JPH0925356A - Production of noncross-linked preexpanded polyethylene resin particle - Google Patents

Production of noncross-linked preexpanded polyethylene resin particle

Info

Publication number
JPH0925356A
JPH0925356A JP19409895A JP19409895A JPH0925356A JP H0925356 A JPH0925356 A JP H0925356A JP 19409895 A JP19409895 A JP 19409895A JP 19409895 A JP19409895 A JP 19409895A JP H0925356 A JPH0925356 A JP H0925356A
Authority
JP
Japan
Prior art keywords
resin
particles
density
foaming
expanded particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19409895A
Other languages
Japanese (ja)
Other versions
JP3537226B2 (en
Inventor
Noboru Takeda
登 武田
Hiroshi Nakayama
寛 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19409895A priority Critical patent/JP3537226B2/en
Publication of JPH0925356A publication Critical patent/JPH0925356A/en
Application granted granted Critical
Publication of JP3537226B2 publication Critical patent/JP3537226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable the production of noncross-linked preexpanded polyethylene resin particles having a specified resin density or higher by impregnating particles of a resin mixture comprising four specific resins with a blowing agent and using a multistep temp. rise method whereby the expansion ratio of the particles is increased stepwise. SOLUTION: Noncross-linked preexpanded polyethylene resin particles are produced by a multistep temp. rise method wherein a resin mixture comprising 30-50wt.% high-pressure low-density PE resin (A) having a density of 0.930-0.980g/cm<3> and an m.p. of 108-118 deg.C, 5-30wt.% linear low-density PE resin (B) having a density of 0.916-0.928g/cm<3> and an m.p. of 118-123 deg.C, 20-45wt.% linear high-density PE resin (C) having a density of 0.955-0.970g/cm<3> and an m.p. of 128-135 deg.C, and 10-35wt.% linear high-density PE resin (D) having a density of 0.940-0.954g/cm<3> and an m.p. in the range of the average m.p. of ingredients B and C ±2 deg.C is impregnated with a blowing agent, expanded under heating to an expansion ratio of 1.5-3.5cc/g, impregnated with a blowing agent to allow it to come into cells of the expanded particles, and further expanded under heating to a higher expansion ratio.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリエチレン系樹脂の
無架橋予備発泡粒子の製造方法の改良技術に関する。こ
の無架橋予備発泡粒子は、主にこれを型内に充填して加
熱発泡し、且つ粒子同志を熱融着して、一体化すること
により、型窩通りの発泡成形体を得る為の原料として使
われるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved technique for producing non-crosslinked pre-expanded particles of polyethylene resin. This non-crosslinked pre-expanded particle is a raw material for obtaining a foam-molded article just like a mold cavity by mainly filling it in a mold to heat-expand, and heat-sealing the particles together. Is used as.

【0002】[0002]

【従来の技術】従来、ポリエチレン系樹脂を原料樹脂と
し、この樹脂粒子に発泡剤を含浸させ、発泡させること
からなる無架橋予備発泡粒子の製造方法は公知である
(例えば、特公昭60−10047号公報、特公昭60
−10048号公報、特開平6−316645号公報、
特開平6−157803号公報等参照)。
2. Description of the Related Art Conventionally, a method for producing non-crosslinked pre-expanded particles is known, in which a polyethylene-based resin is used as a raw material resin and the resin particles are impregnated with a foaming agent to expand the resin particles (for example, JP-B-60-10047). No. Gazette, Japanese Patent Publication Sho 60
-10048, JP-A-6-316645,
See JP-A-6-157803).

【0003】この種の技術は、ポリエチレン系樹脂を原
料樹脂とする場合は、樹脂を架橋変性しておかないと良
質の予備発泡粒子が得られず、従って実用的な発泡成形
体がつくれなかったのを、無架橋状態で発泡させて、良
質の予備発泡粒子や発泡成形体が得られるようにする狙
いのものである。その改良点の一つは原料樹脂の選択に
あり、具体的には、特開平6−316645号公報で
は、直鎖状低密度ポリエチレン樹脂と直鎖状高密度ポリ
エチレン樹脂との2成分の混合樹脂を採用することを、
更に特開平6−157803号公報では、高圧法低密度
ポリエチレン樹脂の20〜85重量%と直鎖状低密度ポ
リエチレン樹脂の0〜45重量%と直鎖状高密度ポリエ
チレン樹脂の0〜40重量%との2〜3成分の混合樹脂
を採用することが、夫々提案されている。
In this type of technique, when a polyethylene resin is used as a raw material resin, good quality pre-expanded particles cannot be obtained unless the resin is cross-linked and modified, so that a practical foamed molded product cannot be produced. Is to be expanded in a non-crosslinked state so that high-quality pre-expanded particles and expanded molded articles can be obtained. One of the improvements is in the selection of the raw material resin. Specifically, in JP-A-6-316645, a mixed resin of two components of a linear low density polyethylene resin and a linear high density polyethylene resin is disclosed. To adopt
Further, in JP-A-6-157803, 20-85% by weight of high-pressure low-density polyethylene resin, 0-45% by weight of linear low-density polyethylene resin, and 0-40% by weight of linear high-density polyethylene resin. It has been proposed to employ a mixed resin of 2 to 3 components of

【0004】また、ポリエチレン系樹脂を発泡させる時
の困難性は、発泡の為の加熱時に、粒子内に含浸させた
発泡剤(無機ガス)の逸散が激しくて予定の気泡構造・
発泡倍率の発泡粒子になり難いことや樹脂の溶融粘度の
温度依存性が大きい為に、溶融粘度を発泡に適した状態
に維持することが困難であることによる。因みに無架橋
の高圧法低密度ポリエチレン樹脂では、発泡に適した溶
融粘度を維持できる温度範囲はせいぜい1℃と言われて
おり、この調温が難かしいために発泡は困難とされてい
る。原料樹脂に、直鎖状低密度ポリエチレン樹脂やそれ
等との混合樹脂を採用する提案は、異なる樹脂(共重合
体)成分が示す違った融点を組合せ、全体として発泡時
の加熱温度の適性範囲の拡張を図り、そのことによって
無架橋の状態で発泡粒子の製造が出来る様にすることを
意図したものである。
Further, the difficulty in foaming the polyethylene resin is that the foaming agent (inorganic gas) impregnated in the particles is severely dissipated at the time of heating for foaming, so that the expected bubble structure /
This is because it is difficult to obtain expanded particles having an expansion ratio and it is difficult to maintain the melt viscosity in a state suitable for foaming because the melt viscosity of the resin has a large temperature dependency. Incidentally, it is said that the temperature range of the non-crosslinked high-pressure low-density polyethylene resin that can maintain the melt viscosity suitable for foaming is at most 1 ° C., and it is difficult to foam because the temperature control is difficult. The proposal to adopt a linear low-density polyethylene resin or a mixed resin with them as the raw material resin is to combine different melting points indicated by different resin (copolymer) components, and to set the appropriate heating temperature range during foaming as a whole. Is intended to be expanded so that expanded particles can be produced in a non-crosslinked state.

【0005】一方、予備発泡粒子の製造方法には次の2
方法が知られている。即ち、発泡剤を含浸した状態の発
泡性樹脂粒子を圧力容器内に水性懸濁状態に保持し、容
器内の発泡性樹脂粒子の温度を発泡適性温度に調温し
て、容器の一端からその発泡性樹脂粒子を懸濁用水性液
と一緒に常温の大気圧下に放出して、発泡性樹脂粒子を
一気に発泡させて目標とする高発泡倍率の発泡粒子を一
段階で得る、所謂「フラッシュ発泡法」と呼称される方
法と、圧力容器内で樹脂粒子に少量の発泡剤を含浸さ
せ、一旦これを冷却して取り出して発泡釜に移し、発泡
釜の温度を発泡適性温度に昇温発泡させて低発泡倍率の
発泡粒子とし、次いで得られた発泡粒子を基に、圧力容
器内で発泡粒子の気泡内に無機ガスを圧入して膨張性発
泡粒子となしこれを昇温加熱発泡させてより高い発泡倍
率の発泡粒子にすると言う工程を数回繰り返して、段階
的に高発泡倍率の発泡粒子にすると言う所謂「多段昇温
発泡法」と呼称される方法がある。この2種の発泡方法
はいずれも、発泡させることが困難なポリエチレン系樹
脂の改良発泡方法として開発されたものである。
On the other hand, there are the following two methods for producing the pre-expanded particles.
Methods are known. That is, the expandable resin particles in a state of being impregnated with a foaming agent are held in an aqueous suspension state in a pressure container, the temperature of the expandable resin particles in the container is adjusted to an appropriate foaming temperature, and the temperature is adjusted from one end of the container. The so-called "flash" in which the expandable resin particles are discharged together with the aqueous suspension liquid under normal temperature and atmospheric pressure to expand the expandable resin particles at a stretch to obtain the expanded particles having a target high expansion ratio in one step. A method called "foaming method" and a method in which resin particles are impregnated with a small amount of a foaming agent in a pressure vessel, once cooled, taken out and transferred to a foaming pot, and the temperature of the foaming pot is raised to an appropriate temperature for foaming. To form expanded particles with a low expansion ratio, and then based on the obtained expanded particles, an inorganic gas is pressed into the bubbles of the expanded particles in a pressure vessel to form expandable expanded particles, which are heated and foamed by heating. Repeat the process of making expanded particles with a higher expansion ratio several times Te, there is a method called a so-called "multi-stage heating foaming method" referred to in the foamed particles of stepwise high expansion ratio. Both of these two foaming methods were developed as improved foaming methods for polyethylene-based resins that are difficult to foam.

【0006】しかし、発泡方法上で上記の発泡剤の逸散
現象の抑制や、加熱発泡温度の適性範囲の高度な調節と
言う観点から「フラッシュ発泡法」と「多段昇温発泡
法」とを比較するときは、「フラッシュ発泡法」の方が
有利な方法である。その理由は、先ず「多段昇温発泡
法」は、発泡(膨張)に供する発泡性粒子を発泡適性温
度に迄高める昇温が、開放状態の発泡釜(容器)内で行
なわれる。そのためこの昇温までの間に発泡剤(無機ガ
ス)の逸散を抑制できないし、更に発泡(膨張)が発泡
適性温度到達前から開始し始めると言う現象が生じてし
まう。従って、発泡時の加熱発泡温度(発泡適正粘度を
示す温度)の適性範囲の拡張が充分に図られている樹脂
(例えば架橋変性された樹脂)への適用はできても、発
泡温度の適性範囲の狭い高密度直鎖状ポリエチレン樹脂
では、発泡(膨張)させる過程で生じる気泡構造の乱れ
が大きく、無架橋状態で発泡粒子にすることは極めて困
難となる。ちなみに、直鎖状低密度ポリエチレン樹脂を
採用する場合は、共重合成分の作用で発泡温度の適性範
囲が幾分広がっているので、「多段昇温発泡法」で発泡
粒子にすることが可能な場合があるが、この場合でもこ
れ等の発泡粒子は、発泡の過程で気泡構造の乱れが生
じ、これ等が原因となってこの予備発泡粒子から良質の
成形体を得ることは出来ない。
However, the "flash foaming method" and the "multi-stage temperature rising foaming method" are used in terms of suppressing the above-mentioned escape phenomenon of the foaming agent in the foaming method and highly adjusting the appropriate range of the heating foaming temperature. For comparison, the "flash foaming method" is the more advantageous method. The reason is that in the "multi-stage temperature rising foaming method", the temperature of the expandable particles used for foaming (expansion) is raised to an appropriate temperature for foaming, and the temperature is raised in an open foaming pot (container). Therefore, the escape of the foaming agent (inorganic gas) cannot be suppressed until the temperature rises, and further, the phenomenon that foaming (expansion) starts before reaching the foaming suitable temperature occurs. Therefore, even though it can be applied to a resin (for example, a crosslinked modified resin) in which the suitable range of the heating foaming temperature (the temperature showing the proper foaming viscosity) at the time of foaming is sufficiently expanded, the suitable range of the foaming temperature is In the case of a narrow high-density linear polyethylene resin having a narrow width, the cell structure is greatly disturbed in the process of foaming (expanding), and it is extremely difficult to form expanded particles in a non-crosslinked state. By the way, when a linear low-density polyethylene resin is adopted, the suitable range of the foaming temperature is somewhat widened by the action of the copolymerization component, so it is possible to form expanded particles by the "multi-stage temperature-rise foaming method". However, even in this case, the foamed particles of these types have a disordered cell structure in the process of foaming, which makes it impossible to obtain a molded product of good quality from the pre-foamed particles.

