JPH09255471A - Production of single crystal and device therefor - Google Patents

Production of single crystal and device therefor

Info

Publication number
JPH09255471A
JPH09255471A JP6690896A JP6690896A JPH09255471A JP H09255471 A JPH09255471 A JP H09255471A JP 6690896 A JP6690896 A JP 6690896A JP 6690896 A JP6690896 A JP 6690896A JP H09255471 A JPH09255471 A JP H09255471A
Authority
JP
Japan
Prior art keywords
raw material
crucible
crystal
single crystal
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6690896A
Other languages
Japanese (ja)
Inventor
Toshiyuki Fujiwara
俊幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP6690896A priority Critical patent/JPH09255471A/en
Publication of JPH09255471A publication Critical patent/JPH09255471A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a single crystal capable of supplying a raw material in a crucible within a short time without generating the splash of a molten liquid preceding to the pulling up the single crystal. SOLUTION: This method for producing a single crystal is to fill a lump shaped polycrystalline silicon in a crucible 2 as a raw material for a crystal, melt the raw material for the crystal by a heater 4, adjust the height of discharging ports of feeding pipes 7,7... from the surface of a molten liquid by elevating the raw material feeding device 6, feeding a granular polycrystalline silicon in a raw material vessel 6a into the crucible 2 from plural feeding 7, 7..., while rotating the crucible 2, and melt and diffuse the granular polycrystalline silicon supplied to the molten liquid 8 by the heater 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体材料
として用いられるシリコン単結晶のような単結晶を製造
する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing a single crystal such as a silicon single crystal used as a semiconductor material.

【0002】[0002]

【従来の技術】一般にシリコン単結晶の製造方法とし
て、チョクラルスキー法(CZ法)、二層引上げ法(D
LCZ法:Double Layered CZ )等の引上げ法が広く用
いられている。CZ法は、有底円筒状の石英製の坩堝に
結晶用原料を充填して溶融し、溶融液中に種結晶を浸し
てこれを引き上げることにより種結晶の下端に溶融液を
凝固させて単結晶を成長させる方法である。坩堝の外側
にはヒータが同心円筒状に配設されて坩堝内の結晶原料
を溶融するようになっている。
2. Description of the Related Art Generally, Czochralski method (CZ method) and two-layer pulling method (D
The pulling method such as LCZ method: Double Layered CZ) is widely used. In the CZ method, a quartz crucible having a bottomed cylindrical shape is filled with a crystal raw material and melted, and a seed crystal is immersed in the melt and pulled up to solidify the melt at the lower end of the seed crystal to form a single crystal. This is a method of growing crystals. A heater is concentrically arranged outside the crucible so as to melt the crystal raw material in the crucible.

【0003】DLCZ法は、坩堝内に結晶用原料を充填
して溶融し、坩堝外側のヒータにより坩堝内の結晶用原
料が下側に固体層を上側に溶融層を共存させ、溶融層中
に種結晶を浸してこれを引き上げることにより種結晶の
下端に溶融液を凝固させて単結晶を成長させる方法であ
る。
In the DLCZ method, a crystal raw material is filled in a crucible and melted, and a heater outside the crucible causes the crystal raw material in the crucible to coexist with a solid layer on the lower side and a melt layer on the upper side, and a melt layer is present in the melt layer. In this method, a single crystal is grown by dipping the seed crystal and pulling it up to solidify the melt at the lower end of the seed crystal.

【0004】これらの引上げ法にあっては、単結晶を引
上げるに先立ち、結晶用原料である多結晶を坩堝内に充
填して溶融する。このとき用いられる多結晶は、直径10
0 mm程度の円柱状のカットロッド、カットロッドの破砕
物である塊状原料、及び直径数mmの顆粒状原料等の固形
原料である。カットロッド又は塊状原料を坩堝内に充填
した場合は坩堝内で原料間に空間が生じる。そのため
に、坩堝内に装填可能な最大量の固形原料を充填した場
合でも、これを溶融すると溶融液は坩堝の最大充填量の
60%にも満たない。近年の単結晶大径化に伴って引上げ
初期の溶融液の増量が要求されているが、上述したよう
な原料間の空間のために、所望の溶融液を得るためには
坩堝寸法を大きくする必要があり、単結晶の製造装置が
大型化するという問題があった。
In these pulling methods, prior to pulling a single crystal, a polycrystal, which is a raw material for crystallization, is filled in a crucible and melted. The polycrystal used at this time has a diameter of 10
Solid raw materials such as a cylindrical cut rod of about 0 mm, a lump raw material that is a crushed material of the cut rod, and a granular raw material having a diameter of several mm. When the cut rod or the massive raw material is filled in the crucible, a space is generated between the raw materials in the crucible. Therefore, even if the crucible is filled with the maximum amount of solid raw material that can be loaded, melting it will cause the molten liquid to reach the maximum filling amount of the crucible.
Less than 60%. With the increase in the diameter of single crystals in recent years, it is required to increase the melt amount in the initial stage of pulling, but due to the space between the raw materials as described above, the crucible size must be increased to obtain the desired melt liquid. Therefore, there is a problem in that a single crystal manufacturing apparatus becomes large in size.

