JPH0925501A - Powder metallurgical product and its production and powder metallurgy method as well as powder molding device for powder metallurgy - Google Patents

Powder metallurgical product and its production and powder metallurgy method as well as powder molding device for powder metallurgy

Info

Publication number
JPH0925501A
JPH0925501A JP17119495A JP17119495A JPH0925501A JP H0925501 A JPH0925501 A JP H0925501A JP 17119495 A JP17119495 A JP 17119495A JP 17119495 A JP17119495 A JP 17119495A JP H0925501 A JPH0925501 A JP H0925501A
Authority
JP
Japan
Prior art keywords
powder
powder material
storage means
charging
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17119495A
Other languages
Japanese (ja)
Inventor
Yasuhide Fukuhara
靖英 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP17119495A priority Critical patent/JPH0925501A/en
Publication of JPH0925501A publication Critical patent/JPH0925501A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce powder metallurgical products with which the occurrence of crack in high-temp. holding parts, etc., is prevented by loading the first powder material which is charged with a second powder material at a prescribed charging speed and is agitated into a powder mold at a prescribed speed and subjecting these materials to pressurizing and sintering. SOLUTION: The prescribed amt. of the first powder material 2 which is a base material is stored in a first storage means 3. The second powder material 4 which is a compounding material is continuously or intermittently transferred therein at a predetermined charging speed from a second storage means 5 and both materials are agitated and mixed by an agitating means 7. The powder material in the first storage means 3 is continuously or intermittently charged from above simultaneously therewith into the powder mold 8 at a prescribed charging speed via a powder charging means 9. The powder materials loaded into the powder mold 8 are thereafter pressurized in a vertical direction and are sintered, by which the powder metallurgical products reinforced by compounding the compounding material with the base material are obtd. As a result, the thermal stresses generated in the high-temp. holding parts are relieved, the occurrence of the trouble, such as crack, is prevented and the increase in the volumetric rate of the compounding material is made possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する利用分野】本発明は、母材に配合材を配
合して強化した粉末冶金製品とその製造方法及び粉末冶
金方法並びに粉末冶金の粉末成形装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder metallurgical product in which a base material is blended with a compounding material and reinforced, a manufacturing method thereof, a powder metallurgical method, and a powder molding apparatus for powder metallurgy.

【0002】[0002]

【従来の技術】周知のように、母材に強化繊維等の配合
材を配合して耐摩耗性を向上させたり、熱膨張量を低減
させた複合材や、これら複合材を強化したい部位に用い
た製品、あるいは、強化したい部位だけを複合化する方
法は既に知られている。例えば、特開昭61−1669
34号公報には、予め配合材だけで所望の形に成形した
プリフォームと称する成形体を型の内部に配置し、その
型内に熔湯した母材を注入して成形体の部分だけ複合化
したピストンが開示されている。ここでは、鋳造後に切
削等の加工を施さない部分に当たる成形体の部位を加圧
して、成形体自身の密度に差を設けて母材と一体化して
おり、密度の低い部位で切削性を向上させ、密度の高い
部位に強度を持たせている。また、部分的に複合材を用
いる場合、鋳造後のピストンのトップリング溝やトップ
ランド部に相当する型の部位に予め複合材をセットして
おき、溶融した金属を流し込んで一体化し、トップリン
グ溝やトップランド部を強化している。このように強化
したい部位だけ複合材を配置したり、あるいは、複合化
した製品において、より性能向上を期待して複合材や複
合化する部位(成形体)における配合材の体積率を増加
すると、強度という点では向上できる。
2. Description of the Related Art As is well known, a base material is blended with a compounding material such as a reinforcing fiber to improve wear resistance, a composite material having a reduced thermal expansion amount, or a portion to be strengthened. The products used or the method of compounding only the part to be strengthened is already known. For example, JP-A-61-1669
In Japanese Patent Laid-Open No. 34-34, a molded body called a preform, which is molded into a desired shape in advance only with a compounding material, is placed inside a mold, and a molten base material is injected into the mold to form a composite of only the molded body. A modified piston is disclosed. Here, the part of the molded body that corresponds to the part that is not processed after cutting, such as cutting, is pressed to form a difference in the density of the molded body itself and integrate it with the base material, improving the machinability at the low density part. The high density part is given strength. Also, when using a composite material partially, set the composite material in advance in the part of the mold corresponding to the top ring groove and top land part of the piston after casting, pour molten metal and integrate it, top ring The groove and top land are strengthened. In this way, by arranging the composite material only in the part to be reinforced, or in the composite product, if the volume ratio of the compound material in the composite material or the part to be composited (molded body) is increased in the expectation of further performance improvement, It can be improved in terms of strength.

【0003】[0003]

【発明が解決しようとする課題】しかしこのように配合
材の体積率を増大させると、複合材や複合化した部位の
熱膨張係数が低下して、複合材のない部位や複合化され
ていない部位との間の熱膨張係数差が大きくなり、高温
保持時には高い熱応力が発生してしまう。この高い熱応
力は、最悪の場合、境界部において亀裂等の不具合が発
生してしまう。また、この高い熱応力の発生による不具
合を考慮すると配合材の体積率を制限しなければなら
ず、思うように熱膨張係数を下がることができない。こ
のような材料でピストンを製造した場合、シリンダ内周
面とピントンランド部外周面との間隔、すなわち、クリ
アランスの一層の縮小が制限され、シリンダ内周面とピ
ストンランド部外周面との空隙(クレビス)を狭く設定
できず、(クレビス)に溜る未燃ガスによる排気ガス中
のHCの低減が制限されるという問題点がある。本発明
の1つ目の目的は、高温保持部に発生する熱応力を緩和
して亀裂等の不具合の発生を防止することにあり、2つ
目の目的は、複合化部や複合材中に含まれる配合材の体
積率をより多くして熱膨張係数を低減する。
However, when the volume ratio of the compounded material is increased in this way, the coefficient of thermal expansion of the composite material or the composited part is lowered, and the part without the composite material or the composite material is not composited. The difference in the coefficient of thermal expansion between the part and the part becomes large, and high thermal stress occurs during high temperature holding. In the worst case, this high thermal stress causes defects such as cracks at the boundary. Further, in consideration of the problem caused by the generation of this high thermal stress, the volume ratio of the compounding material must be limited, and the thermal expansion coefficient cannot be lowered as expected. When a piston is manufactured with such a material, the gap between the cylinder inner peripheral surface and the pinton land outer peripheral surface, that is, the further reduction of the clearance is limited, and the gap between the cylinder inner peripheral surface and the piston land outer peripheral surface ( There is a problem that the clevis cannot be set narrow and the reduction of HC in the exhaust gas by the unburned gas accumulated in the (clevis) is limited. A first object of the present invention is to alleviate the thermal stress generated in the high temperature holding portion and prevent the occurrence of defects such as cracks, and the second object is to provide a composite portion or a composite material. The thermal expansion coefficient is reduced by increasing the volume ratio of the compounding material contained.

【0004】[0004]

【課題を解決するための手段】そこで、請求項1記載の
発明では、第1粉末材料を規定量貯える第1貯蔵手段
と、第2粉末材料を貯える第2貯蔵手段と、上記第2貯
蔵手段内の第2粉末材料を上記第1貯蔵手段に移送する
移送手段と、上記第1貯蔵手段内の粉末材料を撹拌する
撹拌手段と、上記第1貯蔵手段内の粉末材料を粉末成形
型に投入する投入手段とを備え、上記第2粉末材料を予
め定められた投入速度で連続的または断続的に第1貯蔵
手段内に移送させると共に、上記第1貯蔵手段内の粉末
材料を予め定められた投入速度で連続的または断続的に
上記粉末成形型に上方から投入して、同粉末成形型に上
記第1貯蔵手段内の粉末材料を装填して、この装填され
た粉末材料を上下方向に加圧し、焼結して粉末冶金製品
を製造している。
Therefore, in the invention described in claim 1, the first storage means for storing a prescribed amount of the first powder material, the second storage means for storing the second powder material, and the second storage means. Transfer means for transferring the second powder material in the first storage means, stirring means for stirring the powder material in the first storage means, and charging the powder material in the first storage means into a powder molding die. The second powder material is continuously or intermittently transferred into the first storage means at a predetermined charging speed, and the powder material in the first storage means is predetermined. The powder material is continuously or intermittently charged from above from above at a charging speed, the powder material in the first storage means is loaded into the powder molding die, and the loaded powder material is vertically applied. It is pressed and sintered to produce powder metallurgy products.

【0005】請求項2記載の発明では、上記第2粉末材
料を所望量だけ上記第1貯蔵手段に移送する第1ステッ
プと、上記第1貯蔵手段内の粉末材料を撹拌混合する第
2ステップと、上記第1貯蔵手段内の粉末材料の一部を
上記粉末成形型に投入する第3ステップとからなる一連
の工程を繰り返して実行して、上記粉末成形型に上記第
1貯蔵手段の粉末材料を上方から装填すると共に、装填
された粉末材料を上下方向に加圧し、焼結して粉末冶金
製品を製造している。
According to a second aspect of the invention, a first step of transferring a desired amount of the second powder material to the first storage means, and a second step of stirring and mixing the powder material in the first storage means. And a third step of charging a part of the powder material in the first storage means into the powder molding die is repeatedly performed, and the powder material of the first storage means is added to the powder molding die. Is loaded from above, and the loaded powder material is pressed in the vertical direction and sintered to manufacture a powder metallurgical product.