【0007】これに対し「フラッシュ発泡法」は、密閉
容器内の圧力や温度の設定や調節で容器内の発泡性樹脂
粒子を、放出発泡させる直前まで発泡適性状態に整えて
維持することが可能であるので、その結果、発泡適性温
度( 発泡適性粘度)範囲の比較的狭い樹脂でも発泡を容
易にし、1段階の発泡操作で発泡倍率60cc/gもの
高倍率の予備発泡粒子を得ることができ、しかも良質の
成形体を得ることも容易である。この処の実状を、前述
の先行文献である特公昭60−10047号公報(及び
特公昭60−10048号公報)を用いてさらに明らか
にする。
On the other hand, in the "flash foaming method", the expandable resin particles in the container can be adjusted and maintained in a foaming-appropriate state immediately before the discharge foaming by setting and adjusting the pressure and temperature in the closed container. As a result, even a resin having a relatively narrow foaming suitable temperature (foaming suitable viscosity) range can be easily foamed, and pre-expanded particles having a high expansion ratio of 60 cc / g can be obtained by one-step expansion operation. Moreover, it is easy to obtain a high-quality molded product. The actual state of this process will be further clarified by using the above-mentioned prior document, Japanese Patent Publication No. 60-10047 (and Japanese Patent Publication No. 600048).

【0008】後記する表5は、特公昭60−10047
号公報、及び特公昭60−10048号公報の追試及び
参考比較試験の結果を示すものであり、直鎖状低密度ポ
リエチレン及び直鎖状高密度ポリエチレンを原料樹脂に
した場合の発泡時の発泡方法別の適性を示したものであ
る。なお、この試験は、両公告公報には「多段昇温発泡
法」の記載はなく、更に成形方法の条件や成形体の評価
方法等は詳しくは記載されていないのでこれ等の部分に
ついては技術常識的な方法・条件を補足して試験したも
のである。
Table 5 below shows Japanese Patent Publication No. 60-10047.
The results of additional tests and reference comparative tests of Japanese Patent Publication No. 60-15048 and Japanese Examined Patent Publication No. 60-10048, showing a foaming method at the time of foaming when linear low-density polyethylene and linear high-density polyethylene are used as raw materials It shows another suitability. In this test, both publications do not describe "multi-stage temperature rising foaming method", and the conditions of the molding method and the evaluation method of the molded body are not described in detail. It was tested by supplementing common-sense methods and conditions.

【0009】そこで、表5の結果を「フラッシュ発泡
法」と「多段昇温発泡法」との区分でみると、「フラッ
シュ発泡法」の方の予備発泡粒子(及びその成形体)
は、一応の諸特性を有し、そして、この予備発泡粒子か
らは良質の(実用特性を満たす)成形体が得られてお
り、この発明の効果が得られている。しかし樹脂密度
0.940g/cm3 以上の領域のものでは成形体にす
る際の「成形適性温度範囲」が極めて狭いので、評価に
供した程度の金型で実験的な成形体は作成出来るとして
も、成形時の加熱は一般に、型内に充填した発泡粒子間
に一定温度(圧力)の水蒸気を通過させて行なわれるか
ら、成形体部位に厚み差が大きい時はその厚み差で水蒸
気の通過の仕方に差異が生じ、実質的な加熱温度が変わ
ってしまうので成形適性温度範囲の狭い予備発泡粒子
は、部位の厚みの厚い方に合わせた水蒸気温度(圧力)
では、部位の厚みの薄い側は過熱状態になってしまう
し、部位の厚みの薄い側に合わせた水蒸気温度(圧力)
では、部位の厚みの厚い方が加熱不足になって、良質の
成形体には成らない。従って、熱条件の変動幅が大きく
なってしまう生産規模の成形には不適切なものである
し、より複雑な形状での成形には不可能な予備発泡粒子
となる。
Therefore, when the results of Table 5 are divided into the "flash foaming method" and the "multi-stage temperature rising foaming method", the pre-expanded particles (and their molded products) of the "flash foaming method"
Has various properties, and a high-quality molded product (satisfying practical properties) is obtained from the pre-expanded particles, and the effect of the present invention is obtained. However, if the resin density is in the range of 0.940 g / cm 3 or more, the “molding suitability temperature range” when forming a molded product is extremely narrow, so it is said that an experimental molded product can be created with the mold used for evaluation. In addition, since heating during molding is generally performed by passing steam at a constant temperature (pressure) between the expanded particles filled in the mold, when there is a large difference in thickness between the molded parts, the difference in thickness causes the steam to pass. The pre-expanded particles with a narrow molding suitability temperature range have a steam temperature (pressure) that matches the thicker part of the part.
Then, the thin side of the part becomes overheated, and the steam temperature (pressure) adjusted to the thin side of the part
In that case, the thicker the part, the less heating is achieved, and a good quality molded product cannot be obtained. Therefore, the pre-expanded particles are unsuitable for molding on a production scale in which the fluctuation range of thermal conditions becomes large, and are not possible for molding in a more complicated shape.

【0010】これに対して「多段昇温発泡法」の方は一
層深刻で、直鎖状低密度ポリエチレン及び直鎖状高密度
ポリエチレンの全ての領域で、少なくとも良質な成形体
を得ることが出来ない結果を示している。殊に樹脂密度
0.940g/cm3 以上の領域では、通常の「多段昇
温発泡法」で目標倍率の予備発泡粒子を得ることは困で
あるとする結果になっている。
On the other hand, the "multi-stage temperature rising foaming method" is more serious, and at least a good molded product can be obtained in all regions of linear low-density polyethylene and linear high-density polyethylene. Shows no results. In particular, in the region where the resin density is 0.940 g / cm 3 or more, it is difficult to obtain the pre-expanded particles having the target ratio by the usual “multi-stage temperature rising foaming method”.

【0011】前記発明の構成要件を満たす予備発泡粒子
であれば、諸特性に優れ、良質の(実用特性を満たす)
成形体が得られることになり、全てこの発明の効果を達
成するものである筈となる。しかし、表5の試験結果に
よると、必ずしもこの記載の構成要件を満たす予備発泡
粒子であっても、全てこの発明の効果を満足するもので
はない。さらには、直鎖状高密度ポリエチレンを原料樹
脂にした場合には一層明らかである。上記特許公報の記
載内容は、少なくとも「多段昇温発泡法」の発泡粒子に
ついては、全く検討されていない実験結果に基づく出願
であり、ポリエチレン樹脂予備発泡粒子について、表5
の試験結果から、前述の本発明者等の実状の記載が一層
明らかとなろう。
If the pre-expanded particles satisfy the constituent requirements of the invention, they are excellent in various characteristics and of good quality (satisfying practical characteristics).
A molded product will be obtained, and all of the effects of the present invention should be achieved. However, according to the test results of Table 5, even the pre-expanded particles that satisfy the constituent requirements of this description do not always satisfy the effects of the present invention. Furthermore, it is more apparent when linear high-density polyethylene is used as the raw material resin. The description in the above patent publication is an application based on an experimental result that has not been studied at all for at least the foamed particles of the "multi-stage temperature rising foaming method".
From the test results of 1., the description of the actual conditions of the present inventors will be more apparent.

【0012】他方、ポリエチレン樹脂(予備)発泡粒子
で出来た発泡成形体は、例えば、ポリスチレン系樹脂や
ポリプロピレン系樹脂の発泡成形体に比べて柔軟性に富
んだ弾性的緩衝性に優れる処が認められて重用されてき
た。特に、重量が20kg未満の中〜軽量の精密機器
(通信機器、計測機器、OA機器等)の緩衝包装材とし
て、発泡倍率25cc/g以上の高発泡成形体が採用さ
れている。緩衝包装材の素材がポリエチレン樹脂である
利点は、その高発泡成形体が示す柔軟性に富んだ弾性的
緩衝性が精密機器表面の傷つきを防ぎ、精密機器を緩衝
保護できることにある。
On the other hand, a foam molded article made of polyethylene resin (preliminary) foamed particles is found to be more flexible and elastically cushioned than a foam molded article of polystyrene resin or polypropylene resin. It has been used heavily. In particular, a high-foam molded product having a foaming ratio of 25 cc / g or more is used as a cushioning packaging material for medium to lightweight precision equipment (communication equipment, measuring equipment, office automation equipment, etc.) having a weight of less than 20 kg. The advantage that the material of the cushioning packaging material is polyethylene resin is that the highly elastic and elastic cushioning property of the highly foamed molded product prevents scratches on the surface of the precision instrument and cushions and protects the precision instrument.

【0013】[0013]

【発明が解決しようとする課題】しかるに、製品の価格
破壊が急速に進行してきた現状の市場要求は、特性はも
ちろんのことさらに製品価格に繋がる包装材(緩衝材)
の価格(トータルコスト)の低減化を強く求める風潮を
生んでいる。この市場要求は、大きくは(1)「発泡体
輸送費の軽減化」と(2)「発泡体(緩衝材)の樹脂使
用量の節減化」との組合せにある。
However, the current market demand in which the price destruction of products is rapidly progressing is that not only the characteristics but also the packaging material (cushioning material) which leads to the product price.
It is creating a trend to strongly reduce the price (total cost) of. This market demand is largely in combination with (1) "reduction of foam transportation cost" and (2) "reduction of resin usage of foam (buffer material)".

【0014】先ず市場要求(1)に係る発泡体の輸送費
(移送費・貯蔵費)は、発泡体の重量によるものではな
く、積載可能な嵩体積(才数)に基づくものである。従
って、高発泡のものほど、嵩体積が大きく、不経済さが
ある。この嵩高な成形体の輸送費の低減化には、成形工
程の内製化を勧める、と言うものである。即ち、成形体
(緩衝包装材)を消費する精密機器等の製品メーカで
は、包装工程の近くに小規模な成形工程を配置して成形
体を製造し、成形体の輸送費を削減しようとするもので
ある。
First, the transportation cost (transportation cost / storage cost) of the foam according to the market requirement (1) is not based on the weight of the foam but is based on the loadable bulk volume (age). Therefore, the higher the volume of foam, the larger the bulk volume and the uneconomical. In order to reduce the transportation cost of this bulky molded product, it is recommended to make the molding process in-house. That is, a product maker such as a precision instrument that consumes a molded body (buffer packaging material) tries to reduce the transportation cost of the molded body by arranging a small-sized molding process near the packaging process to manufacture the molded body. It is a thing.

【0015】次に市場要求(2)は、緩衝材の形状構造
に係り、緩衝材の荷重受け面積の縮小化や、緩衝体部位
の肉厚みの縮小化、及び高発泡化による樹脂使用量の節
減化の要求である。しかしながら、上述した緩衝包装材
のトータルコストの低減化に係る市場要求への対応は、
少なくともポリエチレン系樹脂を原料樹脂とする発泡粒
子の供給メーカにとっては深刻である。先ず上記市場要
求(1)を満たす上での予備発泡粒子の製造−供給側の
問題点は、成形体の製造工場が各地に小規模化して分散
するので、高倍率の予備発泡粒子を分散した各地の成形
工場に輸送することになり、発泡粒子の輸送費の高騰に
繋がるし、さりとて各工場に高価な発泡粒子の製造設備
を設置することが出来ないことにある。
Next, the market demand (2) relates to the shape and structure of the cushioning material, which reduces the load receiving area of the cushioning material, the thickness of the cushioning body portion, and the amount of resin used due to high foaming. It is a demand for savings. However, to meet the market demand for reducing the total cost of cushioning packaging materials described above,
At least, it is serious for manufacturers of expanded particles using polyethylene resin as a raw material resin. First, in order to satisfy the above market demand (1), the problem on the production-supply side of the pre-expanded particles is that the molding factories are downsized and dispersed in various places, so that the high-expansion pre-expanded particles are dispersed. It will be transported to molding factories in various places, which will lead to a rise in the transportation cost of expanded particles, and it will be impossible to install expensive expanded particle manufacturing equipment at each factory.