【0005】これを解決するために、固形原料を溶融し
た後にさらに固形原料を供給して溶融液を増量させてい
る。図5は従来の溶融液の増量の様子を示した説明図で
ある。図中2は坩堝であり、坩堝2内に塊状原料を溶融
した溶融液8が装填されている。坩堝2上方に吊られた
カットロッド10を坩堝2内の溶融液8に浸漬し、カット
ロッド10を除々に溶融液8内に沈めて溶融する。この方
法により坩堝2内の溶融液8は増量される。
In order to solve this, after melting the solid raw material, the solid raw material is further supplied to increase the amount of the molten liquid. FIG. 5 is an explanatory view showing a conventional manner of increasing the amount of the melt. In the figure, 2 is a crucible, and the crucible 2 is filled with a molten liquid 8 obtained by melting a lump material. The cut rod 10 suspended above the crucible 2 is dipped in the melt 8 in the crucible 2, and the cut rod 10 is gradually immersed in the melt 8 to melt. The melt 8 in the crucible 2 is increased by this method.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、現在使
用されているカットロッドは最大でも30kg程度のもので
あり、原料の所望追加量がこれ以上である場合はカット
ロッドの溶融作業を複数回行なう必要がある。カットロ
ッドは急速な温度変化により破砕するために、その溶融
作業は長時間をかけて行なわれており、この作業を複数
回行なうことにより、単結晶の生産性を著しく低下させ
るという問題があった。
However, the cut rod currently used is about 30 kg at the maximum, and if the desired additional amount of the raw material is more than this, it is necessary to perform the melting work of the cut rod a plurality of times. There is. Since the cut rod is crushed by a rapid temperature change, its melting work is performed for a long time, and there is a problem that the productivity of a single crystal is remarkably reduced by performing this work a plurality of times. .

【0007】また坩堝内の溶融液を増量する方法とし
て、塊状原料を溶融液中に投入することが考えられる
が、投入された塊状原料により溶融液に跳ねが生じ、跳
ねた溶融液が坩堝内壁面に付着する。付着した溶融液は
凝固し、坩堝内壁面で凝固した塊が単結晶引上げ時に溶
融液中に落下すると、引き上げた単結晶に転位を生じる
という問題があった。
Further, as a method of increasing the amount of the molten liquid in the crucible, it is conceivable to put the lumpy raw material into the molten liquid. However, the lumped raw material put into the crucible causes splashing in the molten liquid, and the splashed molten liquid is in the crucible Adhere to the wall. The adhered melted liquid solidifies, and when the solidified mass on the inner wall surface of the crucible falls into the melted liquid during pulling of the single crystal, there is a problem that dislocation occurs in the pulled single crystal.

【0008】一方、単結晶の引上げ期間中に多結晶原料
を追加する方法(連続CZ法)が知られている。連続C
Z法は、単結晶の引上げ時に溶融液に多結晶原料を供給
することにより、溶融液量を一定に保つ方法である。坩
堝の上方に設けられた原料供給装置に通ずる供給管から
顆粒状原料を坩堝内に供給することにより、溶融液量を
増量する。このタイプの単結晶製造装置を用いて、前述
した、引上げに先立つ溶融液の増量のために、溶融液に
顆粒状原料を供給することが考えられる。しかしなが
ら、連続CZ法で実用化されているものは直径200 mm程
度の単結晶であり、この単結晶成長装置を用いた顆粒状
原料の供給速度は100g/min以下である。この程度の供給
速度では、引上げ以前の原料増量のために極めて長い時
間を必要とする。
On the other hand, a method (continuous CZ method) of adding a polycrystalline raw material during a pulling period of a single crystal is known. Continuous C
The Z method is a method in which a polycrystalline raw material is supplied to the melt at the time of pulling a single crystal to keep the amount of the melt constant. The amount of the molten liquid is increased by supplying the granular raw material into the crucible from a supply pipe communicating with a raw material supply device provided above the crucible. It is conceivable to use this type of single crystal manufacturing apparatus to supply a granular raw material to the melt in order to increase the amount of the melt prior to the pulling. However, what is practically used in the continuous CZ method is a single crystal having a diameter of about 200 mm, and the supply rate of the granular raw material using this single crystal growth apparatus is 100 g / min or less. At such a supply rate, an extremely long time is required for increasing the amount of raw material before the pulling.

【0009】また連続CZ法において、大径化に伴う初
期溶融液増量の要求に応じ、原料供給装置からの供給速
度を高め得る装置を本願出願人は提案している(実公平
5−43107 号公報)。これは、内側領域と環状の外側領
域とを有する二重坩堝の外側領域に複数の原料供給口を
均一に配した装置である。複数の供給管から原料を供給
することにより、時間当たりの原料供給量を増量し、且
つ原料の投下位置を溶融液面内で均一にして、結晶引上
げ中の溶融液の対流の乱れを抑制せしめ、単結晶の品質
を向上せしめるものであり、単結晶引上げ期間中に各供
給口から顆粒状原料を供給するものであった。
Further, in the continuous CZ method, the applicant of the present application has proposed a device capable of increasing the supply rate from the raw material supply device in response to the demand for increasing the amount of the initial melt with the increase in diameter (Japanese Utility Model Publication No. 5-43107). Gazette). This is an apparatus in which a plurality of raw material supply ports are uniformly arranged in the outer region of a double crucible having an inner region and an annular outer region. By supplying raw materials from multiple supply pipes, the amount of raw material supplied per hour can be increased, and the positions of the raw materials dropped can be made uniform within the surface of the molten liquid to prevent turbulence in the convection of the molten liquid during crystal pulling. The single crystal was improved in quality, and the granular raw material was supplied from each supply port during the single crystal pulling period.