【0006】本発明における第1粉末材料としてはアル
ミ合金を用い、第2粉末材料としてはアルミナ、ムライ
ト、炭化珪素、シリカまたはコージュライト等のセラミ
ックスやカーボン、あるいは両者を混合して用いてい
る。
Aluminum alloy is used as the first powder material in the present invention, and ceramics or carbon such as alumina, mullite, silicon carbide, silica or cordierite, or both are used as the second powder material.

【0007】請求項6記載の発明では、予め規定された
混合比で第1粉末材料と第2粉末材料とが貯蔵された第
1貯蔵手段と、上記第1粉末材料または第1粉末材料の
混合比が第1貯蔵手段における混合比よりも高い第1粉
末材料と第2粉末材料との混合物が貯蔵されている第2
貯蔵手段と、上記第1貯蔵手段に設けられ、同第1貯蔵
手段内の粉末材料を撹拌する撹拌手段と、上記第2貯蔵
手段内の粉末材料を、上記1貯蔵手段に移送する移送手
段とを備え、上記第2貯蔵手段内の粉末材料を予め規定
された投入速度で連続的または断続的に上記第1貯蔵手
段内に移送すると共に、上記第1貯蔵手段内の粉末材料
を予め規定された投入速度で連続的または断続的に粉末
成形型に上方から投入して、同粉末成形型に投入された
粉末材料を上下方向に加圧し、焼結して粉末冶金製品を
製造している。
In a sixth aspect of the present invention, the first storage means in which the first powder material and the second powder material are stored in a predetermined mixing ratio and the first powder material or the first powder material are mixed. A second stored mixture of a first powder material and a second powder material, the ratio of which is higher than the mixing ratio in the first storage means.
Storage means, stirring means provided in the first storage means for stirring the powder material in the first storage means, and transfer means for transferring the powder material in the second storage means to the one storage means The powder material in the second storage means is continuously or intermittently transferred into the first storage means at a predetermined charging rate, and the powder material in the first storage means is defined in advance. The powder metallurgical product is manufactured by continuously or intermittently charging the powder material into the powder molding die from above from above, pressurizing the powder material charged in the powder molding die in the vertical direction, and sintering the powder material.

【0008】請求項7記載の発明では、所定量の第1粉
末材料を略一定の速さで所望の時期に撹拌手段を備えた
容器に投入すると共に、所定量の第2粉末材料を加速ま
たは減速しながら所望の時期に上記容器内に投入して、
上記第1粉末材料と第2粉末材料とを上記撹拌手段で撹
拌し、撹拌した粉末材料を連続的または断続的に所望の
時期・速さで成形用の型に投入した後、加圧、焼結して
いる。
In a seventh aspect of the invention, a predetermined amount of the first powder material is charged into a container equipped with a stirring means at a substantially constant speed at a desired time, and a predetermined amount of the second powder material is accelerated or While decelerating, put it in the container at the desired time,
The first powder material and the second powder material are agitated by the agitating means, and the agitated powder material is continuously or intermittently charged into a mold for molding at a desired timing and speed, and then pressured and baked. I'm tied.

【0009】請求項8記載の発明では、第1粉末材料と
第2粉末材料とがそれぞれ所望量貯えられた第1貯蔵手
段と第2貯蔵手段、所望の時期となると第2貯蔵手段内
の粉末を略一定の速さで第1貯蔵手段に投入する第2粉
末投入手段、第1貯蔵手段内の粉末を撹拌するための撹
拌手段、第1貯蔵手段内の粉末を所望の時期になると粉
末成形型に略一定の速さで投入する第1粉末投入手段を
備えている。
According to the present invention, the first powder material and the second powder material are stored in desired amounts, respectively, the first storage means and the second storage means, and the powder in the second storage means at a desired time. Powder charging means for charging the powder in the first storage means at a substantially constant speed, stirring means for stirring the powder in the first storage means, and powder molding in the first storage means at a desired time. A first powder charging means for charging the mold at a substantially constant speed is provided.

【0010】請求項9記載の発明では、第1粉末材料に
対する第2粉末材料の配合率を0%から所定率まで連続
的に変化させて高温・加圧下で焼結している。
According to the ninth aspect of the invention, the mixing ratio of the second powder material to the first powder material is continuously changed from 0% to a predetermined ratio, and sintering is performed under high temperature and pressure.

【0011】請求項10記載の発明では、アルミ合金粉
末からなる母材と、セラミック粉末またはカーボン粉末
の少なくとも一方からなる配合材とを混合した状態で焼
結している。従って、この明細書中に記載の発明による
と、第2貯蔵手段に貯えられた第2粉末材料(配合材)
は、第1粉末材料材)が規定量貯えられた第1貯蔵手段
に第2粉末材料は予め定められた投入速度で連続的また
は断続的に移送されるので、第1粉末材料に対する第2
粉末材料の供給量が変化する。第1貯蔵手段内では、撹
拌手段によって撹拌されつつ同内の粉末材料が投入手段
によって粉末成形型に予め定められた投入速度で連続的
または断続的に投入される。この時、第1貯蔵手段内の
粉末材料が第1粉末材料(母材)だけであると同第1部
材だけが粉末成形型に投入され、粉末材料が第1粉末材
料(母材)と第2粉末材料(配合材)とからなる粉末材
料であると、この第1と第2が混合された粉末材料が粉
末成形型に投入される。また、第1貯蔵手段からの粉末
材料の粉末成形型への投入に際しては、予め定められた
投入速度で連続的または断続的に行なうので、第1粉末
材料と第2粉末材料との配合が連続的に変化した粉末材
料が粉末成形型に充填される。装填された粉末材料は、
加圧・焼結して粉末冶金製品となるので、第1粉末材料
と第2粉末材料との配合率が連続的あるいは段階的に変
化した粉末冶金製品が成形される(請求項1)。
According to the tenth aspect of the invention, the base material made of aluminum alloy powder and the compound material made of at least one of ceramic powder and carbon powder are mixed and sintered. Therefore, according to the invention described in this specification, the second powder material (compounding material) stored in the second storage means.
The second powder material is continuously or intermittently transferred at a predetermined charging rate to the first storage means in which a specified amount of the first powder material is stored.
The amount of powdered material supplied changes. In the first storage means, while being stirred by the stirring means, the powder material therein is continuously or intermittently charged into the powder molding die by the charging means at a predetermined charging speed. At this time, if the powder material in the first storage means is only the first powder material (base material), only the first member is put into the powder molding die, and the powder material is mixed with the first powder material (base material). If the powder material is composed of two powder materials (compounding material), the powder material obtained by mixing the first and second powder materials is put into a powder molding die. Further, when the powder material from the first storage means is charged into the powder molding die, the powder material is continuously or intermittently supplied at a predetermined charging speed, so that the first powder material and the second powder material are continuously mixed. The powder material, which has changed over time, is filled in the powder mold. The powder material loaded is
Since the powder metallurgical product is obtained by pressing and sintering, the powder metallurgical product in which the compounding ratio of the first powder material and the second powder material is continuously or stepwise changed is formed (claim 1).

【0012】第2粉末材料を所望量だけ第1貯蔵手段に
移送する第1ステップと、上記第1貯蔵手段内の粉末材
料を撹拌混合する第2ステップと、上記第1貯蔵手段内
の粉末材料の一部を粉末成形型に投入する第3ステップ
とからなる一連の工程を繰り返して実行し、粉末成形型
に第1貯蔵手段内の粉末材料を装填し、装填された混合
粉末末材を加熱・焼結して粉末冶金製品を製造するの
で、一連の工程が進につれて第1ステップにおける第2
粉末材料の所望量を変化させることで、第1粉末材料と
第2粉末材料との配合率の異なる粉末材料が第3ステッ
プにおいて粉末成形型に供給される(請求項2)。
A first step of transferring a desired amount of the second powder material to the first storage means, a second step of stirring and mixing the powder material in the first storage means, and a powder material in the first storage means. A series of steps including the third step of charging a part of the powder into the powder molding die is repeated, the powder material in the first storage means is loaded into the powder molding die, and the loaded mixed powder end material is heated. -Since it manufactures a powder metallurgy product by sintering, the second step in the first step is performed as the series of processes progresses.
By changing the desired amount of the powder material, the powder material having different mixing ratios of the first powder material and the second powder material is supplied to the powder molding die in the third step (claim 2).

【0013】第1粉末材料をアルミ合金とし、第2粉末
材料をセラミックスやカーボンとするので、粉末成形型
に投入されるアルミ合金に対するセラミックスの配合率
が変化しながら粉末成形型に供給されて、アルミ合金と
セラミックスの配合量が連続的あるいは断続的に異なる
粉末冶金製品が成形される(請求項3、4)。
Since the first powder material is an aluminum alloy and the second powder material is ceramics or carbon, it is supplied to the powder molding die while changing the compounding ratio of the ceramics to the aluminum alloy charged into the powder molding die. A powder metallurgical product having different blending amounts of aluminum alloy and ceramics is formed continuously or intermittently (claims 3 and 4).