【0016】この予備発泡粒子の輸送費の低減化には
「多段昇温発泡法」の利点の活用が有効となる。この
「多段昇温発泡法」の利点というのは、樹脂粒子に少量
の発泡剤を含浸させて発泡性樹脂粒子とし、これを発泡
釜に移して低倍率の発泡粒子にする基本的段階の設備は
別にすると、その後この低発泡倍率の発泡粒子を基にし
て、圧力容器内で発泡粒子の気泡内に発泡剤を圧入して
膨張性発泡粒子となしこれを加熱発泡させてより発泡倍
率の高い発泡粒子にする工程は、その設備費は安価であ
り運転技術も容易である。従って、各地に分散している
成形加工場にこの「発泡剤を圧入し加熱発泡させる工
程」を設置し、輸送は極めて低発泡の発泡粒子の状態で
行ない、当面の成形に必要な量の発泡粒子に「発泡剤を
圧入−加熱発泡させる操作」を現地で行なえばよく、発
泡粒子の輸送費(及び成形体の輸送費)が大幅に削減で
きる。しかし、無架橋のポリエチレン系樹脂を原料樹脂
とする場合は、肝心の「多段昇温発泡法」が前述したよ
うに採用出来ない問題に遭遇する。
In order to reduce the transportation cost of the pre-expanded particles, it is effective to utilize the advantage of the "multi-stage temperature rising foaming method". The advantage of this "multi-stage temperature-rising foaming method" is that it is a basic stage facility where resin particles are impregnated with a small amount of a foaming agent to form expandable resin particles, which are then transferred to a foaming pot to form expanded particles of low magnification. Apart from this, after that, based on the expanded particles having a low expansion ratio, a foaming agent is pressed into the bubbles of the expanded particles in a pressure vessel to form expandable expanded particles, which are heated and foamed to have a higher expansion ratio. The equipment cost of the process of forming expanded particles is low and the operation technique is easy. Therefore, we have installed this "step of pressurizing and blowing foaming agent" at molding factories dispersed in various places, and we carry out transportation in the state of foamed particles of extremely low foaming, and the amount of foaming necessary for the immediate molding is performed. The operation of "pressing in a foaming agent-heating and foaming" to the particles may be carried out locally, and the transportation cost of the expanded particles (and the transportation cost of the molded product) can be significantly reduced. However, when a non-crosslinked polyethylene-based resin is used as a raw material resin, there is a problem that the essential "multi-stage temperature rising foaming method" cannot be adopted as described above.

【0017】しかも市場要求(2)を満たす為には、下
記理由から「フラッシュ発泡法」でさえその達成が困難
である0.940g/cm3 以上のポリエチレン系樹脂
を原料樹脂として、「成形適性温度範囲の極めて広い」
良質の予備発泡粒子を完成する必要性がある。その理由
は、市場要求(2)の緩衝材の荷重受け面積の縮小化や
緩衝材部位の肉厚みの縮小化、或いは高発泡化の達成に
は、先ず高密度側(0.940g/cm3 以上)のポリ
エチレン系樹脂を原料樹脂にした発泡粒子を用いなけれ
ば、その基本特性となる例えば剛性、圧縮強度が不足
し、要求される緩衝特性を満たすことができないためで
ある。更に、緩衝材の荷重受け面積の縮小化や緩衝材部
位の肉厚みの縮小化の要求は、緩衝材(成形金型の型
窩)の形状を、厚みの差の大きい複雑な形にすることを
意味するので、この厚みの差の大きい部位を同等な融着
状態にして設計値の特性を発揮させるには、厚みの差で
生じる加熱温度差に対処できる「成形適性温度範囲の極
めて広い」予備発泡粒子でなければ、その成形、殊に工
業的生産での成形は到底出来ないからである。
Further, in order to satisfy the market demand (2), it is difficult to achieve even the "flash foaming method" for the following reasons, using a polyethylene resin of 0.940 g / cm 3 or more as a raw material resin, and Extremely wide temperature range "
There is a need to complete good quality pre-expanded particles. The reason is that in order to reduce the load receiving area of the cushioning material, the wall thickness of the cushioning material portion, or the high foaming of the market demand (2), the high density side (0.940 g / cm 3 This is because unless the expanded particles obtained by using the polyethylene resin as a raw material resin are used, the basic properties such as rigidity and compressive strength are insufficient and the required cushioning properties cannot be satisfied. Furthermore, there is a demand for reducing the load receiving area of the cushioning material and reducing the wall thickness of the cushioning material part, so that the shape of the cushioning material (mold cavity of the molding die) should be a complicated shape with a large difference in thickness. Therefore, in order to bring out the characteristics of the design value by making the parts with a large difference in thickness equivalent fusion state, it is possible to cope with the heating temperature difference caused by the difference in thickness "extremely wide temperature range suitable for molding". This is because unless the particles are pre-expanded particles, their molding, especially in industrial production, cannot be achieved at all.

【0018】しかるに現状の「多段昇温発泡法」では、
高密度側(0.940g/cm3 以上)の無架橋ポリエ
チレン系樹脂の領域では、発泡粒子を得ることすら出来
ない領域であるので、その発泡粒子を基本物性はもちろ
んのこと成形適性温度範囲の広い状態のものとして完成
させることは、極めて難問題と言う他はなかった。即
ち、本発明の目的は、樹脂密度が0.940g/cm3
以上の高密度での良好な物性のポリエチレン系樹脂から
なる予備発泡粒子が容易に得られる「多段昇温発泡法」
を提供することである。
However, in the current "multi-stage temperature rising foaming method",
In the high-density side (0.940 g / cm 3 or more) non-crosslinked polyethylene-based resin region, even expanded particles cannot be obtained. Therefore, the expanded particles have not only basic physical properties but also a temperature range suitable for molding. There was nothing but an extremely difficult problem to complete as a wide condition. That is, the object of the present invention is to obtain a resin density of 0.940 g / cm 3
"Multi-stage temperature rising foaming method" that allows easy pre-expanded particles made of polyethylene resin with high density and good physical properties
It is to provide.

【0019】[0019]

【課題を解決するための手段】本発明者らは、上述した
「多段昇温発泡法」につき、鋭意研究の結果、従来その
実現は難問題と考えられていた密度が0.940g/c
3 以上のポリエチレン樹脂の領域で、「基本物性はも
ちろんのこと広い成形適性温度範囲を持つ予備発泡粒子
(良質の発泡粒子)」を得ることが出来る「多段昇温発
泡法」を見出し本発明を完成させたものである。多段昇
温発泡法を用いるため発泡粒子の輸送・貯蔵費が大幅に
削減できると言う利点を活用出来るし、得られる予備発
泡粒子は、その基本特性が高まっており、更に広い成形
適性温度範囲を有しているので、緩衝特性を損なわずに
例えば荷重受け面積の縮小化、発泡体の肉厚みの縮小
化、或いは高発泡化等の市場要求に応え得るものとして
提供できる。
DISCLOSURE OF THE INVENTION The inventors of the present invention have earnestly studied the above-mentioned "multi-stage temperature rising foaming method", and as a result, the density of 0.940 g / c, which was conventionally considered to be a difficult problem, was realized.
The present invention has found a "multi-stage temperature-increasing foaming method" capable of obtaining "pre-expanded particles (good quality expanded particles) having not only basic physical properties but also a wide molding suitability temperature range" in the polyethylene resin region of m 3 or more. Has been completed. Since the multi-stage temperature-rising foaming method is used, it is possible to take advantage of the fact that the transportation and storage costs of expanded particles can be greatly reduced, and the basic properties of the obtained pre-expanded particles are enhanced, and a wider temperature range suitable for molding is achieved. Therefore, it can be provided as a product that can meet the market demand such as reduction of load receiving area, reduction of foam wall thickness, or high foaming without impairing cushioning characteristics.

【0020】本発明の製造方法としての構成は、ポリエ
チレン系樹脂を原料樹脂とし、この樹脂粒子に発泡剤を
含浸させ、発泡させることからなるポリエチレン系樹脂
の無架橋予備発泡粒子の製造方法において、(1)上記
原料樹脂としては、密度0.920〜0.930g/
cm3 、融点(mLD)108〜118℃の高圧法低密
度ポリエチレン樹脂30〜50重量%と、密度0.9
16〜0.928g/cm3 、融点(mLL)118〜
123℃の直鎖状低密度ポリエチレン樹脂5〜30重量
%と、密度0.955〜0.970g/cm3 、融点
(mHD2)128〜135℃の直鎖状高密度ポリエチ
レン樹脂20〜45重量%と、密度0.940〜0.
954g/cm3 、融点(mHD1)が[(mHD2+
mLL)÷2]±2℃の範囲にある直鎖状高密度ポリエ
チレン樹脂10〜35重量%とからなり、かつ該四成分
からなる混合樹脂の密度が0.940〜0.952g/
cm3 である混合樹脂を用いること、
The constitution of the production method of the present invention is a method for producing non-crosslinked pre-expanded particles of polyethylene resin, which comprises using polyethylene resin as a raw material resin, impregnating the resin particles with a foaming agent, and foaming the resin. (1) As the raw material resin, the density is 0.920 to 0.930 g /
cm 3 , melting point (mLD) 108 to 118 ° C., high pressure low density polyethylene resin 30 to 50% by weight, and density 0.9.
16 to 0.928 g / cm 3 , melting point (mLL) 118 to
5 to 30% by weight of linear low-density polyethylene resin having a temperature of 123 ° C. and 20 to 45% by weight of linear high-density polyethylene resin having a density of 0.955 to 0.970 g / cm 3 and a melting point (mHD2) of 128 to 135 ° C. And a density of 0.940-0.
954 g / cm 3 , melting point (mHD1) is [(mHD2 +
mLL) ÷ 2] 10 to 35% by weight of the linear high-density polyethylene resin in the range of ± 2 ° C, and the density of the mixed resin consisting of the four components is 0.940 to 0.952 g /
using a mixed resin that is cm 3 .

【0021】(2)樹脂粒子に発泡剤を含浸させ、発泡
させるにあたっては、樹脂粒子に発泡剤を含浸せしめ、
これを加熱して、発泡倍率1.5〜3.5cc/gの低
発泡粒子となし、次に該低発泡粒子の気泡内に発泡剤を
含浸させ、これを加熱してより高い発泡倍率の発泡粒子
にする多段昇温発泡方法を用いること、を特徴とするポ
リエチレン系樹脂の無架橋予備発泡粒子の製造方法であ
る。好ましくは、より高い発泡倍率の発泡粒子にする工
程を2〜4回繰り返えして、発泡倍率6〜60cc/g
の発泡粒子となすことを特徴とするポリエチレン系樹脂
の無架橋予備発泡粒子の製造方法でもある。
(2) When the resin particles are impregnated with a foaming agent, the resin particles are impregnated with the foaming agent.
This is heated to form low-foamed particles having an expansion ratio of 1.5 to 3.5 cc / g, and then the foaming agent is impregnated into the cells of the low-foamed particles, and this is heated to obtain a higher expansion ratio. A method for producing non-crosslinked pre-expanded particles of polyethylene resin, which is characterized in that a multistage temperature rising foaming method for forming expanded particles is used. Preferably, the step of forming expanded particles having a higher expansion ratio is repeated 2 to 4 times to obtain an expansion ratio of 6 to 60 cc / g.
It is also a method for producing non-crosslinked pre-expanded particles of a polyethylene-based resin, characterized in that

【0022】以下、本発明の内容を説明する。本発明が
従来技術と相違する処は、 1)樹脂密度が0.940〜0.952g/cm3 の予
備発泡粒子を形成させるにあたり、発泡粒子にする原料
樹脂に上記特定の4成分からなる混合樹脂を用いるこ
と、 2)樹脂粒子を発泡倍率6〜60cc/gの発泡粒子に
する迄の過程には、樹脂粒子を一旦は発泡倍率1.5〜
3.5cc/gの発泡粒子にする発泡工程を経て、得ら
れた発泡粒子の気泡内に発泡剤を圧入し、これを加熱発
泡させてより高い発泡倍率の発泡粒子にする工程を用い
る「多段昇温発泡方法」を採用すること、の上記1)
2)の組合せにある。
The contents of the present invention will be described below. The present invention is different from the prior art in the following: 1) In forming pre-expanded particles having a resin density of 0.940 to 0.952 g / cm 3 , a raw resin to be expanded particles is mixed with the above-mentioned specific four components. Using a resin, 2) once the resin particles have an expansion ratio of 1.5-in the process until the resin particles have an expansion ratio of 6-60 cc / g.
After the foaming step of forming expanded particles of 3.5 cc / g, a foaming agent is press-fit into the bubbles of the obtained expanded particles, and this is heated and expanded to form expanded particles having a higher expansion ratio. Adopting the "temperature rise foaming method", 1) above
It is in the combination of 2).