【0010】本発明は、かかる事情に鑑みてなされたも
のであり、単結晶の引上げに先立ち、複数の原料供給管
から坩堝内に原料を補填することにより、溶融液の跳ね
を生ぜしめずに原料の補充時間を短縮できる単結晶の製
造方法及び製造装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and before the pulling of a single crystal, the raw material is supplemented into the crucible from a plurality of raw material supply pipes to prevent the molten liquid from splashing. It is an object of the present invention to provide a single crystal manufacturing method and manufacturing apparatus capable of shortening the replenishment time of raw materials.

【0011】[0011]

【課題を解決するための手段】第1発明に係る単結晶の
製造方法は、坩堝内の結晶用原料を溶融し、前記坩堝を
回転させつつ溶融液から結晶を引き上げて成長せしめる
単結晶の製造方法において、複数の原料供給管を用い、
前記単結晶の引上げに先立ち、前記複数の原料供給管か
ら結晶用原料を前記坩堝内に供給することを特徴とす
る。
A method for producing a single crystal according to a first aspect of the present invention is a method for producing a single crystal in which a raw material for a crystal in a crucible is melted and the crystal is pulled up from a melt while rotating the crucible to grow the crystal. In the method, a plurality of raw material supply pipes are used,
Prior to the pulling of the single crystal, a raw material for crystal is supplied from the plurality of raw material supply pipes into the crucible.

【0012】複数の供給管から原料を補充するので、1
つの供給管から補充する場合に比べて単位時間当たりの
供給量が多い。また、複数の供給管と同量を供給し得る
直径の1つの供給管を用いる場合と比較して、原料の溶
融液への着面領域の面積が小さく、坩堝壁面まで溶融液
が跳ねない。
Since the raw materials are replenished from a plurality of supply pipes, 1
The amount supplied per unit time is larger than that when replenished from one supply pipe. Further, as compared with the case where one supply pipe having a diameter capable of supplying the same amount as a plurality of supply pipes is used, the area of the surface contact area of the raw material to the melt is small, and the melt does not splash to the crucible wall surface.

【0013】第2発明に係る単結晶の製造方法は、坩堝
内の結晶用原料を溶融し、前記坩堝を回転させつつ溶融
液から結晶を引き上げて成長せしめる単結晶の製造方法
において、複数の原料供給管を用い、前記坩堝内に結晶
用原料を装填して溶融する過程と、溶融液が装填された
坩堝内に前記複数の原料供給管から結晶用原料を供給す
る過程とを有することを特徴とする。
A method for producing a single crystal according to a second aspect of the present invention is a method for producing a single crystal in which a raw material for a crystal in a crucible is melted, and while the crucible is rotated, a crystal is pulled up from a melt to grow. Using a supply pipe, a step of loading a crystal raw material into the crucible and melting it, and a step of supplying the crystal raw material from the plurality of raw material supply pipes into the crucible filled with the melt And

【0014】坩堝内に結晶用原料を装填して溶融し、複
数の原料供給管から例えば顆粒状の原料を供給して坩堝
内の溶融液量を増量した後、単結晶を引き上げる。複数
の供給管から原料を補充するので、単位時間当たりの供
給量が多く、また坩堝壁面まで溶融液が跳ねない。
The crystal raw material is loaded into the crucible and melted, and, for example, granular raw materials are supplied from a plurality of raw material supply pipes to increase the amount of the melt in the crucible, and then the single crystal is pulled up. Since the raw materials are replenished from a plurality of supply pipes, the supply amount per unit time is large, and the molten liquid does not splash to the crucible wall surface.

【0015】第3発明に係る単結晶の製造方法は、坩堝
内の結晶用原料を溶融し、前記坩堝を回転させつつ溶融
液から結晶を引き上げて成長せしめる単結晶の製造方法
において、複数の原料供給管を用い、前記単結晶の引上
げ終了後、前記複数の原料供給管から結晶用原料を前記
坩堝内に供給する過程と、供給された結晶用原料を溶融
する過程と、溶融液から結晶を引き上げて成長せしめる
過程とを有することを特徴とする。
A method for producing a single crystal according to a third aspect of the present invention is a method for producing a single crystal in which a raw material for a crystal in a crucible is melted, and while the crucible is rotated, a crystal is pulled out from a molten liquid to grow. After the pulling of the single crystal by using a supply pipe, a process of supplying a crystal raw material from the plurality of raw material supply pipes into the crucible, a process of melting the supplied crystal raw material, and a crystal from a melt. It has a process of pulling it up and growing it.

【0016】単結晶の引上げの終了後、引き続いて同単
結晶を引き上げる場合に、複数の供給管から前回の残っ
た溶融液に結晶用原料を供給するので、坩堝壁面まで溶
融液が跳ねることなく、坩堝内の原料が増量される。
When the single crystal is pulled up continuously after the pulling of the single crystal, the raw material for crystallization is supplied from the plurality of supply pipes to the last remaining melt, so that the melt does not splash to the wall surface of the crucible. The amount of raw material in the crucible is increased.