【0014】第2貯蔵手段内に第1粉末材料が貯蔵され
ている場合、この第1粉末材料が移送手段により第1貯
蔵手段内に移送され、第1貯蔵手段内の粉末材料に撹拌
手段によって撹拌混合され、第1貯蔵手段内の粉末材料
における第1粉末材料の混合比が変化する。また、第2
貯蔵手段内に、第1粉末材料の混合比が、第1貯蔵手段
における混合比よりも高い第1粉末材料と第2粉末材料
との混合物が貯蔵されている場合、この混合比の高い混
合物が移送手段によって第1貯蔵手段に移送され、撹拌
手段により第1貯蔵手段内に貯蔵された一定混合比の粉
末材料に撹拌混合され、この一定混合比の粉末材料の混
合比が変化する。また、第1貯蔵手段内の粉末材料は、
規定された投入速度で連続的または断続的に粉末成形型
に上方から投入されるので、第1粉末材料と第2粉末材
料との配合が連続的に変化した粉末材料が粉末成形型に
充填される。このように混合比が変化した粉末材料を加
圧し焼結するので、第1粉末材料と第2粉末材料とが連
続的に次第に変化した粉末冶金形成が成形される(請求
項6)。
When the first powder material is stored in the second storage means, the first powder material is transferred into the first storage means by the transfer means and the powder material in the first storage means is stirred by the stirring means. Stirring and mixing change the mixing ratio of the first powder material in the powder material in the first storage means. Also, the second
When the mixture of the first powder material and the second powder material in which the mixing ratio of the first powder material is higher than the mixing ratio in the first storing means is stored in the storage means, the mixture having the high mixing ratio is The powder material having a constant mixing ratio is transferred to the first storage means by the transfer means, and is agitated and mixed with the powder material having a constant mixing ratio stored in the first storage means, and the mixing ratio of the powder material having the constant mixing ratio is changed. The powder material in the first storage means is
The powder material is continuously or intermittently charged from above at a prescribed charging speed from above, so that the powder material in which the composition of the first powder material and the second powder material is continuously changed is filled in the powder molding die. It Since the powder material with the changed mixing ratio is pressed and sintered in this way, the powder metallurgy is formed in which the first powder material and the second powder material are continuously and gradually changed (claim 6).

【0015】所定量の第1粉末材料を略一定の速さで所
望の時期に撹拌手段を備えた容器に投入すると共に、所
定量の第2粉末材料を速度または減速しながら所望の時
期に上記容器内に投入して、上記第1粉末材料と第2粉
末材料とを上記撹拌手段で撹拌し、撹拌した粉末材料を
連続的または断続的に所望の時期・速さで成形用の型に
投入した後、加圧、焼結するので、第1粉末材料と第2
粉末材料との配合率が変化した粉末冶金となる(請求項
7)。
A predetermined amount of the first powder material is charged at a substantially constant speed into a container equipped with a stirring means at a desired time, and a predetermined amount of the second powder material is speeded or decelerated while the above is performed at the desired time. It is charged into a container, the first powder material and the second powder material are stirred by the stirring means, and the stirred powder material is continuously or intermittently charged into a molding die at a desired timing and speed. After that, it is pressed and sintered, so the first powder material and the second powder material
The powder metallurgy has a different blending ratio with the powder material (claim 7).

【0016】第2貯蔵手段内の第2粉末材料は、所望の
時期となると第2粉末投入手段によって略一定の速さで
第1貯蔵手段に投入される。第1貯蔵手段内の粉末材料
は、所望の時期になると第1粉末投入手段によって粉末
成形型に略一定の速さで投入される。この時、第2粉末
投入手段による第1貯蔵手段内への第2粉末材料の投入
時期が、第1粉末投入手段による粉末成形型への粉末材
料の投入時期より遅いと、粉末成形型へは第1粉末材料
だけが投入され、第1貯蔵手段内への第2粉末材料の投
入時期が、粉末成形型への粉末材料の投入時期より早い
と、粉末成形型へは、撹拌手段によって第1粉末材料と
第2粉末材料と一定の配合率に撹拌された粉末材料が投
入される(請求項8)。
The second powder material in the second storage means is charged into the first storage means at a substantially constant speed by the second powder charging means at a desired time. The powder material in the first storage means is charged into the powder molding die at a substantially constant speed by the first powder charging means at a desired time. At this time, if the timing of charging the second powder material into the first storage means by the second powder charging means is later than the timing of charging the powder material into the powder molding die by the first powder charging means, When only the first powder material is charged and the second powder material is charged into the first storage means earlier than the powder material is charged into the powder molding die, the powder molding die is first moved by the stirring means. The powder material and the second powder material, which are agitated at a constant mixing ratio, are charged (claim 8).

【0017】粉末冶金製品における第1粉末材料に対す
る第2粉末材料の配合率が、0%ないし但配合率から所
定率まで連続的に変化しているので、第1粉末材料に対
する第2粉末材料の配合率が急激に変化せずに緩やかに
変化する(請求項9)。
Since the compounding ratio of the second powder material with respect to the first powder material in the powder metallurgy product is continuously changing from 0% or the compounding ratio to a predetermined ratio, the second powder material with respect to the first powder material is changed. The blending ratio does not change rapidly but changes gently (claim 9).

【0018】[0018]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。図1に符号1で示す粉末成形装置は、母材と
なる第1粉末材料2が所望量貯えられた第1貯蔵手段と
しての第1タンク3、配合材となる第2粉末材料4が所
望量貯えられた第2貯蔵手段との第2タンク5、所望の
時期となると第2タンク5から第2粉末材料4を略一定
の速さで第1タンク3に投入する第2粉末投入手段6、
第1タンク3内の粉末材料を撹拌する撹拌手段としての
スクリュー7、第1タンク3内の粉末材料を所望の時期
になると粉末成形型8に略一定の速さで投入する第1粉
末投入手段9とを備えている。
Embodiments of the present invention will be described below in detail with reference to the drawings. In the powder molding apparatus indicated by reference numeral 1 in FIG. 1, a first tank 3 as a first storage means in which a desired amount of a first powder material 2 serving as a base material is stored, and a desired amount of a second powder material 4 serving as a compounding material are provided. A second tank 5 with the stored second storage means, a second powder charging means 6 for charging the second powder material 4 from the second tank 5 into the first tank 3 at a substantially constant speed at a desired time,
A screw 7 as a stirring means for stirring the powder material in the first tank 3, and a first powder charging means for charging the powder material in the first tank 3 into the powder molding die 8 at a substantially constant speed at a desired time. 9 and 9.

【0019】第2粉末投入手段6は、第2タンク5と連
通する通路61と、通路61の先端開口部61aを開閉
する開閉部材62から構成されている。通路61は、パ
イプ材で構成されていて、ここでは、第1タンク3に対
する第2粉末材料の移送手段となっている。開閉部材6
2は、図2に示すように、先端開口部61aよりも小径
の円径板でって、その一部から外方に延出するレバー6
2aを通路61外周に固定したボス部63にピン64で
回動自在に支持している。先端開口部61aの端面61
bには、開閉部材62を実線で示す閉位置に置くストッ
パ65が設けられている。
The second powder feeding means 6 comprises a passage 61 communicating with the second tank 5 and an opening / closing member 62 for opening / closing a tip opening 61a of the passage 61. The passage 61 is made of a pipe material, and serves as a transfer means of the second powder material to the first tank 3 here. Opening / closing member 6
As shown in FIG. 2, reference numeral 2 denotes a circular plate having a diameter smaller than that of the front end opening 61a, and a lever 6 extending outward from a part thereof.
2a is rotatably supported by a pin 64 on a boss 63 fixed to the outer periphery of the passage 61. End face 61 of the tip opening 61a
A stopper 65 for placing the opening / closing member 62 in the closed position shown by the solid line is provided at b.