【0023】先に、上記1)の要件の技術的意義を述べ
る。先ず予備発泡粒子を構成する樹脂密度が0.940
〜0.952g/cm3 である意義につき述べる。密度
を0.940g/cm3 以上とする意味は、目的とする
ポリエチレン系樹脂予備発泡粒子(及び成形体)の基本
特性を定めるものである。又、密度が0.940g/c
3 以上の領域のポリエチレン系樹脂は、従来は、無架
橋の状態で「多段昇温発泡法」には適用し難い領域の樹
脂でもある。そして、0.952g/cm3 以下である
とする意味は、本発明で示す樹脂の組成成分で得ること
が出来る混合樹脂の上限の密度である。(なお、ここで
述べたポリエチレン系樹脂の密度を高めることの実質的
効果については、図7を用いて後述する。)
First, the technical significance of the above requirement 1) will be described. First, the resin density of the pre-expanded particles is 0.940.
The significance of being 0.952 g / cm 3 will be described. The meaning that the density is 0.940 g / cm 3 or more defines the basic characteristics of the intended polyethylene resin pre-expanded particles (and molded body). Also, the density is 0.940 g / c
Conventionally, the polyethylene-based resin in the region of m 3 or more is also a resin in the region where it is difficult to apply to the “multi-stage temperature rising foaming method” in a non-crosslinked state. The meaning of 0.952 g / cm 3 or less is the upper limit density of the mixed resin which can be obtained with the composition component of the resin shown in the present invention. (Note that the substantial effect of increasing the density of the polyethylene resin described here will be described later with reference to FIG. 7.)

【0024】次に、ポリエチレン系樹脂として本発明の
特定4成分からなる混合樹脂を用いる技術的意義につき
述べる。図1〜図6は、一旦発泡させる温度に加熱し冷
却した後の各原料樹脂を示差走査熱量計(DSC)で測
った夫々の融解吸熱曲線である。この融解吸熱曲線は、
測定装置にパーキンエルマー(Perkin−Elme
r)社製のDSC−7型を用い、約10mgの試料を1
0℃/minの速度で30℃から200℃まで昇温させ
た時の融解曲線である。融解吸熱曲線のベースライン
は、80℃から融解終了点までとする。そしてこのベー
スラインを基準として、樹脂全体の融解熱量(融解吸熱
曲線とベースラインとに囲まれた面積)の50%融解熱
量に当る温度をT5Oとし、70%融解熱量に当る温度
をT7Oとして示してある。
Next, the technical significance of using the mixed resin of the specific four components of the present invention as the polyethylene resin will be described. 1 to 6 are respective melting endothermic curves measured by a differential scanning calorimeter (DSC) of each raw material resin after being heated to a temperature for foaming and then cooled. This melting endotherm curve is
Perkin-Elme (Perkin-Elme)
r) A sample of about 10 mg was used for 1
3 is a melting curve when the temperature is raised from 30 ° C. to 200 ° C. at a rate of 0 ° C./min. The baseline of the melting endotherm is from 80 ° C to the end of melting. Then, based on this baseline, the temperature corresponding to 50% of the heat of fusion of the entire resin (area surrounded by the melting endothermic curve and the baseline) is T5O, and the temperature corresponding to 70% of heat of fusion is T7O. There is.

【0025】図1は本発明(実験No.1)の特定4成
分からなり密度0.944g/cm3 の混合樹脂、図2
は比較品(実験No.カ)で密度0.924g/cm3
の直鎖状低密度ポリエチレン樹脂、図3は比較品(実験
No.オ)で密度0.935g/cm3 の直鎖状低密度
ポリエチレン樹脂、図4は比較品(実験No.ヌ)で密
度0.945g/cm3 の直鎖状高密度ポリエチレン樹
脂、図5は比較品(実験No.32)で高圧法低密度ポ
リエチレン樹脂、直鎖状低密度ポリエチレン樹脂、直鎖
状高密度ポリエチレン樹脂の3成分からなり密度0.9
35g/cm3の混合樹脂、図6は比較品(実験No.
31)で高圧法低密度ポリエチレン樹脂、直鎖状低密度
ポリエチレン樹脂、直鎖状高密度ポリエチレン樹脂の3
成分からなり密度0.944g/cm3 混合樹脂の場合
を夫々に示す。
FIG. 1 is a mixed resin consisting of four specific components of the present invention (Experiment No. 1) and having a density of 0.944 g / cm 3 , FIG.
Is a comparative product (Experiment No.) and has a density of 0.924 g / cm 3.
Linear low density polyethylene resin, Fig. 3 is a comparative product (experimental No. E) and has a density of 0.935 g / cm 3 linear low density polyethylene resin, and Fig. 4 is a comparative product (experimental No. N). 0.945 g / cm 3 linear high-density polyethylene resin, FIG. 5 shows a comparative product (Experiment No. 32) of high-pressure low-density polyethylene resin, linear low-density polyethylene resin, and linear high-density polyethylene resin. Consist of 3 components and density 0.9
35 g / cm 3 mixed resin, FIG. 6 shows a comparative product (Experiment No.
31) in high pressure method low density polyethylene resin, linear low density polyethylene resin, linear high density polyethylene resin 3
The case of mixed resin composed of the components and having a density of 0.944 g / cm 3 is shown respectively.

【0026】ここで各図の試料対象を「発泡温度に加熱
後の樹脂」とし、且つ「T50とT70との間の(全体
の50〜70%の融解熱量に当る)温度範囲」を指標と
する理由は、発泡粒子を得る発泡時の樹脂(結晶)状態
は、元の樹脂(結晶)の状態から発泡の為の加熱によっ
て既に変化しているし、発泡粒子を得る発泡時の加熱は
樹脂の50〜70%が融解している状態下で行なうもの
であることは、経験的に分かっていることだからであ
る。つまり樹脂の50%未満の融解では均質な発泡は生
じ得ないし、70%を超える融解では粒子間の融着が極
度に進行したり、激しく流動して気泡構造の整った粒子
の形状維持ができないことになる。
Here, the sample object in each figure is the "resin after being heated to the foaming temperature", and the "temperature range between T50 and T70 (corresponding to the heat of fusion of 50 to 70% of the total)" is used as an index. The reason is that the resin (crystal) state at the time of foaming to obtain the expanded particles has already changed from the original state of the resin (crystal) due to the heating for foaming, and the heating at the time of foaming to obtain the expanded particles is the resin. This is because it is empirically known that 50 to 70% of the above is performed in a molten state. That is, if the resin is melted at less than 50%, homogeneous foaming cannot occur, and if melted at more than 70%, fusion between particles is extremely advanced, or the resin is violently flowed and the shape of particles having a regular cell structure cannot be maintained. It will be.

【0027】又、本発明者等の知見によると、「多段昇
温発泡法」で最も重要な条件は、最初の発泡で均質な気
泡構造の良質の発泡粒子を得ることであり、その良質の
発泡粒子を得るに充分な樹脂の「T50とT70との間
の温度範囲=(発泡適性温度範囲)」は、少なくとも6
℃が必要であると観測確認されている。
According to the knowledge of the present inventors, the most important condition in the "multi-stage temperature-rising foaming method" is to obtain good quality foamed particles having a homogeneous cell structure in the first foaming. The “temperature range between T50 and T70 = (foaming suitability temperature range)” of the resin sufficient to obtain expanded particles is at least 6
It has been observed and confirmed that ℃ is required.

【0028】上記の知見の下に、図1〜図6の各「T5
0とT70との間の温度範囲」をみると、「少なくとも
6℃」の条件を満たす樹脂は、図1の本発明の特殊4成
分からなり密度0.944g/cm3 の混合樹脂(温度
範囲約7℃)、図5の3成分からなり密度0.933g
/cm3 の混合樹脂(温度範囲約7℃)の2種のみであ
り、図2の密度0.924g/cm3 の直鎖状低密度ポ
リエチレン樹脂、図3の密度0.935g/cm3 の直
鎖状低密度ポリエチレン樹脂、図4の密度0.945g
/cm3 の直鎖状高密度ポリエチレン樹脂、図6の3成
分からなり密度0.944g/cm3 混合樹脂の樹脂の
場合では、その温度範囲は夫々、約5℃、約3℃、約2
℃、約4℃であって、上記「少なくとも6℃」の条件を
満たすものでないことが分かる。この図1〜図6で示す
「T50とT70との間の温度範囲」についての結果
は、表5に示す「多段昇温発泡法」の試験結果と一致し
ており、殊に、従来品のポリエチレン系樹脂で密度が
0.940g/cm3 以上のものは、「多段昇温発泡
法」への適性は困難である、とした記載事実を裏付けて
いる。
Based on the above findings, each "T5" shown in FIGS.
"Temperature range between 0 and T70", the resin satisfying the condition of "at least 6 ° C" is the mixed resin of the special four components of the present invention shown in Fig. 1 and having a density of 0.944 g / cm 3 (temperature range). Approximately 7 ° C), consisting of the three components in Fig. 5, density 0.933g
/ Cm mixed resin (a temperature ranging from about 7 ° C.) of 3 or two alone, in Figure 2 the density 0.924 g / cm 3 of linear low density polyethylene resin, density 0.935 g / cm 3 in FIG. 3 Linear low density polyethylene resin, density 0.945g in Figure 4
/ Cm 3 linear high density polyethylene resin, when the resin of 3 Density consists ingredient 0.944 g / cm 3 mixed resin of Figure 6, the temperature range is respectively about 5 ° C., to about 3 ° C., about 2
It can be seen that the temperature is about 4 ° C. and does not satisfy the condition of “at least 6 ° C.”. The results for the “temperature range between T50 and T70” shown in FIGS. 1 to 6 are in agreement with the test results for the “multi-stage temperature rising foaming method” shown in Table 5, and particularly, for the conventional product. This supports the fact that polyethylene resins having a density of 0.940 g / cm 3 or more are difficult to be suitable for the “multi-stage temperature rising foaming method”.

【0029】そして「多段昇温発泡法」に適性があると
する図1(本発明の特殊4成分混合樹脂)のものと、図
5(3成分混合樹脂)のものとを比べると、混合樹脂の
密度は、前者は0.944g/cm3 であるに対して後
者は0.933g/cm3 であるに留まる。ポリエチレ
ン系樹脂からなりその密度が0.940g/cm3 以上
のもので「多段昇温発泡法」への適性があるのものは、
図1の本発明の特定4成分混合樹脂のもののみであるこ
とが分かる。
Then, comparing the one of FIG. 1 (special four-component mixed resin of the present invention) which is suitable for the "multi-stage temperature rising foaming method" and the one of FIG. 5 (three-component mixed resin), the mixed resin The density of the former is 0.944 g / cm 3 , whereas the latter is 0.933 g / cm 3 . A polyethylene resin with a density of 0.940 g / cm 3 or more, which is suitable for the "multi-stage temperature rising foaming method",
It can be seen that only the specific four-component mixed resin of the present invention in FIG. 1 is used.

【0030】この特定4成分の内で特筆すべきは、第4
成分として用いている密度0.940〜0.954g
/cm3 、融点(mHD1)が[(mHD2+mLL)
÷2]±2℃の範囲にある直鎖状高密度ポリエチレン樹
脂10〜35重量%の採用である。
Of the four specific components, the notable one is the fourth one.
Density 0.940-0.954g used as an ingredient
/ Cm 3 , melting point (mHD1) is [(mHD2 + mLL)
÷ 2] The linear high-density polyethylene resin in the range of ± 2 ° C is used in an amount of 10 to 35% by weight.