【0017】第4発明に係る単結晶の製造方法は、第
1、第2又は第3発明において、製造装置が備える坩堝
にて結晶用原料を溶融し、前記坩堝を回転させつつ溶融
液から結晶を引き上げて成長せしめる単結晶の製造方法
において、前記原料供給管の流出口を前記溶融液中に配
することを特徴とする。
The method for producing a single crystal according to a fourth aspect of the present invention is the method for producing a single crystal according to the first, second or third aspect, wherein the raw material for crystal is melted in a crucible provided in the production apparatus, and the crucible is rotated to crystallize from the melt. In the method for producing a single crystal in which the raw material is pulled up to grow, the outlet of the raw material supply pipe is arranged in the melt.

【0018】原料供給管の流出口が溶融液中にあり、結
晶用原料が供給管から直接溶融液内に流入され、跳ねを
生じることがないので、結晶用原料の供給速度を高める
ことができ、坩堝内の原料が短時間で増量される。
Since the outflow port of the raw material supply pipe is in the melt and the crystal raw material does not flow directly into the melt from the supply pipe and does not splash, the supply speed of the crystal raw material can be increased. The raw material in the crucible is increased in a short time.

【0019】第5発明に係る単結晶の製造装置は、複数
の原料供給管から結晶用原料を坩堝内に供給して溶融
し、前記坩堝を回転させつつ溶融液から結晶を引き上げ
て成長せしめる単結晶の製造装置において、前記原料供
給管は流出口を前記坩堝の中央側に向けてあることを特
徴とする。
In the apparatus for producing a single crystal according to the fifth aspect of the invention, the raw material for crystal is supplied from a plurality of raw material supply pipes into the crucible and melted, and the crystal is pulled from the melt while rotating the crucible to grow the crystal. In the crystal manufacturing apparatus, the raw material supply pipe is characterized in that the outlet is directed toward the center of the crucible.

【0020】原料供給管の流出口が坩堝の中央側を向い
ており、溶融液面で跳ねが生じても坩堝壁面に付着する
ことがないので、結晶用原料の供給速度を高めることが
でき、坩堝内の原料が短時間で増量される。
Since the outlet of the raw material supply pipe faces the center side of the crucible and does not adhere to the crucible wall surface even if splashing occurs on the melt surface, the supply rate of the crystal raw material can be increased, The amount of raw material in the crucible is increased in a short time.

【0021】[0021]

【発明の実施の形態】以下、本発明をその実施の形態を
示す図面に基づき具体的に説明する。 実施の形態1.図1は、本発明方法の実施に用いる単結
晶製造装置の構造を示す模式的断面図である。図中1は
チャンバである。チャンバ1は略円筒形状の真空容器で
あり、チャンバ1の略中央位置には坩堝2が配設されて
いる。坩堝2は有底円筒形状の石英製の内層保持容器2a
と該内層保持容器2aの外側に嵌合された有底円筒形状の
黒鉛製の外層保持容器2bとから構成されている。この外
層保持容器2bの下面には坩堝2を回転及び昇降させる軸
3が着設されており、外層保持容器2bの外周には、例え
ば抵抗加熱式のヒータ4が昇降可能に配設されている。
ヒータ4は坩堝2に同心円筒形状であり、ヒータ4の外
周及びチャンバ1の底部には保温筒5が配設されてい
る。坩堝2とヒータ4との相対的な上下方向位置調節に
より坩堝2内に供給された多結晶原料を溶融し、溶融液
8の溶融状態を維持するようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings showing the embodiments. Embodiment 1. FIG. 1 is a schematic sectional view showing the structure of a single crystal manufacturing apparatus used for carrying out the method of the present invention. In the figure, 1 is a chamber. The chamber 1 is a substantially cylindrical vacuum container, and a crucible 2 is arranged at a substantially central position of the chamber 1. The crucible 2 is a quartz inner layer holding container 2a with a bottomed cylindrical shape.
And an outer layer holding container 2b made of graphite and having a cylindrical shape with a bottom fitted on the outer side of the inner layer holding container 2a. A shaft 3 for rotating and moving the crucible 2 up and down is attached to the lower surface of the outer layer holding container 2b, and, for example, a resistance heating type heater 4 is arranged up and down on the outer periphery of the outer layer holding container 2b. .
The heater 4 has a cylindrical shape concentric with the crucible 2, and a heat insulating cylinder 5 is arranged on the outer periphery of the heater 4 and the bottom of the chamber 1. By adjusting the relative positions of the crucible 2 and the heater 4 in the vertical direction, the polycrystalline raw material supplied into the crucible 2 is melted and the molten state of the melt 8 is maintained.