【0020】第1粉末投入手段9は、図1に示すよう
に、第1タンク3と連通する通路91と、通路91の先
端開口部91aを開閉する開閉部材92から構成されて
いる。通路91は、通路61よりも大径のパイプ材で構
成されている。開閉部材92は、図3に示すように、先
端開口部91aよりも小径の円径板でって、その一部か
ら外方に延出するレバー92aを通路91外周に固定し
たボス部93にピン94で回動自在に支持している。先
端開口部91aの端面91bには、開閉部材92を実線
で示す閉位置に置くストッパ65が設けられている。開
閉部材62,92は、ここでは、レバー62a,92a
をぞれぞれコンピュータ制御等により操作して先端開口
部61a,91aを開閉させる。つまり、開閉部材92
は、第1タンク内の粉末材料を粉末成形型8に投入する
投入手段を構成てしている。図1に示すスクリュー7
は、図示しないモータ等の駆動源と接続していて、第1
タンク3内で回転駆動される。なお、開閉部材62,9
2は、図示する形状や構造に限定されるものではなく、
スライド式やバタフライ式であっても良いし、その他の
構成であっても良い。
As shown in FIG. 1, the first powder feeding means 9 comprises a passage 91 communicating with the first tank 3 and an opening / closing member 92 for opening / closing a tip opening 91a of the passage 91. The passage 91 is made of a pipe material having a larger diameter than the passage 61. As shown in FIG. 3, the opening / closing member 92 is a circular plate having a diameter smaller than that of the front end opening 91a, and a lever 92a extending outward from a part of the opening / closing member 92 is attached to a boss portion 93 fixed to the outer periphery of the passage 91. It is rotatably supported by a pin 94. A stopper 65 for placing the opening / closing member 92 at the closed position shown by the solid line is provided on the end surface 91b of the tip opening 91a. The opening / closing members 62 and 92 are here the levers 62a and 92a.
The distal end openings 61a and 91a are opened and closed by operating each by computer control or the like. That is, the opening / closing member 92
Constitutes a charging means for charging the powder material in the first tank into the powder molding die 8. Screw 7 shown in FIG.
Is connected to a drive source such as a motor (not shown),
It is rotationally driven in the tank 3. The opening / closing members 62, 9
2 is not limited to the illustrated shape and structure,
It may be a slide type or a butterfly type, or may have another configuration.

【0021】このような構成の粉末成形装置1を用いた
粉末冶金製品10の製造方法を説明する。ここで粉末冶
金製品10としては、内燃機関に用いるピストンを冶金
成形することとする。また、第1粉末材料2としてアル
ミ合金粉末、第2粉末材料4としてアルミナ粉末を使用
する。
A method of manufacturing the powder metallurgical product 10 using the powder molding apparatus 1 having such a configuration will be described. Here, as the powder metallurgy product 10, a piston used in an internal combustion engine is metallurgically formed. Further, aluminum alloy powder is used as the first powder material 2, and alumina powder is used as the second powder material 4.

【0022】まず、予め定められた投入速度で連続的に
第1タンク内3にアルミナ粉末を移送すべく開閉部材6
2を操作して先端開口部61aを開口する。次に第1タ
ンク3内の粉末材料が投入速度で連続的に粉末成形型8
に投入すべく開閉部材92を操作して先端開口部91a
を開口する。この時、第1タンク3へのアルミナ粉末の
投入速度は、粉末成形型8に投入する粉末材料の投入速
度よりも早く成るように開閉部材62,92を調整す
る。すると、第1タンク3から粉末成形型8に投入され
る粉末材料は、最初、通路91内にあるアルミ合金粉末
だけであり、時間の経過と共にスクリュ7によってアル
ミ合金粉末中にアルミナ粉末が配合された粉末材料とな
る。そして、アルミ合金粉末中に配合されるアルミナ粉
末の配合率が、第1タンク3と粉末成形型8への挿入速
度の関係により次第に高くなる。
First, the opening / closing member 6 for continuously transferring the alumina powder into the first tank 3 at a predetermined charging speed.
2 is operated to open the tip opening 61a. Next, the powder material in the first tank 3 is continuously fed into the powder molding die 8 at the feeding speed.
The opening / closing member 92 is operated so that the tip opening 91a
Open. At this time, the opening / closing members 62 and 92 are adjusted so that the feeding speed of the alumina powder into the first tank 3 is faster than the feeding speed of the powder material charged into the powder molding die 8. Then, the powder material charged into the powder molding die 8 from the first tank 3 is initially only the aluminum alloy powder in the passage 91, and the alumina powder is mixed with the aluminum alloy powder by the screw 7 with the passage of time. It becomes a powdered material. Then, the blending ratio of the alumina powder blended in the aluminum alloy powder gradually increases due to the relationship between the insertion speed into the first tank 3 and the powder molding die 8.

【0023】従って、粉末成形型8の成形空間8aの下
方にはアルミ合金粉末だけの粉末層Aが形成され、成形
空間8a上方に来るに従い徐々にアルミ合金粉末にアル
ミナ粉末が配合された複合層Bが形成され、成形空間8
a最上部では、アルミ合金粉末に対するアルミナ粉末の
配合率が高くなって装填される。
Therefore, the powder layer A of only the aluminum alloy powder is formed below the molding space 8a of the powder molding die 8, and the composite layer in which the alumina powder is blended into the aluminum alloy powder gradually as it goes above the molding space 8a. B is formed, forming space 8
In the uppermost part a, the compounding ratio of the alumina powder with respect to the aluminum alloy powder becomes high and the aluminum powder is loaded.

【0024】つぎに、このアルミ合金粉末に対するアル
ミナ粉末の配合率が連続的に高く装填された粉末成形型
8に加圧・焼結を行なう。ここでは、図4に示すよう
に、加熱手段としてのヒータ12が設けられて真空排出
されるケース11内に、粉末材料が装填された粉末成形
型8を配置し、粉末材料上方から加圧部材14で加圧し
ながら、ヒータ12によって加熱して焼結する。粉末成
形型8は、固定型8bと2つの押出し部材9a,9bで
構成されており、焼結後の粉末冶金101を粉末成形型
8から取り出す際には、先ず、加圧部14を取り除き、
押出し部材9a,9bが同時に粉末冶金101を粉末成
形型8の上方に押し出す。粉末成形型8より強く押し出
された粉末冶金101は依然として押出し部材9a,9
bに強く固着されているので、次に、押出し部材9bの
みを更に型の外方向に向かって押し出す。すると、粉末
冶金101が押出し部材9bに支えられ、粉末冶金10
1と押出し部材9aとの接触が断たれ、この状態で粉末
冶金101が粉末成形型8から解除され、図5に示す粉
末冶金(加工前ピストン)101が成形される。
Next, the powder molding die 8 in which the mixing ratio of the alumina powder to the aluminum alloy powder is continuously high is pressed and sintered. Here, as shown in FIG. 4, a powder molding die 8 loaded with a powder material is arranged in a case 11 provided with a heater 12 as a heating means and discharged in a vacuum, and a pressing member is pressed from above the powder material. While pressurizing at 14, it is heated by the heater 12 and sintered. The powder molding die 8 is composed of a fixed mold 8b and two extruding members 9a and 9b. When the powdered metallurgy 101 after sintering is taken out from the powder molding die 8, first, the pressing portion 14 is removed,
The extruding members 9a and 9b simultaneously push out the powder metallurgy 101 above the powder molding die 8. The powder metallurgy 101 strongly extruded from the powder molding die 8 still has the pushing members 9a, 9a.
Since it is firmly fixed to b, only the pushing member 9b is further pushed outward in the mold. Then, the powder metallurgy 101 is supported by the extruding member 9b, and the powder metallurgy 10
The contact between 1 and the extruding member 9a is cut off, the powder metallurgy 101 is released from the powder molding die 8 in this state, and the powder metallurgy (piston before processing) 101 shown in FIG. 5 is molded.

【0025】この焼結されたて粉末冶金101を工具1
5を用いて加工し、ここでは図6に示すように、リング
15,16,17が挿嵌される複数のリング溝102,
103,104を形成すると共に、図示しない様々な工
具を用いて粉末冶金製品10(完成したピストン)とす
る。この粉末冶金製品10の断面を見ると、図7に示す
ように、ピストン上面10Aに向かうにつれてアルミ合
金粉末のみからなる非複合化部Aからアルミナ配合率が
次第に高くなる複合化部Bとを有することになる。つま
り、第1粉末材料2に対する第2粉末材料4の配合率
が、0%から所定率まで連続的に変化した粉末冶金製品
となる。ここでは、上下方向に向かって連続的に変化す
る。従って、非複合化部Aと複合化部Bとが連続的に変
化することに成り、非複合化部Aと複合化部Bとの境界
部D近傍における非複合化部Aと複合化部Bとの熱膨張
係数差が小さくなる。よって、高温保持時に発生する熱
応力が小さくなって亀裂等の発生が低減される。
The sintered powder metallurgy 101 is used as a tool 1
5, using a plurality of ring grooves 102, in which the rings 15, 16 and 17 are inserted and fitted, as shown in FIG.
The powder metallurgy product 10 (completed piston) is formed by forming 103 and 104 and using various tools not shown. As shown in FIG. 7, the cross section of the powder metallurgy product 10 has a non-composite portion A made of only aluminum alloy powder toward the piston upper surface 10A and a composite portion B in which the alumina mixing ratio gradually increases. It will be. That is, the powder metallurgical product has a mixture ratio of the second powder material 4 with respect to the first powder material 2 continuously changing from 0% to a predetermined ratio. Here, it changes continuously in the vertical direction. Therefore, the non-composite part A and the composite part B continuously change, and the non-composite part A and the composite part B in the vicinity of the boundary part D between the non-composite part A and the composite part B. The difference in thermal expansion coefficient between Therefore, the thermal stress generated at the time of holding at high temperature is reduced, and the occurrence of cracks and the like is reduced.