【0031】この第4成分樹脂の役割の第1は、他の3
成分の内の直鎖状低密度ポリエチレン樹脂と直鎖状高密
度ポリエチレン樹脂との間の相溶性を高めることで、そ
のことで混合樹脂全体が一体的に相溶性して各樹脂の分
子のセクグメントの絡み合いが増し、混合樹脂の混晶を
形成しているかの様な流動粘性を示すようになったこと
である。又役割の第2は、他の3成分の内の直鎖状低密
度ポリエチレン樹脂と直鎖状高密度ポリエチレン樹脂と
の間の融点差を埋め、混合樹脂でありながら全体があた
かも一つの融点を持つ樹脂の様な融解吸熱曲線を描く樹
脂にしたことである。この2つの役割は、得られる予備
発泡粒子の成形性が向上(成形適性温度範囲の拡大)
し、例えば、厚みが大きく異なる部分が混在した複雑な
形状の成形体の、その厚みの異なる成形体各部位を形成
する発泡粒子の融着が、どこをとっても均一に融着した
成形体になると言う効果を生む。この成形体各部位の融
着性の向上は、基本的特性を設計値通りに発揮できる状
態にする重要な要素であり、成形体全体に高密度(0.
940〜0.952g/cm3 )の樹脂の持つ基本的特
性を具備させ、その結果として緩衝材の荷重受け面積の
縮小化、発泡体の肉厚の縮小化の要求を可能にする。
The first role of this fourth component resin is the other three
By increasing the compatibility between the linear low-density polyethylene resin and the linear high-density polyethylene resin among the components, the whole mixed resin is integrally compatible, and the molecular segment of each resin is The entanglement of the mixed resin was increased, and the flow viscosity as if a mixed crystal of the mixed resin was formed was exhibited. The second role is to fill the melting point difference between the linear low-density polyethylene resin and the linear high-density polyethylene resin among the other three components, so that even if it is a mixed resin, one melting point That is, the resin has a melting endothermic curve similar to that of the resin. These two roles improve the moldability of the obtained pre-expanded particles (expand the temperature range suitable for molding).
Then, for example, in a molded article having a complicated shape in which portions having greatly different thicknesses are mixed, fusion of the foamed particles forming each portion of the molded article having different thicknesses becomes a uniformly fused molded article everywhere. Produces the effect of saying. The improvement of the fusion property of each part of the molded product is an important factor for making the basic properties in a state where the basic properties can be exhibited as designed, and the high density (0.
The resin has basic properties of 940 to 0.952 g / cm 3 ), and as a result, it becomes possible to reduce the load receiving area of the cushioning material and the thickness of the foam.

【0032】図7において、図中の◎印は、本発明の特
定4成分からなり密度0.944g/cm3 の混合樹脂
のもの、□印は、密度0.924g/cm3 の直鎖状低
密度ポリエチレン樹脂のもを示している。横軸は成形体
の密度(kg/m3 )[発泡倍率(cc/g)を併
記]、縦軸は成形体の圧縮強度(kg/cm2 )を目盛
り、各密度の成形体が示す圧縮強度の関係を両対数目盛
りで表わしている。なお、ここで採用している圧縮強度
は成形体の緩衝性能を支配する基本特性である。
In FIG. 7, the symbol ⊚ in the figure is for a mixed resin consisting of the specific four components of the present invention and having a density of 0.944 g / cm 3 , and the symbol □ is a linear resin having a density of 0.924 g / cm 3. A low density polyethylene resin is also shown. The abscissa represents the density (kg / m 3 ) of the molded product [the expansion ratio (cc / g) is shown together], and the ordinate represents the compression strength (kg / cm 2 ) of the molded product. The relationship of strength is represented on a logarithmic scale. The compressive strength adopted here is a basic property that governs the cushioning performance of the molded body.

【0033】また、図7が示す圧縮強度の大きさの差
が、ポリエチレン樹脂の密度を0.924g/cm3
ら0.944g/cm3 に高めたことによる効果であ
る。具体的には、従来の密度0.924g/cm3 の直
鎖状低密度ポリエチレン樹脂を原料樹脂とする発泡成形
体と同じ緩衝特性を、密度0.944g/cm3 の4成
分混合樹脂を原料にした発泡成形体で発揮させようとす
る時は、この圧縮強度の差の分だけ、緩衝材の荷重受け
面積の縮小化や発泡体の肉厚みの縮小化、或いは成形体
の高発泡化が図れることを意味するのである。このよう
に上述した特定4成分からなる樹脂の密度、融点、組成
比の各上下限の規定は、4成分混合樹脂の高密度(0.
940〜0.952g/cm3 )を確保し、その上で上
述の諸効果を発揮させる為の必須の要件である。
The difference in the magnitude of compressive strength shown in FIG. 7 is the effect of increasing the density of the polyethylene resin from 0.924 g / cm 3 to 0.944 g / cm 3 . Specifically, the conventional density 0.924 g / cm 3 of linear low density polyethylene resin of the same damping characteristics as the foamed molded as a raw material resin, the 4-component mixed resin of density 0.944 g / cm 3 material When attempting to exert the effect on the foamed molded article, the reduction of the load receiving area of the cushioning material, the thickness of the foamed body, or the high foaming of the molded body is caused by the difference in the compression strength. It means that you can achieve it. As described above, the upper and lower limits of the density, melting point, and composition ratio of the resin composed of the specific four components described above are defined by the high density (0.
940 to 0.952 g / cm 3 ), and is an indispensable requirement for exerting the above-mentioned effects on it.

【0034】次いで上記2)の要件の技術的意義を述べ
る。先ず、予備発泡粒子の発泡倍率を6〜60cc/g
にする必要性は、成形体の緩衝特性を、選択の自由度の
広い範囲にして提供するためのものである。即ち、発泡
成形体は、発泡粒子を型内加熱成形をして得る。従っ
て、得られる発泡成形体は成形時の膨張で発泡倍率は高
まる傾向にあるが、この高まりは大きくはないので成形
体の目標発泡倍率の調節は主に用いる予備発泡粒子の発
泡倍率で定まる。一方、緩衝材にする成形体の発泡倍率
は、被包装物の重量に耐える圧縮強度や、被衝撃時の衝
撃を吸収するに充分な弾性的緩衝能と緩衝材部位の厚み
とを考慮して定める。この成形体が発揮する緩衝特性
を、選択の自由度の広い範囲にして提供するためであ
る。さらに予備発泡粒子の発泡倍率は、主用途の緩衝特
性を考えると、16〜60cc/gの高倍率側である方
が望ましい。
Next, the technical significance of the above requirement 2) will be described. First, the expansion ratio of the pre-expanded particles is 6 to 60 cc / g.
The requirement is to provide the cushioning properties of the shaped body with a wide range of choices. That is, the foamed molded article is obtained by subjecting the expanded beads to in-mold heat molding. Therefore, the expansion ratio of the obtained foamed molded product tends to increase due to expansion during molding, but this increase is not so large, so that the target expansion ratio of the molded product is mainly determined by the expansion ratio of the pre-expanded particles to be used. On the other hand, the expansion ratio of the molded body to be used as the cushioning material should be considered in consideration of the compressive strength that can withstand the weight of the packaged object, the elastic cushioning capacity sufficient to absorb the impact at the time of impact and the thickness of the cushioning material portion. Establish. This is to provide the cushioning property exhibited by the molded body in a wide range of freedom of selection. Further, the expansion ratio of the pre-expanded particles is preferably 16 to 60 cc / g on the high expansion ratio side in consideration of the buffering characteristics of the main application.

【0035】また樹脂粒子を一旦、発泡倍率1.5〜
3.5cc/gの発泡粒子にする必要性は、要するに後
の発泡(膨張)工程で、経済的に良質の高発泡倍率の予
備発泡粒子にする為と、輸送・貯蔵を最も経済的に行な
う為の低発泡倍率の選定との調和にある。即ち、1.5
cc/g未満の低い発泡倍率のものでは、気泡の絶対数
や気泡容積が不足して後の工程で発泡粒子の膨張に要す
る発泡剤の圧力(膨張能)が不足し、結果的に良質の予
備発泡粒子が得られなくなる欠点が生じるし、あえてこ
の発泡剤を圧入すると、経済的な装置の採用を不能にす
る。逆に3.5cc/gを超える高い発泡倍率のもで
は、以降の膨張過程で気泡構造の乱れが生じ易く、良質
の予備発泡粒子が得難くなるし、窩高くなって輸送・貯
蔵時の経済性を悪化させることになる。上述の観点か
ら、第1段階の発泡剤による発泡は、その発泡倍率を
1.5〜3.5cc/gの発泡粒子にすることが必要
で、発泡倍率を1.8〜3.0cc/gの発泡粒子にす
ることが望ましい。
Further, once the resin particles are expanded with an expansion ratio of 1.5 to
The need to make expanded particles of 3.5 cc / g means that in the subsequent expansion (expansion) step, pre-expanded particles of high quality and high expansion ratio are economically produced, and transportation and storage are most economically performed. It is in harmony with the selection of a low expansion ratio. That is, 1.5
With a low expansion ratio of less than cc / g, the absolute number of cells and the volume of the cells are insufficient, and the pressure (expansion ability) of the foaming agent required to expand the expanded particles in the subsequent step is insufficient, resulting in high quality. The disadvantage is that pre-expanded particles cannot be obtained, and the pressure-injection of this foaming agent precludes the use of economical equipment. On the other hand, when the expansion ratio is higher than 3.5 cc / g, the foam structure is apt to be disturbed in the subsequent expansion process, and it becomes difficult to obtain high quality pre-expanded particles, and the fovea height becomes high and the economy during transportation and storage is high. It will worsen the sex. From the viewpoint described above, foaming with the foaming agent in the first stage requires that the expansion ratio be 1.5 to 3.5 cc / g expanded particles, and the expansion ratio is 1.8 to 3.0 cc / g. It is desirable to use the expanded particles of

【0036】次に「得られた発泡粒子の気泡内に発泡剤
を含浸し、これを加熱膨張させてより高い発泡倍率の発
泡粒子にする工程を少なくとも1回は用いる多段昇温発
泡方法」を採用する意味は、上記輸送・貯蔵時の経済性
を満たす為に発泡倍率1.5〜3.5cc/gにした1
次発泡粒子を、成形する現場で経済的な装置で、最終目
標の高発泡倍率の発泡粒子に容易に出来る様にする為で
ある。1次発泡粒子の気泡内に発泡剤を圧入する装置
(容器、配管等)の設備費は、その装置で扱う圧力に応
じて変わる。例えば、現在の日本国の法律では、10k
g/cm2 の圧力を界にして、これ以上の圧力を扱う装
置は高圧ガス規制法の適用を受け、耐圧に対する安全度
の高い装置の設置が要求され、それに伴う付帯設備も必
要になる。又、その耐圧検査も定期的に行なうことが義
務付けられ、その検査基準も厳しく評価される。従って
その設備費は自ずと高価になるし、更にこの装置の取り
扱いには、訓練された資格免許を持つ作業者が必要にな
る。これに対し上記未満の圧力を扱う装置は厳しい規制
はなく、従ってその装置は極めて安価なものにでき、
又、通常の作業者で操作できる。「多段昇温発泡方法」
においては、第1段階の1次発泡工程は別にすると、そ
れ以降の発泡剤の圧入や発泡粒子の発泡工程は、これを
段階的に行なえば上記の極めて安価な装置で行なえる。
即ち、元になる発泡粒子と最終の発泡粒子の発泡倍率と
の比を小さくするように、その膨張のための操作を多段
階にすることで、取り扱う圧力を10kg/cm2 未満
のより低い圧力のものにすることができるためである。
Next, "the multi-stage temperature-rising foaming method in which at least one step of impregnating the cells of the obtained foamed particles with a foaming agent and thermally expanding the foaming agent to obtain expanded particles having a higher expansion ratio" is carried out. The meaning to be adopted is that the expansion ratio is 1.5 to 3.5 cc / g in order to satisfy the above economical efficiency during transportation and storage.
This is because it is possible to easily form the final expanded foamed particles having a high expansion ratio with an economical device at the molding site. The equipment cost of a device (container, piping, etc.) for press-fitting the foaming agent into the bubbles of the primary expanded particles varies depending on the pressure handled by the device. For example, the current Japanese law is 10k.
A device that handles a pressure higher than g / cm 2 is subject to the High Pressure Gas Regulation Law, and it is necessary to install a device with a high degree of safety against pressure, and accompanying equipment is also required. In addition, it is obliged to regularly perform the pressure resistance inspection, and the inspection standard is strictly evaluated. Therefore, the equipment cost is naturally high, and further, a trained and licensed worker is required to handle the device. On the other hand, devices that handle pressures less than the above are not subject to strict regulations, so the device can be made very inexpensive,
Further, it can be operated by a normal worker. "Multi-stage temperature rise foaming method"
In the above, apart from the first-stage primary foaming process, the subsequent press-in of the foaming agent and the foaming process of the foamed particles can be carried out by the above-mentioned extremely inexpensive apparatus if carried out stepwise.
That is, the pressure for handling is lower than 10 kg / cm 2 by performing the expansion operation in multiple stages so as to reduce the ratio of the expansion ratio of the original expanded particles to the expansion ratio of the final expanded particles. This is because it can be