【0022】一方、坩堝2の上方にはチャンバ1の上部
に図示しないプルチャンバが連設形成されている。プル
チャンバ外部の上方には原料供給装置6が昇降可能に配
設されている。原料供給装置6は、底部開口の原料容器
6aと該原料容器6aの下方に配されたフィーダ6bとフィー
ダ6bから供給される原料を受ける漏斗6cとを備えてい
る。フィーダ6bが漏斗6cへ所定量の原料を供給すること
により、原料容器6a内に充填された結晶用原料を所定の
速度で供給できるようになっている。漏斗6cの底部には
分岐口が設けられており、複数の供給管7,7…が連結
されている。各供給管7,7…はチャンバ1を貫通し、
複数の流出口が坩堝2に装填された溶融液8に臨んで円
周状に配されている。供給管7,7…の流出口は、原料
供給装置6の昇降に伴って高さ方向に移動可能になって
いる。
On the other hand, above the crucible 2, a pull chamber (not shown) is formed continuously above the chamber 1. A raw material supply device 6 is arranged so as to be able to move up and down above the outside of the pull chamber. The raw material supply device 6 is a raw material container with a bottom opening.
6a, a feeder 6b arranged below the raw material container 6a, and a funnel 6c for receiving the raw material supplied from the feeder 6b. By supplying a predetermined amount of the raw material to the funnel 6c by the feeder 6b, the crystal raw material filled in the raw material container 6a can be supplied at a predetermined speed. A branch opening is provided at the bottom of the funnel 6c, and a plurality of supply pipes 7, 7 ... Are connected. Each supply pipe 7, 7 ... penetrates the chamber 1,
A plurality of outlets are circumferentially arranged facing the melt 8 loaded in the crucible 2. The outlets of the supply pipes 7, 7 ... Can move in the height direction as the raw material supply device 6 moves up and down.

【0023】単結晶の引き上げ時には、プルチャンバを
貫通して引上げ軸が垂設され、引上げ軸の下端に種結晶
を装着して溶融液8に浸漬させた後、種結晶を回転させ
つつ上昇させることにより、種結晶の下端から単結晶を
成長せしめるようになっている。
At the time of pulling up the single crystal, a pulling shaft is pierced through the pull chamber, a seed crystal is attached to the lower end of the pulling shaft, and the seed crystal is immersed in the melt 8 and then raised while rotating the seed crystal. Thus, a single crystal can be grown from the lower end of the seed crystal.

【0024】以上の如く構成された装置を用いて結晶用
原料を坩堝2に充填する手順について説明する。まず坩
堝2内に結晶用原料として塊状多結晶シリコンを装填
し、ヒータ4により結晶用原料を溶融する。次に、原料
供給装置6の昇降により供給管7,7…の流出口の溶融
液面からの高さを20mm〜30mmに調整する。坩堝2を回転
しつつ、原料容器6aに充填された顆粒状多結晶シリコン
を供給管7,7…から坩堝2内に 480 g/min( 80 g/m
in×供給管6本)で供給する。溶融液8に供給された顆
粒状多結晶シリコンはヒータ4により溶融拡散される。
A procedure for filling the crucible 2 with the raw material for crystallization using the apparatus configured as described above will be described. First, massive polycrystalline silicon is loaded into the crucible 2 as a crystallization raw material, and the crystallization raw material is melted by the heater 4. Next, the height of the outlets of the supply pipes 7, 7, ... From the melt surface is adjusted to 20 mm to 30 mm by raising and lowering the raw material supply device 6. While rotating the crucible 2, the granular polycrystalline silicon filled in the raw material container 6a was introduced into the crucible 2 through the supply pipes 7, 7 ... 480 g / min (80 g / m
In × 6 supply pipes). The granular polycrystalline silicon supplied to the melt 8 is melted and diffused by the heater 4.

【0025】図2は、本実施の形態において顆粒状原料
の着面位置を示す模式図である。供給管7,7…から供
給された顆粒状原料は、坩堝2に装填された溶融液8液
面の着面領域P,P…に投下される。この着面領域P,
P…の面積は、これら供給管7,7…と同量の原料を供
給し得る直径の1つの供給管による着面領域の面積と比
較して極めて小さい。このように小さな着面領域P,P
…に顆粒状多結晶シリコンが供給されるので、溶融液面
に跳ねが生じ難い。また譬え生じたとしても小さい跳ね
であるために坩堝の内壁面に付着することはない。さら
に、同径の1つの供給管を備えた場合と比較して単位時
間当たりに多量の結晶用原料を供給できる。
FIG. 2 is a schematic diagram showing the position of the surface of the granular raw material in the present embodiment. The granular raw material supplied from the supply pipes 7, 7 ... Is dropped in the contact surface regions P, P ... of the liquid surface of the molten liquid 8 loaded in the crucible 2. This landing area P,
The area of P ... Is extremely small as compared with the area of the landing area by one supply pipe having a diameter capable of supplying the same amount of raw material as those of the supply pipes 7, 7. Such a small landing area P, P
Since granular polycrystalline silicon is supplied to ..., Splash is unlikely to occur on the melt surface. Even if it happens, it does not adhere to the inner wall surface of the crucible because it is a small bounce. Furthermore, a large amount of the crystal raw material can be supplied per unit time as compared with the case where one supply pipe having the same diameter is provided.

【0026】[0026]

【表1】 [Table 1]