【0026】また、境界部Dよりもピストン上面10A
に向かうにつれて複合化部B内のアルミナ配合率が高く
なるので、同上面10A側の熱膨張係数が境界部D側よ
り低減する。よって、ピントン上端外周面10aとシリ
ンダ18の内周面18aと間に形成されるクレビスCの
幅L(クリアランス)を、図10に示すアルミナ配合量
が同等で、かつそのアルミナ配合範囲が一様とされた複
合化層B’を有するピストン100よりも狭くできる。
Further, the piston upper surface 10A rather than the boundary portion D
As the blending ratio of alumina in the composite portion B increases, the thermal expansion coefficient on the upper surface 10A side decreases from that on the boundary portion D side. Therefore, the width L (clearance) of the clevis C formed between the pinton upper end outer peripheral surface 10a and the inner peripheral surface 18a of the cylinder 18 has the same alumina compounding amount shown in FIG. 10, and the alumina compounding range is uniform. It can be made narrower than the piston 100 having the composite layer B ′.

【0027】なお、この実施例では、第1タンク内3及
び粉末成形型8に連続的に投に予め定められた投入速度
でアルミナ粉末及び粉末材料を投入しているが、第1タ
ンク内3及び粉末成形型8へのアルミナ粉末及び粉末材
料の投入を断続的におこなっても良い。例えば、最初、
粉末成形型8にアルミ合金だけを投入すべく開閉部材9
2だけを操作して先端開口部91aを開口し、一定量投
入できたら、一旦先端開口部91aを閉じる。そして、
開閉部材62だけを操作して先端開口部61aからアル
ミナ粉末を第1タンク3に投入して撹拌混合して、再
度、先端開口部91aを開口して粉末成形型8にアルミ
合金とアルミナ粉末とが混在した粉末材料を投入しても
良い。
In this embodiment, the alumina powder and the powder material are continuously charged into the first tank 3 and the powder molding die 8 at a predetermined charging speed. Alternatively, the alumina powder and the powder material may be intermittently charged into the powder molding die 8. For example, first
Opening / closing member 9 to put only the aluminum alloy into the powder molding die 8
The tip opening 91a is opened by operating only 2 and once the fixed amount can be charged, the tip opening 91a is once closed. And
By operating only the opening / closing member 62, the alumina powder is put into the first tank 3 through the tip opening 61a, stirred and mixed, and the tip opening 91a is opened again to fill the powder molding die 8 with the aluminum alloy and the alumina powder. You may throw in the powder material which mixed.

【0028】つまり、第1ステップで第2粉末材料4を
所望量だけ第1タンク3に移送し、第2ステップで第1
タンク内の第1粉末材料2と移送された第2粉末材料4
とから構成される粉末材料をスクリュ7で撹拌混合し、
第3ステップで第1タンク3の粉末材料の一部を粉末成
形型8に投入する。そして、第1ステップから第3ステ
ップまでの一連の工程を繰り返して実行しながら粉末成
形型8に第1タンク3で撹拌混合された粉末材料を装填
し、装填された粉末末材を図4に示すように、真空中で
加熱・焼結して粉末冶金製品を生成する。
That is, a desired amount of the second powder material 4 is transferred to the first tank 3 in the first step, and the first powder is transferred in the first step in the second step.
The first powder material 2 in the tank and the transferred second powder material 4
The powder material composed of and is mixed by stirring with the screw 7,
In the third step, a part of the powder material in the first tank 3 is put into the powder molding die 8. Then, while repeating the series of steps from the first step to the third step, the powder material mixed with stirring in the first tank 3 is loaded into the powder molding die 8, and the loaded powder end material is shown in FIG. Heat and sinter in vacuum to produce a powder metallurgy product as shown.

【0029】ここでの第1ステップから第3ステップま
での一連の工程を繰り返すときに、第1粉末材料2(ア
ルミ合金粉末)に対する第2粉末材料4(アルミナ粉
末)の配合率を、各一連の工程毎に、少しずつ多くして
いくことで、非複合化部Aと複合層Bとが徐々に変化す
ることに成る。よって、非複合化部Aと複合化部Bとの
境界部D近傍における非複合化部Aと複合化部Bとの熱
膨張係数差が小さくなって、高温保持時に発生する熱応
力が小さくなり亀裂等の発生が低減される。
When the series of steps from the first step to the third step are repeated, the blending ratio of the second powder material 4 (alumina powder) to the first powder material 2 (aluminum alloy powder) is set in each series. The non-composite portion A and the composite layer B are gradually changed by gradually increasing each step. Therefore, the difference in the coefficient of thermal expansion between the non-composite portion A and the composite portion B in the vicinity of the boundary portion D between the non-composite portion A and the composite portion B becomes small, and the thermal stress generated during high temperature holding becomes small. Occurrence of cracks is reduced.

【0030】上記実施例では、第1タンク3に予め第1
粉末材料2としてのアルミ合金粉末を、第2タンク5に
第2粉末材料4としのアルミナ粉末を貯蔵して例で説明
したが、これに限られるものではない。例えば、第1タ
ンク3に予め規定された混合比のアルミ合金粉末とアル
ミナ粉末の混合物を所望量貯蔵し、第2タンク5にアル
ミナ粉末の混合率が第1タンク3内におけるアルミナ粉
末の混合率よりも高いアルミ合金粉末とアルミナ粉末の
混合物を貯蔵するように構成しても良い。この場合、粉
末成形型8の形成空間8aの下方には、予め規定された
混合比のアルミ合金粉末とアルミナ粉末との複合化層A
が形成され、成形空間8aの上方に来るに従いアルミナ
粉末の配合率が連続的に高くなり、成形空間8aの上部
では、アルミ合金粉末に対するアルミナ粉末の配合率が
高くなって装填される。以後、上記実施例同様、粉末成
形型8を加圧し終結して粉末冶金製品としてのピストン
を得る。
In the above-described embodiment, the first tank 3 is previously provided with the first tank.
Although the aluminum alloy powder as the powder material 2 and the alumina powder as the second powder material 4 are stored in the second tank 5 as an example, the description has been given, but the present invention is not limited to this. For example, a desired amount of a mixture of aluminum alloy powder and alumina powder having a predetermined mixing ratio is stored in the first tank 3, and the mixing ratio of the alumina powder in the second tank 5 is the mixing ratio of the alumina powder in the first tank 3. It may be configured to store a higher mixture of aluminum alloy powder and alumina powder. In this case, below the forming space 8a of the powder molding die 8, a composite layer A of aluminum alloy powder and alumina powder having a predetermined mixing ratio is formed.
Is formed and the blending ratio of the alumina powder continuously increases as it goes above the molding space 8a. At the upper part of the molding space 8a, the blending ratio of the alumina powder to the aluminum alloy powder becomes higher and the aluminum powder is loaded. Thereafter, as in the above-mentioned embodiment, the powder molding die 8 is pressed and terminated to obtain a piston as a powder metallurgy product.

【0031】以上ピストンの粉末冶金方法について説明
したが、他の製品を粉末冶金方法で得る場合、ピストン
の場合とは逆に、第1タンク3に予め規定された混合比
の第1粉末材料としての配合材(例えばセラミック粉
末)と第2粉末材料として母材(例えばアルミ合金粉
末)との混合物を所望量貯蔵し、第2タンク5に母材の
みをまたは配合材の混合率が第1タンクにおけるその混
合率よりも高い母材と配合材との混合物であっても良
い。このようにすると、成形空間8aでは、時間が断つ
に連れて、配合材の混合率が上下方向に連続的に低減し
ながら変化させることができる。具体的には、配合材の
配合量が成形空間8aの上方に行くに従って減少した粉
末冶金製品となる。
Although the powder metallurgy method of the piston has been described above, when other products are obtained by the powder metallurgical method, the first powder material having a predetermined mixing ratio is used as the first powder material in the first tank 3 contrary to the case of the piston. A desired amount of a mixture of the compounding material (for example, ceramic powder) and the base material (for example, aluminum alloy powder) as the second powder material is stored in the second tank 5, and only the base material or the mixing ratio of the compounding material is the first tank A mixture of the base material and the compounding material having a higher mixing ratio than the above may be used. In this way, in the molding space 8a, the mixing ratio of the compounding material can be changed while continuously decreasing in the vertical direction as time passes. Specifically, the powder metallurgical product is obtained in which the compounding amount of the compounding material decreases as it goes upward in the molding space 8a.

【0032】次に、本発明の別の実施例について説明す
る。この実施例では、図8に示すように、所定量の第1
粉末材料2を撹拌手段としてのスクリュー20を備えた
容器21に投入すると共に、所定量の第2粉末材料4を
速度または減速しながら所望の時期に容器21内に投入
して、第1粉末材料2と第2粉末材料4とをスクリュー
20で撹拌し、撹拌した粉末材料22を連続的または断
続的に所望の時期・速さで成形用の型80に投入した
後、図4に示すように加圧、焼結することを特徴とす
る。
Next, another embodiment of the present invention will be described. In this embodiment, as shown in FIG.
The powder material 2 is charged into a container 21 equipped with a screw 20 as a stirring means, and a predetermined amount of the second powder material 4 is charged into the container 21 at a desired time while speeding or decelerating the first powder material. 2 and the second powder material 4 are agitated by a screw 20, and the agitated powder material 22 is continuously or intermittently charged into a molding die 80 at a desired timing and speed, and then, as shown in FIG. It is characterized by pressurizing and sintering.