【0037】また、この段階を特に2〜4回と表現して
いるのは、例えば元の発泡粒子の発泡倍率が3.5cc
/gのものを、発泡倍率が6cc/gの最終発泡粒子に
するのには1段階で行なっても、取り扱う圧力は3Kg
/cm2 程度のものにしかならないが、仮に元の発泡粒
子の発泡倍率が1.5cc/gのものを、発泡倍率で6
0cc/gの最終発泡粒子にする場合、4段階(例えば
均等割りの倍率)に配分すれば、取り扱う圧力は最大で
も9Kg/cm2 程度のものになり、取り扱う圧力を1
0kg/cm2 未満のより低い圧力のものにすることが
できる。具体的に例えば、当初の発泡での目標発泡倍率
を2.5cc/gに留め、これを1段階目の膨張での目
標発泡倍率を9cc/gとし、2段階目の膨張での目標
発泡倍率を16cc/gに、3段階目の膨張での目標発
泡倍率を33cc/gに、4段階の膨張での目標発泡倍
率を60cc/gにした装置の設計は、容易であり、一
つの段階で取り扱う圧力も最大で9kg/cm2 に留ま
るので理想的である。又この場合、輸送に供する発泡粒
子の発泡倍率を2.5cc/gのもので行なえば、その
嵩容積は、発泡倍率を16cc/gで輸送する場合の約
1/6になるし、発泡倍率を30cc/gで輸送する場
合の約1/12になるので効率的になる。一方、この膨
張段階の数を増すことはその操作の手間が増し不経済に
なる。本発明の場合は一つの段階で行わせる膨張を1.
5〜3倍に留めるようにし、膨張段階を4段階迄の範囲
として、行うことが効率的に良質の予備発泡粒子が得ら
れるからである。
Further, this step is particularly expressed as 2 to 4 times when the expansion ratio of the original expanded particles is 3.5 cc.
Even if it is carried out in one step to obtain a final expanded particle having an expansion ratio of 6 cc / g, the handling pressure is 3 Kg.
/ Cm 2 of about but of not only one, the tentatively ones expansion ratio of the original foamed particles of 1.5 cc / g, with the expansion ratio 6
When making the final expanded particles of 0 cc / g, if the pressure is handled in 4 stages (for example, evenly divided magnification), the pressure to be handled will be about 9 Kg / cm 2 at the maximum, and the pressure to be handled will be 1
It can be of lower pressure, less than 0 kg / cm 2 . Specifically, for example, the target expansion ratio in the initial expansion is kept at 2.5 cc / g, and the target expansion ratio in the first expansion is set to 9 cc / g, and the target expansion ratio in the second expansion is set. Is 16 cc / g, the target expansion ratio in the third expansion is 33 cc / g, and the target expansion ratio in the fourth expansion is 60 cc / g. Ideally, the handling pressure is 9 kg / cm 2 at maximum. Also, in this case, if the expansion ratio of the expanded particles used for transportation is 2.5 cc / g, the bulk volume will be about 1/6 that of the case where the expansion ratio is 16 cc / g and the expansion ratio will be Is about 1/12 of that when transported at 30 cc / g, which is efficient. On the other hand, increasing the number of this expansion stage increases the labor of the operation and becomes uneconomical. In the case of the present invention, 1.
This is because it is possible to efficiently obtain high-quality pre-expanded particles by performing the expansion step in the range of up to 4 steps while keeping the expansion ratio to 5 to 3 times.

【0038】次に、本発明に用いられる原料樹脂につき
説明する高圧法低密度ポリエチレン(LDPE)は、密
度0.920〜0.930g/cm3 、融点98〜11
8℃、MI(メルトインデックス:190℃、2.16
kg)0.05〜30g/10分のものである。直鎖状
低密度ポリエチレン(LLDPE)は、エチレンと炭素
数3〜12のαオレフィンとの共重合体であり、αオレ
フィンとしてはプロピレン、ブテン−1、ペンテン−
1、ヘキセン−1、ヘプテン−1、オクテン−1、4−
メチルペンテン−1、1−デセン、1−テトラデセン、
1−オクタデセン等が挙げられ、これらの1種または2
種以上の混合成分であっても差し支えない。αオレフィ
ンの組成比は2〜10モル%で、密度0.916〜0.
928g/cm3 、融点118〜123℃、MIが0.
1〜30g/10分のものである。直鎖状高密度ポリエ
チレン(HDPE)は、エチレンと炭素数3〜10のα
オレフィンとの共重合体であり、αオレフィンの組成比
は2モル%未満で、その密度によって、密度の低いHD
1と密度の高いHD2との2種類に区分される。HD1
は密度0.940〜0.954g/cm3 、融点123
〜129℃、MIが0.05〜30g/10分のもので
ある。HD2は密度0.955g/cm3 以上、融点1
28〜135℃、MIが0.05〜30g/10分のも
のである。
Next, the high-pressure low density polyethylene (LDPE) used for the raw material resin used in the present invention has a density of 0.920 to 0.930 g / cm 3 and a melting point of 98 to 11.
8 ° C, MI (melt index: 190 ° C, 2.16
kg) 0.05 to 30 g / 10 minutes. Linear low-density polyethylene (LLDPE) is a copolymer of ethylene and an α-olefin having 3 to 12 carbon atoms, and the α-olefin is propylene, butene-1, pentene-.
1, hexene-1, heptene-1, octene-1, 4-
Methyl pentene-1,1-decene, 1-tetradecene,
1-octadecene and the like, and one or two of these
It may be a mixed component of two or more kinds. The composition ratio of α-olefin is 2 to 10 mol%, and the density is 0.916 to 0.
928 g / cm 3 , melting point of 118 to 123 ° C., MI of 0.
1 to 30 g / 10 minutes. Linear high-density polyethylene (HDPE) is ethylene and α having 3 to 10 carbon atoms.
It is a copolymer with olefins, the composition ratio of α-olefin is less than 2 mol%, and due to its density, HD with low density
There are two types, 1 and HD2 having high density. HD1
Has a density of 0.940 to 0.954 g / cm 3 and a melting point of 123
˜129 ° C., MI of 0.05 to 30 g / 10 minutes. HD2 has a density of 0.955 g / cm 3 or more and a melting point of 1
28-135 degreeC and MI are 0.05-30 g / 10min.

【0039】本発明の無架橋ポリエチレン系樹脂粒子と
は、無架橋の状態のものであることが望ましいがリペレ
ット可能な範囲内で多少架橋していてもよく、その場合
の架橋の程度はゲル分率で10%以下である。本発明に
おいては原料樹脂には、例えば、各種充填材、酸化防止
剤、耐光安定剤、帯電防止剤、難燃剤、滑剤、核剤、顔
料、染料等を配合して用いることもできる。
The non-cross-linked polyethylene resin particles of the present invention are preferably in a non-cross-linked state, but may be cross-linked to some extent within the range where re-pelleting is possible. The rate is 10% or less. In the present invention, for example, various fillers, antioxidants, light stabilizers, antistatic agents, flame retardants, lubricants, nucleating agents, pigments, dyes, etc. may be blended with the raw material resin.

【0040】本発明において、樹脂粒子から1次発泡粒
子を得るために用いられる発泡剤としては、樹脂の軟化
温度以下の沸点のもので、樹脂に溶解性の高いものがよ
く、二酸化炭素、プロパン、ブタン、ペンタン、1−1
−1−2テトラフルオロエタン(F−134a)、1−
1ジフルオロエタン(F−152a)、塩化メチレン、
塩化エチレンなどが挙げられる。その中でも、フロン規
制をクリア−し不燃である二酸化炭素は望ましい発泡剤
である。この発泡剤の含有量は、発泡剤の種類および所
望する発泡倍率の程度によって異なるが通常0.1〜
1.0モル/kgである。なお前記粒子に発泡剤を含有
させる時の温度、圧力は任意であり、発泡剤の含浸法も
気相、液相のいずれでも良く、特に限定されない。ま
た、1次発泡粒子を多段階に発泡する発泡剤には、樹脂
の軟化温度以下の沸点のもので、ガス透過係数の小さい
ものがよく、窒素、空気などの無機ガスが用いられる。
In the present invention, the foaming agent used to obtain the primary expanded particles from the resin particles is preferably one having a boiling point not higher than the softening temperature of the resin and having high solubility in the resin, such as carbon dioxide and propane. , Butane, pentane, 1-1
-1-2 tetrafluoroethane (F-134a), 1-
1 difluoroethane (F-152a), methylene chloride,
Examples thereof include ethylene chloride. Among them, carbon dioxide that clears the CFC regulations and is nonflammable is a desirable foaming agent. The content of the foaming agent varies depending on the type of the foaming agent and the degree of the desired expansion ratio, but is usually 0.1 to 0.1%.
It is 1.0 mol / kg. The temperature and the pressure when the particles contain the foaming agent are arbitrary, and the method of impregnating the foaming agent may be either gas phase or liquid phase, and is not particularly limited. Further, as the foaming agent for foaming the primary expanded particles in multiple stages, those having a boiling point not higher than the softening temperature of the resin and having a small gas permeability coefficient are preferable, and an inorganic gas such as nitrogen or air is used.

【0041】本発明で言う樹脂密度(g/cc)とは、
ASTMD−1505に準じて測定した値である。本発
明で言う融点(℃)は、測定装置としてパーキンエルマ
ー(Perkin−Elmer)社製のDSC−7型を
用い、約10mgの試料を10℃/minの速度で30
℃から200℃まで昇温させた後、1分間その温度を保
持し、10℃/minの速度で30℃まで冷却結晶化さ
せ、1分間その温度を保持し、再び10℃/minの速
度で昇温した時の融解カ−ブのピ−ク値から求めたもの
である。また、本発明で使用した特性値の評価方法、お
よび評価尺度は次のようにして行った。
The resin density (g / cc) referred to in the present invention is
It is a value measured according to ASTM D-1505. The melting point (° C) referred to in the present invention is about 30 mg of a sample of about 10 mg at a rate of 10 ° C / min, using a DSC-7 type manufactured by Perkin-Elmer as a measuring device.
After raising the temperature from ℃ to 200 ℃, hold the temperature for 1 minute, cool and crystallize to 30 ℃ at a rate of 10 ℃ / min, hold the temperature for 1 minute, and again at a speed of 10 ℃ / min It is obtained from the peak value of the melting curve when the temperature is raised. Moreover, the evaluation method of the characteristic value and the evaluation scale used in the present invention were performed as follows.

【0042】[発泡粒子の発泡倍率(cc/g)]重量
(Wg)既知の発泡粒子の容積(Vcc)を水没法で測
定し、その容積を重量で除した値である。 [独立気泡率(%)]ASTMD−2856に記載され
ているエアーピクノメーター法(BECMAN製、モデ
ル930)により測定した。n=10の平均。
[Expansion Ratio (cc / g) of Expanded Particles] Weight (Wg) This is a value obtained by measuring the volume (Vcc) of known expanded particles by the water immersion method and dividing the volume by the weight. [Closed cell ratio (%)] It was measured by the air pycnometer method (manufactured by BECMAN, model 930) described in ASTM D-2856. Average of n = 10.

【0043】[平均気泡径(mm)]発泡粒子を任意に
直交する3つの面で切断して得られる三次元軸のそれぞ
れの軸上において、任意の長さL(1mm以上)あたり
の気泡の数を読み、次式により求めた値である。 平均気泡径(mm)=L(mm)/気泡の数 [耐油性]食用油に予備発泡粒子を投入し、3時間後の
変形状態で判定した。
[Average Cell Diameter (mm)] The number of bubbles per arbitrary length L (1 mm or more) on each of the three-dimensional axes obtained by cutting the expanded particles at three orthogonal planes. It is a value obtained by reading the number and using the following equation. Average cell diameter (mm) = L (mm) / number of cells [Oil resistance] Pre-expanded particles were added to edible oil, and the state of deformation after 3 hours was evaluated.