【0027】上述した装置を用いて、上記表1に示す条
件にてシリコン単結晶を製造した。まず、装填率が55%
の坩堝2内に、40kgの結晶用原料を供給速度 480 g/min
( 80 g/min×供給管6本)で供給した。補充時間は略
83分であった。供給管7,7…から結晶用原料を供給し
た際に溶融液8の跳ねは生じず、高品質の単結晶が製造
できた。また、従来のカットロッド供給方法では、同寸
法の坩堝を用いた場合に、同程度の結晶用原料の補充の
ために8時間が必要であることから、本発明方法によ
り、単結晶の引上げに先立つ溶融液増量のための時間を
短縮し、高品質の単結晶を製造し得ることが判った。な
お、原料供給装置6及び供給管7,7,…の構造上、並
びに顆粒状原料の溶融液8への溶融状態等から、結晶用
原料の供給速度は、供給管1本当たり 200 g/min以下で
あることが好ましい。
Using the above-mentioned apparatus, a silicon single crystal was manufactured under the conditions shown in Table 1 above. First, the loading rate is 55%
Supplying 40 kg of raw material for crystallization into crucible 2 of 480 g / min
(80 g / min × 6 supply pipes). Replenishment time is short
It was 83 minutes. When the crystal raw material was supplied from the supply pipes 7, 7, ..., Splash of the melt 8 did not occur, and a high quality single crystal could be manufactured. Further, in the conventional cut rod supply method, when a crucible of the same size is used, it takes 8 hours to replenish the same amount of the crystal raw material. It has been found that it is possible to reduce the time required for increasing the melt volume in advance and to produce high-quality single crystals. Note that, due to the structure of the raw material supply device 6 and the supply pipes 7, 7, ..., And the molten state of the granular raw material into the molten liquid 8, the supply rate of the crystal raw material is 200 g / min per supply pipe. The following is preferable.

【0028】また、単結晶の引上げが終了し、成長させ
た単結晶をチャンバ1から搬出した後、同条件で引き続
き単結晶を引き上げる場合がある。この場合は、坩堝2
内に少量の溶融液8が残存しており、ここに結晶用原料
を補充する。まず、原料容器6aに顆粒状多結晶シリコン
を充填し、原料供給装置6の昇降により供給管7,7…
の流出口の溶融液面からの高さを調整する。坩堝2を回
転しつつ顆粒状多結晶シリコンを供給管7,7…から坩
堝2内に供給し、ヒータ4により顆粒状多結晶シリコン
を溶融拡散する。多結晶シリコンの補充が終了後、溶融
液8に種結晶の下端を浸漬し、引上げ軸を回転させつつ
引上げて単結晶を成長させた。
Further, after the single crystal pulling is completed and the grown single crystal is unloaded from the chamber 1, the single crystal may be continuously pulled under the same conditions. In this case, crucible 2
A small amount of the melt 8 remains inside, and the raw material for crystallization is replenished therein. First, the raw material container 6a is filled with granular polycrystalline silicon, and when the raw material supply device 6 is moved up and down, the supply pipes 7, 7 ...
Adjust the height of the outflow port from the melt surface. While the crucible 2 is being rotated, granular polycrystalline silicon is supplied into the crucible 2 from the supply pipes 7, 7, ... And the heater 4 melts and diffuses the granular polycrystalline silicon. After replenishing the polycrystalline silicon, the lower end of the seed crystal was immersed in the melt 8 and pulled while rotating the pulling shaft to grow a single crystal.

【0029】供給管7,7…から結晶用原料を供給した
際に溶融液8の跳ねは生じず、高品質の単結晶が製造で
きた。このように、本発明方法により、単結晶の引上げ
終了後に引き続き単結晶を成長せしめる場合に、坩堝壁
に溶融液の跳ねを付着させることなく、短時間で坩堝内
の結晶用原料を補充することができる。
When the crystal raw material was supplied from the supply pipes 7, 7, the splash of the melt 8 did not occur, and a high quality single crystal could be manufactured. As described above, according to the method of the present invention, when the single crystal is continuously grown after the pulling of the single crystal is completed, the crystal raw material in the crucible can be replenished in a short time without adhering the splash of the melt to the crucible wall. You can

【0030】実施の形態2.図3は、実施の形態2にお
ける結晶用原料の供給の様子を示した模式的断面図であ
る。製造装置は図1に示した装置を用いており、同部分
に同符号を付して説明を省略する。顆粒状多結晶シリコ
ンを供給管7,7…から坩堝2内に供給する際に、原料
供給装置の昇降により、供給管7,7…の流出口を溶融
液8中に10mm程度の深さまで浸漬せしめ、結晶用原料を
溶融液8中に溶融させる。結晶用原料は供給管7,7…
を通って直接溶融液8中に搬入されるので、溶融液8に
跳ねが生じることがない。これにより、結晶用原料の供
給速度をさらに高めることができる。
Embodiment 2 FIG. FIG. 3 is a schematic cross-sectional view showing the manner of supply of the crystal raw material in the second embodiment. As the manufacturing apparatus, the apparatus shown in FIG. 1 is used, the same parts are designated by the same reference numerals, and the description thereof will be omitted. When granular polycrystalline silicon is supplied from the supply pipes 7, 7 ... into the crucible 2, the raw material supply device is moved up and down to immerse the outlets of the supply pipes 7, 7 ... into the melt 8 to a depth of about 10 mm. Then, the crystallization raw material is melted in the melt 8. The raw material for crystal is the supply pipes 7,7 ...
Since the melt 8 is directly carried into the melt 8 through the passage, the melt 8 does not splash. Thereby, the supply rate of the crystal raw material can be further increased.

【0031】実施の形態3.図4は、本発明の実施の形
態3に用いる単結晶製造装置の主要部分のみを示した模
式的断面図である。図中7a,7a …は原料供給装置に連通
する供給管であり、各供給管7a,7a …の先端を夫々の流
出口が坩堝2の中央に向くように屈曲せしめてある。そ
の他の構成は図1と同様であり、同部分に同符号を付し
て説明を省略する。
Embodiment 3 FIG. 4 is a schematic cross-sectional view showing only the main part of the single crystal manufacturing apparatus used in the third embodiment of the present invention. In the figure, 7a, 7a ... Are supply pipes communicating with the raw material supply device, and the tips of the supply pipes 7a, 7a are bent so that their respective outlets face the center of the crucible 2. Other configurations are the same as those in FIG. 1, and the same parts are denoted by the same reference numerals and the description thereof is omitted.