【0033】この実施例で用いる粉末成形装置50は、
第1粉末材料2を収納するタンク23と第2粉末材料4
を収納するタンク24、スクリュー20と容器21及
び、タンク23,24から容器21への第1粉末材料2
と第2粉末材料4の投入手段としてのシャッター25,
26、容器21から型80への粉末材料の投入手段して
のシャッター27とを備えている。ここでも第1粉末材
料2としてアルミ合金粉末、第2粉末材料としてアルミ
ナ粉末を用いている。
The powder molding apparatus 50 used in this embodiment is
A tank 23 for storing the first powder material 2 and a second powder material 4
Tank 24 for storing the above, screw 20, container 21 and first powder material 2 from tank 23, 24 to container 21
And a shutter 25 as a means for charging the second powder material 4,
26, and a shutter 27 as a means for charging the powder material from the container 21 into the mold 80. Also in this case, aluminum alloy powder is used as the first powder material 2 and alumina powder is used as the second powder material.

【0034】タンク23,24には、シャッター25,
26を介して投入通路28,29が連通している。タン
ク23,24から容器21への第1粉末材料2及び第2
粉末材料4の供給速度は、このシャッター25,26の
操作による投入通路28,29の開口面積によって定め
られている。投入通路28は、シャッター25によって
一定の開口面積に設定されていて一定の投入速度で投入
されるようになっている。投入通路29は所望の時期に
開閉されるシャッター26によってその開口面積が変化
するように構成されている。
The tanks 23 and 24 have shutters 25,
The charging passages 28 and 29 communicate with each other via 26. First powder material 2 and second from tank 23, 24 to container 21
The supply speed of the powder material 4 is determined by the opening area of the charging passages 28 and 29 by the operation of the shutters 25 and 26. The input passage 28 is set to have a constant opening area by the shutter 25, and is input at a constant input speed. The input passage 29 is configured such that its opening area is changed by the shutter 26 that is opened and closed at a desired time.

【0035】シャッター26は、図9に示すように、投
入通路29の外周に設けられたブラケット30に装着さ
れたモータ31の軸32に支持されていて、投入通路2
9を開閉自在としている。モータ31はステップモータ
であって、図示しないコントローラと接続していて、コ
ントローラからの駆動信号により、駆動時期と回転量が
制御されている。なお、シャッター27は、シャッター
26と同様の構成とされているので、ここでの説明は省
略する。
As shown in FIG. 9, the shutter 26 is supported by a shaft 32 of a motor 31 mounted on a bracket 30 provided on the outer periphery of the closing passage 29, and the closing passage 2
9 can be opened and closed freely. The motor 31 is a step motor, is connected to a controller (not shown), and the drive timing and the amount of rotation are controlled by a drive signal from the controller. Since the shutter 27 has the same configuration as the shutter 26, the description thereof is omitted here.

【0036】コントローラは、時間の経過と共に、第2
粉末材料4の投入速度が早くなるように設定されてい
る。つまり、時間の経過と共に第2粉末材料4の投入量
が多くなるように、シャッター26を多く開口するよう
になっている。また、これら装置50は、容器21に固
定された外ケース51に覆われていて、型80の成形空
間80a上を水平方向に旋回自在とされていて、同成形
空間80a内に満遍なく粉末材料22が投入できるよう
になっている。
The controller, as time goes by, the second controller
The feeding rate of the powder material 4 is set to be high. That is, the shutter 26 is opened a lot so that the input amount of the second powder material 4 increases with the passage of time. Further, these devices 50 are covered with an outer case 51 fixed to the container 21 and can be horizontally swiveled in a molding space 80a of a mold 80, and the powder material 22 is evenly distributed in the molding space 80a. Can be input.

【0037】このような装置50によると、装置の図示
しない電源を入れるとスクリュー20が回転すると共
に、装置50全体が旋回する。そして、先ず、シャッタ
ー25を一定量開口して第1粉末材料2を略定の速さで
容器21に投入すると共に、コントローラによってシャ
ッター27を一定量開口し、第1粉末材料2だけを成形
空間80a内に投入し、非複合化部Aを構成する。
According to such a device 50, when the power source (not shown) of the device is turned on, the screw 20 rotates and the entire device 50 rotates. Then, first, the shutter 25 is opened by a certain amount and the first powder material 2 is charged into the container 21 at a substantially constant speed, and the shutter 27 is opened by the controller by a certain amount so that only the first powder material 2 is formed in the molding space. It is put into 80a to form the non-composite section A.

【0038】成形空間80a内に非複合化部Aが一定量
構成されたら、コントローラによってシャッター26を
一定量開閉第2粉末材料4を容器21に投入する。する
と、第2粉末材料4が、スクリュー20に第1粉末材料
2と撹拌混合されて、非複合化部Aが形成された成形空
間80aに投入されて複合下部Bが形成される。この
時、容器21に対する第1粉末材料2の投入速度は略一
定で、第2粉末材料4の投入速度が時間の経過と共に多
くなるので、複合化部Bにおける第2粉末材料4の配合
率が多くなる。
When a certain amount of the non-composite section A is formed in the molding space 80a, the controller 26 opens and closes a certain amount of the shutter 26 to put the second powder material 4 into the container 21. Then, the second powder material 4 is agitated and mixed with the first powder material 2 by the screw 20, and is charged into the molding space 80a in which the non-composite section A is formed to form the composite lower part B. At this time, the feeding rate of the first powder material 2 into the container 21 is substantially constant, and the feeding rate of the second powder material 4 increases with the passage of time, so that the compounding ratio of the second powder material 4 in the composite section B is Will increase.

【0039】このように非複合化部Aと複合下部Bとが
形成された型80を図4に示すように、ヒータ12が設
けられケース11内に配置し、複合化部部B上方から加
圧部材14で加圧しながら、ヒータ12によって加熱し
て焼結し、図5に示す粉末冶金(加工前ピストン)10
1を成形する。そして、この粉末冶金101を工具15
を用いて加工し、粉末冶金製品10(完成したピスト
ン)とする。
As shown in FIG. 4, the mold 80 having the non-composite portion A and the composite lower portion B formed as described above is disposed in the case 11 provided with the heater 12 and is added from above the composite portion B. The powder metallurgy (piston before processing) 10 shown in FIG. 5 is heated and sintered by the heater 12 while being pressed by the pressure member 14.
Mold 1. Then, the powder metallurgy 101 is used as a tool 15
To produce a powder metallurgy product 10 (completed piston).

【0040】よって、この粉末冶金製品10の断面を見
ると、図7に示すように、ピストン上面10Aに向かう
につれてアルミ合金粉末のみからなる非複合化部Aから
第2粉末材料4の配合率が次第に高くなる複合化部Bと
を有することになる。つまり、第1粉末材料2に対する
第2粉末材料4の配合率が、0%から所定率まで加圧方
向に向かって連続的に変化した粉末冶金製品10とな
る。従って、非複合化部Aと複合化部Bとが徐々に変化
することに成り、非複合化部Aと複合化部Bとの境界部
D近傍における非複合化部Aと複合化部Bとの熱膨張係
数差が小さくり、高温保持部に発生する熱応力が小さく
なって、亀裂等の発生が低減される。
Therefore, looking at the cross section of the powder metallurgy product 10, as shown in FIG. 7, the compounding ratio of the second powder material 4 from the non-compositing part A consisting of the aluminum alloy powder alone toward the piston upper surface 10A is shown. It has a composite part B which becomes higher gradually. That is, the powder metallurgical product 10 is obtained in which the mixing ratio of the second powder material 4 to the first powder material 2 continuously changes from 0% to a predetermined ratio in the pressing direction. Therefore, the non-composite part A and the composite part B gradually change, and the non-composite part A and the composite part B in the vicinity of the boundary part D between the non-composite part A and the composite part B are separated. The difference in the coefficient of thermal expansion is reduced, the thermal stress generated in the high temperature holding portion is reduced, and the occurrence of cracks is reduced.

【0041】また、境界部Dよりもピストン上面10A
に向かうにつれて複合化部B内の第2粉末材料4(アル
ミナ)配合率が高くなるので、同上面10A側の熱膨張
係数が境界部D側より低減する。よって、ピントンラン
ド部外周面10aとシリンダ18の内周面18aと間に
形成されるクレビスCの幅L(クリアランス)を、図1
0に示すアルミナ配合量が同等で、かつそのアルミナ配
合範囲が一様とされた複合化部B1を有するピストン1
00よりも狭くできる。
Further, the piston upper surface 10A rather than the boundary portion D
As the blending ratio of the second powder material 4 (alumina) in the composite portion B becomes higher as it goes to, the coefficient of thermal expansion on the upper surface 10A side decreases from that on the boundary portion D side. Therefore, the width L (clearance) of the clevis C formed between the outer peripheral surface 10a of the Pinton land portion and the inner peripheral surface 18a of the cylinder 18 is shown in FIG.
Piston 1 having composite part B1 in which the alumina blending amount shown in 0 is equal and the alumina blending range is uniform
It can be narrower than 00.