【0044】 評価尺度 区分 記号 元の体積の0.5%未満の収縮 ◎ 2.0%未満0.5%以上の収縮 ○ 5.0%未満2.0%以上の収縮 △ 5.0%以上の収縮 ×Evaluation scale Classification Symbol Shrinkage of less than 0.5% of original volume ◎ Shrinkage of less than 2.0% 0.5% or more ○ Shrinkage of less than 5.0% 2.0% or more △ 5.0% or more Contraction of ×

【0045】[耐候性]ウェザーメーターで200時間
処理し、該処理物について下記の2項目につき別々で判
定した。 1.目視による粒子の着色、変形 評価尺度 区分 記号 着色、変形が全くない ◎ 着色、変形が若干認められる ○ 着色、変形が認められる △ 着色、変形が著しく認められる ×
[Weather Resistance] The treated product was treated with a weather meter for 200 hours, and the treated product was judged separately for the following two items. 1. Coloring of particles by visual inspection, deformation evaluation scale Classification symbol No coloring or deformation at all ◎ Slight coloring or deformation is observed ○ Coloring or deformation is observed △ Coloring or deformation is significantly observed ×

【0046】 2.圧縮弾性値の変化 評価尺度 区分 記号 圧縮弾性値の低下率が5%未満のもの ◎ 圧縮弾性値の低下率が5%以上10%未満のもの ○ 圧縮弾性値の低下率が10%以上20%未満のもの △ 圧縮弾性値の低下率が20%以上のもの × ※圧縮弾性値の低下率% =(試験前の圧縮弾性回復率−試験後の圧縮弾性回復率) ÷試験前の圧縮弾性回復率×1002. Change in compression elastic value Evaluation scale Classification symbol Reduction rate of compression elastic value is less than 5% ◎ Reduction rate of compression elastic value is 5% or more and less than 10% ○ Reduction rate of compression elastic value is 10% or more and 20% Less than △ Reduction rate of compression elastic value is 20% or more × * Reduction rate of compression elastic value% = (compression elastic recovery rate before test-compression elastic recovery rate after test) ÷ compression elastic recovery before test Rate x 100

【0047】[耐熱性]ギヤーオーブン中、100℃、
1000時間後の、下記の2項目につき別々で判定し
た。 1.目視による粒子の着色、変形 評価尺度 区分 記号 着色、変形が全くない ◎ 着色、変形が若干認められる ○ 着色、変形が認められる △ 着色、変形が著しく認められる ×
[Heat resistance] 100 ° C. in a gear oven
After 1000 hours, the following two items were evaluated separately. 1. Coloring of particles by visual inspection, deformation evaluation scale Classification symbol No coloring or deformation at all ◎ Slight coloring or deformation is observed ○ Coloring or deformation is observed △ Coloring or deformation is significantly observed ×

【0048】 2.圧縮弾性値の変化 評価尺度 区分 記号 圧縮弾性値の低下率が5%未満のもの ◎ 圧縮弾性値の低下率が5%以上10%未満のもの ○ 圧縮弾性値の低下率が10%以上20%未満のもの △ 圧縮弾性値の低下率が20%以上のもの × ※圧縮弾性値の低下率% =(試験前の圧縮弾性回復率−試験後の圧縮弾性回復率) ÷試験前の圧縮弾性回復率×1002. Change in compression elastic value Evaluation scale Classification symbol Reduction rate of compression elastic value is less than 5% ◎ Reduction rate of compression elastic value is 5% or more and less than 10% ○ Reduction rate of compression elastic value is 10% or more and 20% Less than △ Reduction rate of compression elastic value is 20% or more × * Reduction rate of compression elastic value% = (compression elastic recovery rate before test-compression elastic recovery rate after test) ÷ compression elastic recovery before test Rate x 100

【0049】[柔軟性]型内成形した厚さ30mmの成
形体を折り曲げた場合に破壊する角度で判定した。 評価尺度 区分 記号 180°まで破壊しない ◎ 90°〜180°までで破壊する ○ 45°〜90°までで破壊する △ 45°以下で破壊する ×
[Flexibility] Judgment was made based on the angle at which the molded product having a thickness of 30 mm molded in the mold was broken when it was bent. Evaluation scale Classification symbol Do not break up to 180 ° ◎ Break at 90 ° to 180 ° ○ Break at 45 ° to 90 ° △ Break at 45 ° or less ×

【0050】[引裂強度]JISK−6767に準じて
測定した。 区分 記号 7kg/10mm幅を越える ◎ 2kg/10mm幅を越える7kg/10mm幅以下 ○ 1kg/10mm幅を越える2kg/10mm幅以下 △ 1kg/10mm幅以下 ×
[Tear strength] It was measured according to JIS K-6767. Classification symbol Exceeds 7 kg / 10 mm width ◎ Exceeds 2 kg / 10 mm width 7 kg / 10 mm width or less ○ Exceeds 1 kg / 10 mm width 2 kg / 10 mm width or less △ 1 kg / 10 mm width or less ×

【0051】[耐屈曲疲労性]JISP−8115に準
じて測定した。 区分 記号 500回以上破断しない ◎ 300〜500回未満で破断する ○ 100〜300回未満で破断する △ 100回未満で破断する ×
[Flexural fatigue resistance] Measured according to JISP-8115. Classification symbol No break 500 times or more ◎ Breaks 300 to less than 500 times ○ Breaks 100 to less than 300 times △ Breaks less than 100 times ×

【0052】[耐圧縮弾性]テンシロンを用いて10m
m/minの速度で最大応力4kg/cm2 まで圧縮
し、応力除去し、24時間後の歪からの弾性回復率で測
定した。 区分 記号 95%以上回復する ◎ 90〜95%未満回復する ○ 85〜90%未満回復する △ 85%未満回復する ×
[Compression resistance] Ten meters using Tensilon
It was compressed to a maximum stress of 4 kg / cm 2 at a speed of m / min, the stress was removed, and the elastic recovery from strain after 24 hours was measured. Classification symbol 95% or more recovered ◎ 90 to less than 95% recovered ○ 85 to less than 90% recovered △ less than 85% recovered ×

【0053】[型内成形性]図8のビ−ズが充填される
ところの金型内空間形状に相当する形状の、得た成形品
において、図8におけるA部(厚み約50mm)、B部
(厚み約13mm)、C部(厚み約15mm)で示され
る測定部位それぞれにおいて、融着度と対金型寸法収縮
率を下記の基準で評価し、良好品の型内加熱成形が可能
か否かを下記の如く評価した。 評価尺度 区分 記号 融着度、対金型寸法収縮率の ○ 両方が○の成形発泡体が得られる 融着度、対金型寸法収縮率の △ いずれかが○の成形発泡体が得られる 融着度、対金型寸法収縮率の × 両方が△か×である成形発泡体しか得られない
[In-mold formability] In the obtained molded product having a shape corresponding to the space inside the mold where the beads are filled in FIG. 8, the obtained part A (thickness about 50 mm), B in FIG. The fusion degree and dimensional shrinkage with respect to the mold at each measurement site indicated by the part (thickness: about 13 mm) and the C part (thickness: about 15 mm) are evaluated according to the following criteria, and whether good in-mold hot molding is possible It was evaluated as follows. Evaluation scale Classification symbol Fusion degree, mold shrinkage to mold ◯ Both molding foams are obtained ○ Fusion degree, mold dimensional shrinkage ratio △ Either molding foam is obtained Melt Adhesion and mold dimensional shrinkage x both are △ or ×

【0054】※融着度 成形品より30×30mm正方形状の試験片を切り出
し、その中央部に深さ2mmの切れ目を入れ、切れ目に
沿って折り曲げて成形品を開裂させ、切開断面に存在す
る全粒子数に対する気泡部で材料破断して切裂している
粒子数の百分率(材破率)を求めた。 区分 記号 備考 材破率80%以上の場合 ○ 優れる 材破率80%未満、60%以上の場合 △ 良好 材破率60%未満の場合 × 不良
* Fusion degree A square test piece of 30 × 30 mm is cut out from the molded product, a cut with a depth of 2 mm is made in the center thereof, and the molded product is cleaved by bending along the cut to exist in the cut cross section. The percentage of the number of particles ruptured and broken in the bubble portion with respect to the total number of particles was calculated. Classification Symbol Remarks When the material breakage rate is 80% or more ○ Excellent When the material breakage rate is less than 80% or 60% or more △ Good When the material breakage rate is less than 60% × Poor

【0055】※対金型寸法収縮率 成形発泡体の成形用金型に対する収縮率により下記の如
く評価した。 区分 記号 備考 4%以下の場合 ○ 優れる 4%を超え6%以下の場合 △ 良好 6%を越える場合 × 不良
* Shrinkage of mold with respect to mold The shrinkage of the molded foam with respect to the mold was evaluated as follows. Category Symbol Remarks 4% or less ○ Excellent 4% to 6% or less △ Good 6% or more × Poor

【0056】[成形適性温度範囲]上記の融着度、対金
型寸法収縮率の両方が○の成形発泡体品を良好品とした
とき、良好品を得るための成形加熱水蒸気圧の上限と下
限の差を成形適性温度範囲とし、下記の如く評価した。 評価尺度 区分 備考 0.14kg/cm2以上の場合 優れる 0.14kg/cm2未満0.08kg/cm2以上の場合 良好 0.08kg/cm2未満の場合 不良 [圧縮強度]JISK−6767に準じて測定した。2
5%圧縮歪みを生じた時の圧縮応力値である。
[Molding Appropriate Temperature Range] When a molded foam product having both the above-mentioned degree of fusion and dimensional shrinkage with respect to the mold is ◯, the upper limit of the steam pressure for molding heating for obtaining a good product is set. The lower limit difference was defined as the temperature range suitable for molding, and the following evaluation was made. According to rating scales classification Remark 0.14 kg / cm 2 or more when superior 0.14 kg / cm 2 less than 0.08 kg / cm 2 or more when good 0.08 kg / cm 2 less than in the case defective Compression Strength] JISK-6767 Measured. Two
It is a compressive stress value when a 5% compressive strain is generated.

【0057】[0057]

【実施例】実施例、比較例及び追試実験に用いたポリエ
チレン樹脂は表3に示す11種類のものである。実施
例、比較例及び追試実験で採用した多段昇温発泡法によ
る予備発泡粒子の製造方法そして成形体の製造方法の基
本条件は次のようである。
[Examples] The polyethylene resins used in Examples, Comparative Examples and additional experiments are 11 kinds shown in Table 3. The basic conditions of the method for producing pre-expanded particles by the multi-stage temperature rising foaming method and the method for producing a molded body used in Examples, Comparative Examples and additional experiments are as follows.

【0058】(1)樹脂粒子製造工程 表3の樹脂を各例中の組成割合で、二軸押出機を用いて
溶融混練りし、押出機の先端に取り付けたダイスよりス
トランド状に押出し、水冷却し、径0.7mm、長さ
1.3mmの粒子形状に切断して、製造した。 (2)発泡粒子製造工程 このところは、発泡工程で目標倍率2.5cc/gが、
一回目の膨張で目標倍率9.0cc/gが、二回目の膨
張で目標倍率16cc/gが、三回目の膨張で目標倍率
33cc/gが、そして四回目の膨張で目標倍率60c
c/gの理想的な発泡粒子が得られるところの多段昇温
発泡法を用いて行った。
(1) Resin particle manufacturing process The resins shown in Table 3 were melt-kneaded at the composition ratios in each example by using a twin-screw extruder, extruded in a strand form from a die attached to the tip of the extruder, and water. It was cooled and cut into particles having a diameter of 0.7 mm and a length of 1.3 mm to manufacture. (2) Expanded particle manufacturing process Here, the target magnification of 2.5 cc / g in the expanding process is
The target magnification is 9.0 cc / g in the first expansion, the target magnification is 16 cc / g in the second expansion, the target magnification is 33 cc / g in the third expansion, and the target magnification is 60 c in the fourth expansion.
It was carried out by using the multistage temperature rising foaming method at which an ideal expanded particle of c / g was obtained.

【0059】《低発泡工程》上記方法で得た樹脂粒子を
圧力容器内に収容し、発泡剤として二酸化炭素(気体)
を注入し圧力30kg/cm2 G、温度8℃の条件下で
2〜4時間かけて樹脂粒子中に二酸化炭素を含浸した。
二酸化炭素の含浸量は1.6重量部となるよう含浸時間
で調節した。次ぎに、この発泡性樹脂粒子を発泡装置
(脱気昇温方式)に収容して、槽内温度を80℃から発
泡温度まで20秒間かけて昇温し更にその温度を保持し
ながら10秒間水蒸気加熱発泡し、一次予備発泡粒子を
得た。発泡温度は各樹脂について次の予備実験で事前に
最適条件を求めてそれを採用した。即ち、水蒸気圧力
で、0.50kg/cm2 Gから1.80kg/cm2
Gの範囲で0.05kg/cm2 きざみで調節し、各々
の発泡温度で得られた一次予備発泡粒子を常温で1日間
熟成した後、発泡温度別に前述記載の評価方法により発
泡倍率、独立気泡率、平均気泡径を測定する。この各々
の測定結果から目標の発泡倍率2.5cc/gに近く、
独立気泡率がたかく、平均気泡径が目標値0.15mm
に近く且つ値の揃っているものをその樹脂の最適発泡温
度とした。
<< Low Foaming Step >> The resin particles obtained by the above method are placed in a pressure vessel and carbon dioxide (gas) is used as a foaming agent.
Was injected and carbon dioxide was impregnated into the resin particles for 2 to 4 hours under the conditions of a pressure of 30 kg / cm 2 G and a temperature of 8 ° C.
The impregnation amount of carbon dioxide was adjusted by the impregnation time so as to be 1.6 parts by weight. Next, the expandable resin particles were housed in a foaming device (deaeration temperature raising system), the temperature inside the tank was raised from 80 ° C. to the foaming temperature over 20 seconds, and steam was kept for 10 seconds while maintaining the temperature. Heat-expanded to obtain primary pre-expanded particles. For the foaming temperature, the optimum condition was obtained in advance in the following preliminary experiment for each resin and adopted. That is, in the water vapor pressure, 1.80 kg from 0.50kg / cm 2 G / cm 2
The primary pre-expanded particles obtained by adjusting each step in the range of G in increments of 0.05 kg / cm 2 were aged at room temperature for 1 day, and then the expansion ratio and closed cells were evaluated according to the above-mentioned evaluation methods according to the expansion temperature. The rate and the average bubble diameter are measured. From each of these measurement results, the target expansion ratio is close to 2.5 cc / g,
The closed cell ratio is high, and the average bubble diameter is 0.15mm.
The optimum foaming temperature of the resin is one that is close to and has the same value.