【0032】このような装置を用いて、実施の形態1と
同様の手順で単結晶を製造する。供給管7a,7a …の流出
口が坩堝2の中央を向いているので、図2に示したよう
な溶融液面への着面領域P,P…が坩堝2の中央側にな
り、溶融液8の壁面への付着をさらに防止することがで
きる。これにより、結晶用原料の供給速度をさらに高め
ることができる。
Using such a device, a single crystal is manufactured in the same procedure as in the first embodiment. Since the outlets of the supply pipes 7a, 7a ... Are directed toward the center of the crucible 2, the contact area P, P ... to the melt surface as shown in FIG. 2 is the center side of the crucible 2, It is possible to further prevent 8 from adhering to the wall surface. Thereby, the supply rate of the crystal raw material can be further increased.

【0033】なお、図4は供給管の先端を坩堝2の中央
側に屈曲せしめた場合を示しているが、これに限るもの
ではなく、流出口が中央に向いていれば良く、例えば直
状の供給管を斜めに配してあっても良い。
Although FIG. 4 shows the case where the tip of the supply pipe is bent toward the center of the crucible 2, the present invention is not limited to this, and the outlet may be directed toward the center, for example, a straight shape. The supply pipe of may be arranged diagonally.

【0034】また、上述した実施の形態では供給管を6
本設けた場合を説明しているが、これに限るものではな
く、複数本設けてあれば良い。また、供給管は流出口が
円形状に並ぶように配管された場合を説明しているが、
これに限るものではなく、坩堝の内壁側から適長離隔し
た位置に配してあれば良い。
In the above-described embodiment, the supply pipe is 6
Although the case of providing a plurality of books has been described, the present invention is not limited to this, and a plurality of books may be provided. In addition, the case where the supply pipe is arranged so that the outlets are arranged in a circular shape is explained.
It is not limited to this, and it may be arranged at a position separated from the inner wall side of the crucible by an appropriate length.

【0035】[0035]

【発明の効果】以上のように、本発明においては、単結
晶の引上げに先立って、複数の原料供給管から坩堝内に
原料を補填するので、溶融液の跳ねを坩堝壁面に付着さ
せることがなく、また補充時間を短縮することができ
る。さらに、原料供給管の流出口が坩堝の中央側を向い
ているので、溶融液の坩堝壁面への付着をさらに防止す
る。さらにまた、流出口を溶融液中に配するので溶融液
の跳ねをなくすことができる等、本発明は優れた効果を
奏する。
As described above, in the present invention, the raw material is filled into the crucible from a plurality of raw material supply pipes before pulling the single crystal, so that the splash of the molten liquid can be adhered to the crucible wall surface. Also, the replenishment time can be shortened. Further, since the outlet of the raw material supply pipe faces the center side of the crucible, the melt is further prevented from adhering to the wall surface of the crucible. Furthermore, since the outlet is arranged in the melt, the splash of the melt can be eliminated, and the present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に用いる単結晶製造装置の構
造を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing the structure of a single crystal manufacturing apparatus used for carrying out the method of the present invention.

【図2】本実施の形態1において顆粒状原料の着面位置
を示す模式図である。
FIG. 2 is a schematic diagram showing the position where the granular raw material is adhered to in the first embodiment.

【図3】実施の形態2における結晶用原料の供給の様子
を示した模式的断面図である。
FIG. 3 is a schematic cross-sectional view showing how the crystal raw material is supplied in the second embodiment.

【図4】本発明の実施の形態3に用いる単結晶製造装置
の主要部分のみを示した模式的断面図である。
FIG. 4 is a schematic cross-sectional view showing only a main part of a single crystal manufacturing apparatus used in a third embodiment of the present invention.

【図5】従来の溶融液の増量の様子を示した説明図であ
る。
FIG. 5 is an explanatory diagram showing a state of increasing the amount of a conventional melt.

【符号の説明】[Explanation of symbols]

1 チャンバ 2 坩堝 6 原料供給装置 7,7a 供給管 8 溶融液 P 着面領域 1 Chamber 2 Crucible 6 Raw Material Supply Device 7, 7a Supply Pipe 8 Melt Liquid P Adhesion Area

