the report as shown in FIG. The oxygen concentration results and the DF cutting rate (value obtained by dividing the length of the polycrystallized portion by the total length) of the upper T, the central portion M and the bottom B of the obtained silicon single crystal were examined for each of three bodies. , Table 1
It was shown to.

【0029】本発明の坩堝(坩堝番号1)を配置した試
験体は、単結晶の成長方向のTMBにおける酸素濃度の
変動が少なく、DF切れ率が5%と小さい。
The test piece in which the crucible of the present invention (crucible number 1) is arranged has little variation in oxygen concentration in TMB in the growth direction of the single crystal, and the DF cut rate is as small as 5%.

【0030】本発明の坩堝と透明ガラスの構成を逆に構
成した坩堝(坩堝番号2)を配置した試験体は、単結晶
のTMBにおける酸素濃度の変動が大きく、DF切れ率
も20%と大きい。
The test piece in which the crucible and the transparent glass of the present invention having the reverse configuration of the crucible (crucible number 2) are arranged has a large fluctuation in oxygen concentration in the single crystal TMB and a large DF cut rate of 20%. .

【0031】図3(a)に示すような内層に透明ガラスを使
用した坩堝(坩堝番号3)を配置した試験体は、単結晶
のTMBにおける酸素濃度の変動が本発明の坩堝を使用
した場合よりもやや大きく、DF切れ率も10%とやや大
きい。
As shown in FIG. 3 (a), the test body in which the crucible (crucible number 3) made of transparent glass was placed in the inner layer was the case where the fluctuation of the oxygen concentration in the single crystal TMB was the case where the crucible of the present invention was used. It is slightly larger than the above, and the DF cut rate is 10%.

【0032】図3(b)に示すような内層の一部に透明ガラ
スを使用した坩堝(坩堝番号4)を配置した試験体は、
単結晶のTMBにおける酸素濃度の変動が大きく、DF
切れ率も20%と大きい。
As shown in FIG. 3 (b), a test body in which a crucible (crucible number 4) made of transparent glass is arranged in a part of the inner layer is
The fluctuation of oxygen concentration in single crystal TMB is large and DF
The cutting rate is as high as 20%.

【0033】図3(d)に示すような内層および底部に透明
ガラスを使用した坩堝(坩堝番号5)を配置した試験体
は、単結晶のTMBにおける酸素濃度の変動が本発明の
坩堝を使用した場合よりもやや大きく、DF切れ率も10
%とやや大きい。
As shown in FIG. 3 (d), a test body having a crucible (crucible number 5) made of transparent glass on the inner layer and the bottom was used in the crucible of the present invention in which fluctuation of oxygen concentration in TMB of a single crystal was observed. It is slightly larger than when it is done and the DF cut rate is 10
%, Which is a little large.

【0034】図3(e)に示すような直胴部に透明ガラス、
底部に半透明ガラスを使用した坩堝(坩堝番号6)を配
置した試験体は、単結晶のTMBにおける酸素濃度の変
動が大きく、DF切れ率も15%と大きい。
Transparent glass on the straight body as shown in FIG. 3 (e),
The test piece in which a crucible (crucible number 6) using semitransparent glass is arranged at the bottom has a large fluctuation in oxygen concentration in TMB of a single crystal and a large DF cut rate of 15%.

【0035】図3(f)に示すような内層直胴部に半透明ガ
ラス、底部に透明ガラスを使用した坩堝(坩堝番号7)
を配置した試験体は、単結晶のTMBにおける酸素濃度
の変動が大きく、DF切れ率も15%と大きい。
As shown in FIG. 3 (f), a crucible having a semi-transparent glass for the straight body of the inner layer and a transparent glass for the bottom (crucible number 7)
In the test body in which the sample was arranged, the fluctuation of the oxygen concentration in the single crystal TMB was large, and the DF cut rate was as large as 15%.

【0036】従来から使用されている坩堝、即ち半透明
ガラスを使用した坩堝(坩堝番号8)を配置した試験体
は、単結晶のTMBにおける酸素濃度の変動が大きく、
DF切れ率も20%と大きい。
The crucible conventionally used, that is, the test body in which the crucible (crucible number 8) using the translucent glass is arranged, has a large fluctuation of the oxygen concentration in the TMB of the single crystal,
The DF cut rate is as high as 20%.

【0037】[0037]

【発明の効果】本発明のシリコン溶融用石英坩堝を配設
したシリコンの単結晶製造装置によれば、転位の発生に
よるDF切れ率を軽減することができる。
According to the apparatus for producing a silicon single crystal having the quartz crucible for melting silicon of the present invention, it is possible to reduce the DF cut rate due to the generation of dislocations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の石英坩堝を挿入したシリコン溶融用二
重坩堝を示す縦断面である。
FIG. 1 is a longitudinal section showing a double crucible for melting silicon, in which a quartz crucible of the present invention is inserted.

【図2】引き上げながら凝固させるシリコン単結晶製造
装置を示す縦断面図である。
FIG. 2 is a vertical sectional view showing a silicon single crystal manufacturing apparatus for solidifying while pulling.

【図3】公知のシリコン溶融坩堝の断面を示す図であ
り、(a) および(b) は熱伝導率を良くする文献、(c) お
よび(d) は不純物の溶出を軽減する文献、(e) は石英坩
堝の外面の表面粗さを規定した文献に記載されている坩
堝、(f) は底部を透明石英ガラスで製作した文献に記載
されている坩堝の構成を示す縦断面図である。
FIG. 3 is a view showing a cross section of a known silicon melting crucible, (a) and (b) are references for improving thermal conductivity, (c) and (d) are references for reducing elution of impurities, and (e) is a crucible described in the literature that defines the surface roughness of the outer surface of the quartz crucible, and (f) is a longitudinal sectional view showing the structure of the crucible described in the literature whose bottom is made of transparent quartz glass. .