【0042】なお、上述した各実施の形態では、粉末冶
金製品10としてピストンを例に挙げたが、これに限定
されるものではなく例えば熱応力のかかるシリンダーラ
ンナやブレーキロータ等の過酷な熱条件下で用いられる
部品であっても無論構わない。また、配合材となる第2
粉末材料としてアルミナを用いて粉末冶金製品10を成
形したが、これに限定されるものではなく、例えば、ム
ライト、炭化珪素、シリカまたはコージュライト等に代
表されるセラミックの粉末やカーボン、第1粉末材料2
に対して熱膨張係数の小さな材料の粉末であれば良い。
母材となる第1粉末材料としてアルミ合金を用いている
が、この他のものとしては、アルミニウム、マグネシウ
ム、マグネシウム合金、あるいは他の適切な金属等であ
っても良い。
In each of the above-mentioned embodiments, a piston is taken as an example of the powder metallurgy product 10, but the present invention is not limited to this. For example, a severe thermal condition such as a cylinder runner or a brake rotor to which thermal stress is applied. Of course, the parts used below may be used. In addition, the second which becomes the compounding material
Although the powder metallurgical product 10 was molded using alumina as the powder material, the present invention is not limited to this. For example, ceramic powder or carbon represented by mullite, silicon carbide, silica or cordierite, or the first powder. Material 2
On the other hand, any powder of a material having a small coefficient of thermal expansion may be used.
Although an aluminum alloy is used as the first powder material as the base material, other materials such as aluminum, magnesium, magnesium alloy, or other appropriate metal may be used.

【0043】[0043]

【発明の効果】本発明によれば、第1粉末材料に対する
第2粉末材料の配合率が急激に変化する部位を無くすこ
とができるので、複合化と非複合化部との境界部におけ
る熱膨張係数差を低減できる。よって、高温保持部に発
生する熱応力が小さくなって亀裂等の不具合を防止でき
る。また、この境界部における熱応力が小さくなること
で、従来、境界での熱膨張量が大きいために第1粉末材
料への配合量を制限されていた第2粉末材料を、第1粉
末材料中に相対的に多く配合することができる。よっ
て、熱膨張係数が下がるので、このような材料でピスト
ンを製造した場合、シリンダ内周面とピントンランド部
外周面との間隔(シリンダ内周面とピストンリング部と
の空隙)を狭く設定でき、(クレビス)に溜る未燃ガス
の量を低減して排気ガス中のHCの排出を低減できる。
According to the present invention, it is possible to eliminate a portion where the blending ratio of the second powder material to the first powder material changes rapidly, so that the thermal expansion at the boundary between the composite and non-composite parts can be eliminated. The coefficient difference can be reduced. Therefore, the thermal stress generated in the high temperature holding portion is reduced, and defects such as cracks can be prevented. In addition, since the thermal stress at the boundary is reduced, the thermal expansion amount at the boundary is large, and thus the second powder material, which has been limited in the amount to be mixed with the first powder material, is added to the first powder material. Can be added in a relatively large amount. Therefore, the coefficient of thermal expansion decreases, so when a piston is manufactured from such a material, the gap between the cylinder inner peripheral surface and the pinton land outer peripheral surface (the gap between the cylinder inner peripheral surface and the piston ring portion) can be set narrow. , (Clevis), the amount of unburned gas accumulated in the exhaust gas can be reduced to reduce the emission of HC in the exhaust gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す粉末成形装置と粉末冶
金製造工程の一工程を示す構成図である。
FIG. 1 is a configuration diagram showing one step of a powder molding apparatus and a powder metallurgy manufacturing process showing an embodiment of the present invention.

【図2】第1粉末投入手段の構成における開閉部材を示
す平面図である。
FIG. 2 is a plan view showing an opening / closing member in the configuration of a first powder feeding means.

【図3】第1粉末投入手段の構成を示す平面図である。FIG. 3 is a plan view showing a configuration of a first powder charging means.

【図4】本発明における加圧・焼結工程を示す側面図で
ある。
FIG. 4 is a side view showing a pressing / sintering step in the present invention.

【図5】本発明における加工工程を示す側面図である。FIG. 5 is a side view showing a processing step in the present invention.

【図6】粉末冶金製品の一例あるピストンと、シリンダ
との関係を示す断面図である。
FIG. 6 is a cross-sectional view showing the relationship between a piston and a cylinder, which is an example of a powder metallurgy product.

【図7】本発明の粉末冶金製品における複合部と非複合
部の状態を示す断面図である。
FIG. 7 is a cross-sectional view showing a state of a composite part and a non-composite part in the powder metallurgy product of the present invention.

【図8】本発明の別の実施例を示す粉末成形装置と粉末
冶金製造工程の一工程を示す構成図である。
FIG. 8 is a configuration diagram showing one step of a powder molding apparatus and a powder metallurgy manufacturing step showing another embodiment of the present invention.

【図9】別の実施例における第1及び第2投入手段の構
成を示す平面図である。
FIG. 9 is a plan view showing a configuration of first and second charging means in another embodiment.

【図10】従来の複合化ピストンの複合化部と非複合化
部の状態を示す断面図である。
FIG. 10 is a cross-sectional view showing a state of a compounding portion and a non-compounding portion of a conventional compounding piston.

【符号の説明】[Explanation of symbols]

1、50 粉末成形装置 2 第1粉末材料 3、23 第1貯蔵手段 4 第2粉末材料 5、24 第2貯蔵手段 6 第2粉末投入手段 61 移送手段 7、20 撹拌手段 8 粉末成形型 9 第1粉末投入手段 92 投入手段 10 粉末冶金製品 21 容器 1, 50 Powder molding device 2 First powder material 3, 23 First storage means 4 Second powder material 5, 24 Second storage means 6 Second powder charging means 61 Transfer means 7, 20 Stirring means 8 Powder molding die 9th 1 powder feeding means 92 feeding means 10 powder metallurgy product 21 container