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 坩堝内の結晶用原料を溶融し、前記坩堝
を回転させつつ溶融液から結晶を引き上げて成長せしめ
る単結晶の製造方法において、 複数の原料供給管を用い、前記単結晶の引上げに先立
ち、前記複数の原料供給管から結晶用原料を前記坩堝内
に供給することを特徴とする単結晶の製造方法。
1. A method for producing a single crystal in which a raw material for a crystal in a crucible is melted, and the crucible is rotated to pull up the crystal from a molten liquid to grow the single crystal, wherein a plurality of raw material supply pipes are used to pull up the single crystal. Prior to the step 1, a method for producing a single crystal, characterized in that a raw material for crystallization is supplied into the crucible from the plurality of raw material supply pipes.
【請求項2】 坩堝内の結晶用原料を溶融し、前記坩堝
を回転させつつ溶融液から結晶を引き上げて成長せしめ
る単結晶の製造方法において、 複数の原料供給管を用い、前記坩堝内に結晶用原料を装
填して溶融する過程と、溶融液が装填された坩堝内に前
記複数の原料供給管から結晶用原料を供給する過程とを
有することを特徴とする単結晶の製造方法。
2. A method for producing a single crystal in which a raw material for crystal in a crucible is melted, and while the crucible is rotated, the crystal is pulled up from a melt to grow, a plurality of raw material supply pipes are used, and the crystal is formed in the crucible. 1. A method for producing a single crystal, comprising: a step of charging a raw material for melting and melting the raw material; and a step of supplying a raw material for crystallization from the plurality of raw material supply pipes into the crucible charged with the melt.
【請求項3】 坩堝内の結晶用原料を溶融し、前記坩堝
を回転させつつ溶融液から結晶を引き上げて成長せしめ
る単結晶の製造方法において、 複数の原料供給管を用い、前記単結晶の引上げ終了後、
前記複数の原料供給管から結晶用原料を前記坩堝内に供
給する過程と、供給された結晶用原料を溶融する過程
と、溶融液から結晶を引き上げて成長せしめる過程とを
有することを特徴とする単結晶の製造方法。
3. A method for producing a single crystal in which a raw material for a crystal in a crucible is melted, and the crucible is rotated to pull up the crystal from a molten liquid to grow the single crystal, wherein a plurality of raw material supply pipes are used to pull up the single crystal. After the end,
It has a step of supplying a crystal raw material into the crucible from the plurality of raw material supply pipes, a step of melting the supplied crystal raw material, and a step of pulling and growing crystals from the melt. Method for producing single crystal.
【請求項4】 前記原料供給管の流出口を前記溶融液中
に配する請求項1、2又は3記載の単結晶の製造方法。
4. The method for producing a single crystal according to claim 1, 2 or 3, wherein an outlet of the raw material supply pipe is arranged in the melt.
【請求項5】 複数の原料供給管から結晶用原料を坩堝
内に供給して溶融し、前記坩堝を回転させつつ溶融液か
ら結晶を引き上げて成長せしめる単結晶の製造装置にお
いて、 前記原料供給管は流出口を前記坩堝の中央側に向けてあ
ることを特徴とする単結晶の製造装置。
5. An apparatus for producing a single crystal in which a raw material for crystallization is supplied into a crucible from a plurality of raw material supply pipes to be melted, and a crystal is pulled out from a molten liquid to grow while rotating the crucible. Is an apparatus for producing a single crystal, characterized in that the outlet is directed toward the center side of the crucible.
JP6690896A 1996-03-22 1996-03-22 Production of single crystal and device therefor Pending JPH09255471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6690896A JPH09255471A (en) 1996-03-22 1996-03-22 Production of single crystal and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6690896A JPH09255471A (en) 1996-03-22 1996-03-22 Production of single crystal and device therefor

Publications (1)

Publication Number Publication Date
JPH09255471A true JPH09255471A (en) 1997-09-30

Family

ID=13329541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6690896A Pending JPH09255471A (en) 1996-03-22 1996-03-22 Production of single crystal and device therefor

Country Status (1)

Country Link
JP (1) JPH09255471A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160098869A (en) * 2015-02-11 2016-08-19 영남대학교 산학협력단 Production device for silicon ingot and method for supplying source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160098869A (en) * 2015-02-11 2016-08-19 영남대학교 산학협력단 Production device for silicon ingot and method for supplying source

Similar Documents

Publication Publication Date Title
US4561486A (en) Method for fabricating polycrystalline silicon wafer
CA1261715A (en) Apparatus and process for growing monocrystals of semiconductor materials from shallow crucibles by czochralski technique
JP5909276B2 (en) Growth of uniformly doped silicon ingot by doping only the first charge
US5087429A (en) Method and apparatus for manufacturing silicon single crystals
US5009862A (en) Apparatus and process for growing crystals of semiconductor materials
JPH09142988A (en) Method and apparatus for forming silicon single crystal
US6423137B1 (en) Single crystal material supplying apparatus and single crystal material supplying method
JP6708173B2 (en) Recharge tube and method for manufacturing single crystal
JPH09255471A (en) Production of single crystal and device therefor
US20040112276A1 (en) CZ raw material supply method
US4519764A (en) Apparatus for fabricating polycrystalline silicon wafer
JPS5933552B2 (en) crystal growth equipment
JP2007254162A (en) Single crystal manufacturing device and recharge method
JP3885245B2 (en) Single crystal pulling method
JPH09208360A (en) Growth of single crystal
JPS63303893A (en) Method and device for growing silicon single crystal
JP2677859B2 (en) Crystal growth method of mixed crystal type compound semiconductor
JPH0733584A (en) Recharging method in pulling up semiconductor single crystal
KR20100071507A (en) Apparatus, method of manufacturing silicon single crystal and method of controlling oxygen density of silicon single crystal
JPH0797292A (en) Method for supplying raw material in continuous charge process
JPS5997592A (en) Manufacture of single crystal
JP2007246358A (en) Apparatus for recharging solid raw material
JPS5983994A (en) Preparation of single crystal
JP3584497B2 (en) Crystal growth method
JPH08208369A (en) Method for growing single crystal