【符号の説明】[Explanation of symbols]

1.石英坩堝 1a.直胴部 1b.屈曲部 1c.底部 2.半透明部 3.透明部 4.カーボン坩堝 5.二重構造溶融坩堝 6.加熱用ヒータ 7.保温筒 8.チャンバー 9.シリコン溶融液 10.種結晶 11.シリコン単結晶 12.引上げ棒 13.ガス供給口 14.ガス排出口 15.回転軸 1. Quartz crucible 1a. Straight body part 1b. Bend 1c. Bottom 2. Semi-transparent part 3. Transparent part 4. Carbon crucible 5. Double structure melting crucible 6. Heater for heating 7. 7. Heat insulation tube Chamber 9. Silicon melt 10. Seed crystal 11. Silicon single crystal 12. Pull bar 13. Gas supply port 14. Gas outlet 15. Axis of rotation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】二重構造坩堝としてカーボン坩堝の内部に
挿入されるシリコン溶融用石英坩堝であって、直胴部お
よび底部が半透明石英ガラス、下部の屈曲部を含む部分
が透明石英ガラスであることを特徴とするシリコン溶融
用複合石英坩堝。
1. A quartz crucible for melting silicon, which is inserted into a carbon crucible as a double-structured crucible, wherein a straight body and a bottom are made of semitransparent quartz glass, and a portion including a lower bent portion is made of transparent quartz glass. A composite quartz crucible for melting silicon, which is characterized in that
【請求項2】シリコン原料を減圧された不活性雰囲気中
で溶融し、種結晶を用いて上方に引き上げながら凝固さ
せるシリコン単結晶の製造方法において、カーボン坩堝
の内部に挿入される石英坩堝として、直胴部および底部
が半透明石英ガラス、下部の屈曲部を含む部分が透明石
英ガラスである複合石英坩堝を用いて結晶を引き上げる
ことを特徴とするシリコン単結晶の製造方法。
2. In a method for producing a silicon single crystal in which a silicon raw material is melted in a depressurized inert atmosphere and solidified while being pulled up by using a seed crystal, a quartz crucible to be inserted into a carbon crucible, A method for producing a silicon single crystal, which comprises pulling a crystal using a compound quartz crucible having a straight body portion and a bottom portion of semitransparent quartz glass, and a portion including a lower bent portion is transparent quartz glass.
JP6557596A 1996-03-22 1996-03-22 Composite quartz crucible for silicon melting and production of single crystal using the same Pending JPH09255477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6557596A JPH09255477A (en) 1996-03-22 1996-03-22 Composite quartz crucible for silicon melting and production of single crystal using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6557596A JPH09255477A (en) 1996-03-22 1996-03-22 Composite quartz crucible for silicon melting and production of single crystal using the same

Publications (1)

Publication Number Publication Date
JPH09255477A true JPH09255477A (en) 1997-09-30

Family

ID=13290951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6557596A Pending JPH09255477A (en) 1996-03-22 1996-03-22 Composite quartz crucible for silicon melting and production of single crystal using the same

Country Status (1)

Country Link
JP (1) JPH09255477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124230A (en) * 2004-10-28 2006-05-18 Tosoh Quartz Corp Vessel for melting silicon
JP2015221732A (en) * 2014-05-22 2015-12-10 コバレントマテリアル株式会社 Quartz glass crucible

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124230A (en) * 2004-10-28 2006-05-18 Tosoh Quartz Corp Vessel for melting silicon
JP4712347B2 (en) * 2004-10-28 2011-06-29 東ソー・クォーツ株式会社 Silicon melting container
JP2015221732A (en) * 2014-05-22 2015-12-10 コバレントマテリアル株式会社 Quartz glass crucible

Similar Documents

Publication Publication Date Title
US6886364B2 (en) Method for producing quartz glass crucible
CN100432023C (en) Method for manufacture thermal field charcoal/charcoal crucible for single crystal silicon pulling furnace
US5174801A (en) Manufacture of quartz glass crucible for use in the manufacture of single crystal silicon
US7686887B2 (en) Quartz glass crucible for pulling up silicon single crystal and method for producing the same
JP4948504B2 (en) Silicon single crystal pulling method
US6841210B2 (en) Multilayer structured quartz glass crucible and method for producing the same
JP4799536B2 (en) High-purity quartz glass crucible for pulling up large-diameter silicon single crystal ingots that can reduce pinhole defects in large-diameter silicon single crystal ingots
US7299658B2 (en) Quartz glass crucible for the pulling up of silicon single crystal
EP1026289B1 (en) Quartz glass crucible for pulling up silicon single crystal and process for producing the same
JP4233059B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4781020B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing quartz glass crucible for pulling silicon single crystal
JP4841764B2 (en) Method and apparatus for producing quartz glass crucible for pulling silicon single crystal
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
JPH09255477A (en) Composite quartz crucible for silicon melting and production of single crystal using the same
JPH09249494A (en) Crucible for melting silicon
CN102296359A (en) Vitreous silica crucible and method of manufacturing silicon ingot
JPH068237B2 (en) Quartz crucible for pulling silicon single crystal
JP4874888B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP2005060152A (en) Manufacturing method for quartz crucible, quartz crucible, and manufacturing method for silicon single crystal using the same
JPH0834628A (en) Production of high-purity quartz glass crucible
JP7014679B2 (en) Quartz glass crucible
JPH09241093A (en) Quartz crucible having double layer structure for fusing of silicon
CN110552056A (en) Method for improving Czochralski single crystal formation
JPH09255489A (en) Production of silicon single crystal
JPH09110588A (en) Production of single crystal copper