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】第1粉末材料を規定量貯える第1貯蔵手段
と、 第2粉末材料を貯える第2貯蔵手段と、 上記第2貯蔵手段内の第2粉末材料を上記第1貯蔵手段
に移送する移送手段と、 上記第1貯蔵手段内の粉末材料を撹拌する撹拌手段と、 上記第1貯蔵手段内の粉末材料を粉末成形型に投入する
投入手段とを備え、 上記第2粉末材料を予め定められた投入速度で連続的ま
たは断続的に第1貯蔵手段内に移送させると共に、上記
第1貯蔵手段内の粉末材料を予め定められた投入速度で
連続的または断続的に上記粉末成形型に上方から投入し
て、同粉末成形型に上記第1貯蔵手段内の粉末材料を装
填して、この装填された粉末材料を上下方向に加圧し、
焼結して粉末冶金製品を生成することを特徴とする粉末
冶金製品の製造方法。
1. A first storage means for storing a prescribed amount of a first powder material, a second storage means for storing a second powder material, and a second powder material in the second storage means transferred to the first storage means. And a charging means for charging the powder material in the first storage means into a powder molding die, and the second powder material in advance. The powder material in the first storage means is continuously or intermittently transferred into the first storage means at a predetermined charging speed, and the powder material in the first storage means is continuously or intermittently transferred to the powder molding die at a predetermined charging speed. The powder material in the first storage means is loaded into the powder molding die from above, and the loaded powder material is vertically pressed,
A method of manufacturing a powder metallurgical product, which comprises sintering to produce a powder metallurgical product.
【請求項2】第1粉末材料を規定量貯える第1貯蔵手段
と、 第2粉末材料を貯える第2貯蔵手段と、 上記第2貯蔵手段内の第2粉末材料を上記第1貯蔵手段
に移送する移送手段と、 上記第1貯蔵手段内の粉末材料を撹拌する撹拌手段と、 上記第1貯蔵手段内の粉末材料を粉末成形型に投入する
投入手段とを備え、 上記第2粉末材料を所望量だけ上記第1貯蔵手段に移送
する第1ステップと、 上記第1貯蔵手段内の粉末材料を撹拌混合する第2ステ
ップと、 上記第1貯蔵手段内の粉末材料の一部を上記粉末成形型
に投入する第3ステップとからなる一連の工程を繰り返
して実行して、上記粉末成形型に上記第1貯蔵手段の粉
末材料を上方から装填すると共に、装填された粉末材料
を上下方向に加圧し、焼結して粉末冶金製品を生成する
ことを特徴とする粉末冶金製品の製造方法。
2. A first storage means for storing a prescribed amount of a first powder material, a second storage means for storing a second powder material, and a second powder material in the second storage means transferred to the first storage means. And a feeding means for feeding the powder material in the first storage means into a powder molding die, wherein the second powder material is desired. A first step of transferring an amount of the powder material to the first storage means, a second step of stirring and mixing the powder material in the first storage means, and a part of the powder material in the first storage means to the powder molding die. The powder material of the first storage means is loaded into the powder molding die from above, and the loaded powder material is pressed in the vertical direction by repeating a series of processes including the third step of charging , Sintering to produce powder metallurgy products A method for manufacturing a powder metallurgical product, comprising:
【請求項3】上記粉末冶金製品が内燃機関用ピストンで
あり、上記第1粉末材料がアルミ合金であり、上記第2
粉末材料がセラミックかカーボンのいずれか一方、また
は両方であることを特徴とする請求項1または2記載の
粉末冶金製品の製造方法。
3. The powder metallurgy product is a piston for an internal combustion engine, the first powder material is an aluminum alloy, and the second powder material is a second alloy.
3. The method for producing a powder metallurgy product according to claim 1, wherein the powder material is either ceramic or carbon, or both.
【請求項4】上記第2粉末材料が、アルミナ、ムライ
ト、炭化珪素、シリカ、またはコージュライト等のセラ
ミックやカーボンであることを特徴とする請求項3記載
の粉末冶金製品の製造方法。
4. The method for producing a powder metallurgy product according to claim 3, wherein the second powder material is a ceramic such as alumina, mullite, silicon carbide, silica, or cordierite, or carbon.
【請求項5】上記第1粉末材料は母材であり、第2粉末
材料は配合材であって、上記第1貯蔵手段には第1粉末
材料のみが貯蔵され、第2貯蔵手段には第2粉末材料の
みが貯蔵されていることを特徴とする請求項1または2
記載の粉末冶金製品の製造方法。
5. The first powder material is a base material, the second powder material is a compounding material, only the first powder material is stored in the first storage means, and the second storage means is stored in the second storage means. Only two powder materials are stored, characterized in that
A method for producing the powder metallurgy product described.
【請求項6】予め規定された混合比で第1粉末材料と第
2粉末材料とが貯蔵された第1貯蔵手段と、 上記第1粉末材料または第1粉末材料の混合比が第1貯
蔵手段における混合比よりも高い第1粉末材料と第2粉
末材料との混合物が貯蔵されている第2貯蔵手段と、 上記第1貯蔵手段に設けられ、同第1貯蔵手段内の粉末
材料を撹拌する撹拌手段と、 上記第2貯蔵手段内の粉末材料を、上記1貯蔵手段に移
送する移送手段とを備え、 上記第2貯蔵手段内の粉末材料を予め規定された投入速
度で連続的または断続的に上記第1貯蔵手段内に移送す
ると共に、上記第1貯蔵手段内の粉末材料を予め規定さ
れた投入速度で連続的または断続的に粉末成形型に上方
から投入して、同粉末成形型に投入された粉末材料を上
下方向に加圧し、焼結して粉末冶金製品を生成すること
を特徴とする粉末冶金製品の製造方法。
6. A first storage means in which a first powder material and a second powder material are stored in a predetermined mixing ratio, and a mixing ratio of the first powder material or the first powder material is the first storage means. Second storage means for storing a mixture of the first powder material and the second powder material having a higher mixing ratio than the above, and the powder material in the first storage means is agitated. A stirring means and a transfer means for transferring the powder material in the second storage means to the first storage means are provided, and the powder material in the second storage means is continuously or intermittently supplied at a predetermined charging rate. While being transferred into the first storage means, the powder material in the first storage means is continuously or intermittently charged from above into the powder molding die at a predetermined charging speed to form the same powder molding die. The input powder material is pressed in the vertical direction and sintered to produce powder. A method for producing a powder metallurgy product, which comprises producing a powder metallurgy product.
【請求項7】所定量の第1粉末材料を略一定の速さで所
望の時期に撹拌手段を備えた容器に投入すると共に、所
定量の第2粉末材料を加速または減速しながら所望の時
期に上記容器内に投入して、上記第1粉末材料と第2粉
末材料とを上記撹拌手段で撹拌し、撹拌した粉末材料を
連続的または断続的に所望の時期・速さで成形用の型に
投入した後、加圧、焼結することを特徴とする粉末冶金
方法。
7. A predetermined amount of the first powder material is charged at a substantially constant speed into a container equipped with a stirring means at a desired time, and a predetermined amount of the second powder material is accelerated or decelerated at a desired time. Into the container, the first powder material and the second powder material are stirred by the stirring means, and the stirred powder material is continuously or intermittently molded at a desired timing and speed. A powder metallurgical method, which comprises pressurizing and sintering after charging into
【請求項8】第1粉末材料が所望量貯えられた第1貯蔵
手段と、 第2粉末材料が所望量貯えられた第2貯蔵手段と、 所望の時期となると上記第2貯蔵手段内の第2粉末材料
を略一定の速さで第1貯蔵手段に投入する第2粉末投入
手段と、 上記第1貯蔵手段内の粉末材料を撹拌するための撹拌手
段と、 上記第1貯蔵手段内の粉末材料を所望の時期になると粉
末成形型に略一定の速さで投入する第1粉末投入手段と
を備えたことを特徴とする粉末冶金の粉末成形装置。
8. A first storage means in which a desired amount of the first powder material is stored, a second storage means in which a desired amount of the second powder material is stored, and a second storage means in the second storage means at a desired time. 2 Second powder charging means for charging the powder material into the first storage means at a substantially constant speed, stirring means for stirring the powder material in the first storage means, and powder in the first storage means A powder molding machine for powder metallurgy, comprising: a first powder charging means for charging a material into a powder molding die at a substantially constant speed at a desired time.
【請求項9】第1粉末材料に対する第2粉末材料の配合
率が、0%から所定率まで連続的に変化している粉末冶
金製品。
9. A powder metallurgical product, wherein the compounding ratio of the second powder material to the first powder material continuously changes from 0% to a predetermined ratio.
【請求項10】アルミ合金粉末からなる母材と、セラミ
ック粉末またはカーボン粉末の少なくとも一方からなる
配合材とを混合した状態で焼結してなる内燃機関用ピス
トンであって、 上記配合材の配合率がピストン頂面に近づくにつれて増
大することを特徴とする粉末冶金製内燃機関用ピスト
ン。
10. A piston for an internal combustion engine, which is obtained by sintering a mixture of a base material made of aluminum alloy powder and a compounding material made of at least one of ceramic powder and carbon powder, the compounding of the compounding material. A piston for an internal combustion engine made of powder metallurgy, characterized in that the rate increases as it approaches the top surface of the piston.
JP17119495A 1995-07-06 1995-07-06 Powder metallurgical product and its production and powder metallurgy method as well as powder molding device for powder metallurgy Withdrawn JPH0925501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17119495A JPH0925501A (en) 1995-07-06 1995-07-06 Powder metallurgical product and its production and powder metallurgy method as well as powder molding device for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17119495A JPH0925501A (en) 1995-07-06 1995-07-06 Powder metallurgical product and its production and powder metallurgy method as well as powder molding device for powder metallurgy

Publications (1)

Publication Number Publication Date
JPH0925501A true JPH0925501A (en) 1997-01-28

Family

ID=15918761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17119495A Withdrawn JPH0925501A (en) 1995-07-06 1995-07-06 Powder metallurgical product and its production and powder metallurgy method as well as powder molding device for powder metallurgy

Country Status (1)

Country Link
JP (1) JPH0925501A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145851A (en) * 2021-04-09 2021-07-23 中国航发北京航空材料研究院 Preparation method of powder metallurgy titanium-aluminum base double-alloy blade disc

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145851A (en) * 2021-04-09 2021-07-23 中国航发北京航空材料研究院 Preparation method of powder metallurgy titanium-aluminum base double-alloy blade disc

Similar Documents

Publication Publication Date Title
EP0859677B1 (en) Apparatus for processing semisolid thixotropic metallic slurries
US5979535A (en) Methods for semi-melting injection molding
CN100515622C (en) Semi-solid injection moulding method and device for magnesium alloy
WO1997028941A1 (en) Solid freeform fabrication methods
US20030015308A1 (en) Core and pattern manufacture for investment casting
CN1128031C (en) Method and apparatus for semi-molten metal injection molding
EP0225523A2 (en) Molding die for use in casting
CN110465642B (en) Casting method of cast iron cylinder sleeve for automobile engine
CN1011670B (en) Die casting process and apparatus
US6955532B2 (en) Method and apparatus for the manufacture of high temperature materials by combustion synthesis and semi-solid forming
CN107159887A (en) A kind of forming method based on microwave adsorption heat-emitting material
CN114985700B (en) Heat treatment-free cast aluminum alloy for new energy automobile, preparation device and process
EP0968781B1 (en) Method and apparatus for semi-molten metal injection molding
CN1658988A (en) Process for injection molding semi-solid alloys
EP1595618B1 (en) Lost wax pattern moulding process with contact layer
WO1997040777A2 (en) Net shaped dies and molds and method for producing the same
JPH0925501A (en) Powder metallurgical product and its production and powder metallurgy method as well as powder molding device for powder metallurgy
EP1195448B1 (en) Production method for magnesium alloy member
JPH02224858A (en) Method and device for producing casting or encapsulation
US7040376B2 (en) Method for envelopment casting
JP2003514670A (en) Cast slab manufacturing method and apparatus
CN1383948A (en) Reducing cast process, reducing cast equipment and casting mold using the process
CN1208492C (en) Method integrated Preparation of extruding and impregnating composite material with parts forming and its device
JPS6393461A (en) Casting apparatus for fiber-reinforced composite metal
JPS6299403A (en) Molding device for metallic powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001