【0060】《一回目の膨張》上記低発泡工程で得た発
泡倍率が2.5cc/gの一次予備発泡粒子を加圧・加
温装置に収容し、80℃の温度下で1時間かけて空気を
昇圧し、圧力8.5kg/cm2 Gで5〜8時間保持し
て発泡粒子中の気体(空気)内圧を高めた。この処理で
得られる発泡粒子中の空気量は圧力で6kg/cm2
となるように保持時間で調整した。次ぎに、この内圧付
与された発泡樹脂粒子を発泡装置(脱気昇温方式)に収
容して、槽内温度を80℃から膨張温度まで20秒間か
けて昇温し更にその温度を保持しながら10秒間水蒸気
加熱し、二次予備発泡粒子を得た。膨張温度は各一次発
泡粒子について次の予備実験で事前に最適条件を求めて
それを採用した。即ち、水蒸気圧力で、0.50kg/
cm2 Gから1.80kg/cm2 Gの範囲で0.05
kg/cm2 きざみで調節し、各々の膨張温度で得られ
た二次予備発泡粒子を常温で1日間熟成した後、膨張温
度別に前述記載の評価方法により発泡倍率、独立気泡
率、平均気泡径を測定する。この各々の測定結果から目
標の発泡倍率9.0cc/gに近く、独立気泡率がたか
く、平均気泡径が目標値0.26mmに近く且つ値の揃
っているものをその樹脂の最適張温度とした。
<< First Expansion >> Primary pre-expanded particles having an expansion ratio of 2.5 cc / g obtained in the low expansion step were housed in a pressurizing / warming device and kept at a temperature of 80 ° C. for 1 hour. The pressure of the air was increased and the pressure was maintained at 8.5 kg / cm 2 G for 5 to 8 hours to increase the internal pressure of gas (air) in the expanded particles. The amount of air in the expanded particles obtained by this treatment is 6 kg / cm 2 G by pressure.
The holding time was adjusted so that Next, the expanded resin particles to which the internal pressure was applied were housed in a foaming device (a deaeration temperature raising system), and the temperature inside the tank was raised from 80 ° C. to the expansion temperature over 20 seconds while further maintaining the temperature. Steam heating for 10 seconds gave secondary pre-expanded particles. Regarding the expansion temperature, the optimum conditions were determined in advance in the following preliminary experiment for each primary expanded particle and adopted. That is, at steam pressure, 0.50 kg /
0.05 in the range of cm 2 G to 1.80 kg / cm 2 G
adjusted in kg / cm 2 increments, after aging for 1 day the secondary pre-expanded particles obtained in each of the expansion temperature at room temperature, expansion ratio by the evaluation methods described above according to different expansion temperature, closed cell ratio, average cell diameter To measure. From each of these measurement results, the optimum expansion temperature of the resin is determined to be close to the target expansion ratio of 9.0 cc / g, to have a high closed cell rate, and to have an average cell diameter close to the target value of 0.26 mm and with a uniform value. did.

【0061】《二回目の膨張》上記一回目の膨張で得た
発泡倍率が9.0cc/gの二次予備発泡粒子を加圧・
加温装置に収容し、80℃の温度下で3時間かけて空気
を昇圧し、圧力5.0kg/cm2 Gで3〜5時間保持
して発泡粒子の気体(空気)内圧を高めた。この処理で
得られる発泡粒子中の空気量は圧力で2.5kg/cm
2 Gとなるように保持時間で調整した。次ぎに、この内
圧付与された発泡樹脂粒子を発泡装置(脱気昇温方式)
に収容して、槽内温度を80℃から膨張温度まで20秒
間かけて昇温し更にその温度を保持しながら10秒間水
蒸気加熱し、三次予備発泡粒子を得た。膨張温度は各二
次発泡粒子について次の予備実験で事前に最適条件を求
めてそれを採用した。即ち、水蒸気圧力で、0.50k
g/cm2 Gから1.80kg/cm2 Gの範囲で0.
05kg/cm2 きざみで調節し、各々の膨張温度で得
られた三次予備発泡粒子を常温で1日間熟成した後、膨
張温度別に前述記載の評価方法により発泡倍率、独立気
泡率、平均気泡径を測定する。この各々の測定結果から
目標の発泡倍率16cc/gに近く、独立気泡率がたか
く、平均気泡径が目標値0.32mmに近く且つ値の揃
っているものをその樹脂の最適膨張温度とした。目標倍
率に至らないのは「発泡せず」と記した。
<< Second Expansion >> The secondary pre-expanded particles having the expansion ratio of 9.0 cc / g obtained by the first expansion are pressed.
The mixture was housed in a warming device, the air pressure was increased at a temperature of 80 ° C. over 3 hours, and the pressure (5.0 kg / cm 2 G) was maintained for 3 to 5 hours to increase the gas (air) internal pressure of the expanded particles. The amount of air in the expanded particles obtained by this treatment is 2.5 kg / cm by pressure.
The holding time was adjusted so as to be 2 G. Next, a foaming device (deaeration temperature raising method) is used to expand the expanded resin particles to which the internal pressure is applied.
And the temperature in the tank was raised from 80 ° C. to the expansion temperature over 20 seconds, and the temperature was maintained, and steam heating was performed for 10 seconds to obtain tertiary pre-expanded particles. As for the expansion temperature, the optimum condition was obtained in advance in the following preliminary experiment for each secondary expanded particle and adopted. That is, at steam pressure, 0.50k
g / cm 2 G to 1.80 kg / cm 2 G in the range of 0.
After adjusting the pressure in increments of 05 kg / cm 2 and aging the tertiary pre-expanded particles obtained at each expansion temperature for 1 day at room temperature, the expansion ratio, closed cell ratio, and average cell diameter were evaluated according to the above-mentioned evaluation methods according to the expansion temperature. taking measurement. From these measurement results, the optimum expansion temperature of the resin was determined to be close to the target expansion ratio of 16 cc / g, to have a high closed cell rate, and to have an average cell diameter close to the target value of 0.32 mm and a uniform value. The fact that the target magnification was not reached was noted as "no foaming".

【0062】《三回目の膨張》上記二回目の膨張で得た
発泡倍率が16cc/gの三次予備発泡粒子を加圧・加
温装置に収容し、80℃の温度下で5時間かけて空気を
昇圧し、圧力5.0kg/cm2 Gで1〜3時間保持し
て発泡粒子の気体(空気)内圧を高めた。この処理で得
られる発泡粒子中の空気量は圧力で3.0kg/cm2
Gとなるように保持時間で調整した。次ぎに、この内圧
付与された発泡樹脂粒子を発泡装置(脱気昇温方式)に
収容して、槽内温度を80℃から膨張温度まで20秒間
かけて昇温し更にその温度を保持しながら10秒間水蒸
気加熱し、四次予備発泡粒子を得た。膨張温度は各三次
発泡粒子について次の予備実験で事前に最適条件を求め
てそれを採用した。即ち、水蒸気圧力で、0.50kg
/cm2 Gから1.80kg/cm2 Gの範囲で0.0
5kg/cm2 きざみで調節し、各々の膨張温度で得ら
れた四次予備発泡粒子を常温で1日間熟成した後、膨張
温度別に前述記載の評価方法により発泡倍率、独立気泡
率、平均気泡径を測定する。この各々の測定結果から目
標の発泡倍率33cc/gに近く、独立気泡率がたか
く、平均気泡径が目標値0.40mmに近く且つ値の揃
っているものをその樹脂の最適膨張温度とした。目標倍
率に至らないのは「発泡せず」と記した。
<< Third expansion >> The third pre-expanded particles having an expansion ratio of 16 cc / g obtained in the second expansion are housed in a pressurizing / warming device and air is kept at a temperature of 80 ° C. for 5 hours. Was increased and the pressure was maintained at 5.0 kg / cm 2 G for 1 to 3 hours to increase the gas (air) internal pressure of the expanded particles. The amount of air in the expanded particles obtained by this treatment is 3.0 kg / cm 2 in terms of pressure.
The holding time was adjusted so that G was obtained. Next, the expanded resin particles to which the internal pressure was applied were housed in a foaming device (a deaeration temperature raising system), and the temperature inside the tank was raised from 80 ° C. to the expansion temperature over 20 seconds while further maintaining the temperature. Steam heating was performed for 10 seconds to obtain quaternary pre-expanded particles. As for the expansion temperature, the optimum condition was obtained in advance in the following preliminary experiment for each tertiary expanded particle, and it was adopted. That is, at steam pressure, 0.50 kg
/ Cm 2 G to 1.80 kg / cm 2 G in the range of 0.0
Adjusted with 5 kg / cm 2 increments, after aging for 1 day quaternary pre-expanded particles obtained in each of the expansion temperature at room temperature, expansion ratio by the evaluation methods described above according to different expansion temperature, closed cell ratio, average cell diameter To measure. From these measurement results, the optimum expansion temperature of the resin was determined to be close to the target expansion ratio of 33 cc / g, to have a high closed cell rate, and to have an average cell diameter close to the target value of 0.40 mm and a uniform value. The fact that the target magnification was not reached was noted as "no foaming".

【0063】《四回目の膨張》上記三回目の膨張で得た
発泡倍率が33cc/gの四次予備発泡粒子を加圧・加
温装置に収容し、80℃の温度下で5時間かけて空気を
昇圧し、圧力7.0kg/cm2 Gで2〜4時間保持し
て発泡粒子の気体(空気)内圧を高めた。この処理で得
られる発泡粒子中の空気量は圧力で2.5kg/cm2
Gとなるように保持時間で調整した。次ぎに、この内圧
付与された発泡樹脂粒子を発泡装置(脱気昇温方式)に
収容して、槽内温度を80℃から膨張温度まで20秒間
かけて昇温し更にその温度を保持しながら10秒間水蒸
気加熱し、五次予備発泡粒子を得た。膨張温度は各四次
発泡粒子について次の予備実験で事前に最適条件を求め
てそれを採用した。即ち、水蒸気圧力で、0.50kg
/cm2 Gから1.80kg/cm2 Gの範囲で0.0
5kg/cm2 きざみで調節し、各々の膨張温度で得ら
れた五次予備発泡粒子を常温で1日間熟成した後、膨張
温度別に前述記載の評価方法により発泡倍率、独立気泡
率、平均気泡径を測定する。この各々の測定結果から目
標の発泡倍率60cc/gに近く、独立気泡率がたか
く、平均気泡径が目標値0.50mmに近く且つ値の揃
っているものをその樹脂の最適膨張温度とした。目標倍
率に至らないのは「発泡せず」と記した。
<Fourth expansion> The fourth pre-expanded particles having an expansion ratio of 33 cc / g obtained by the third expansion were housed in a pressurizing / warming device and the temperature was 80 ° C. for 5 hours. The pressure of air was increased and the pressure (7.0 kg / cm 2 G) was maintained for 2 to 4 hours to increase the gas (air) internal pressure of the expanded particles. The amount of air in the expanded particles obtained by this treatment is 2.5 kg / cm 2 under pressure.
The holding time was adjusted so that G was obtained. Next, the expanded resin particles to which the internal pressure was applied were housed in a foaming device (a deaeration temperature raising system), and the temperature inside the tank was raised from 80 ° C. to the expansion temperature over 20 seconds while further maintaining the temperature. Steam heating was performed for 10 seconds to obtain fifth pre-expanded particles. As for the expansion temperature, the optimum condition was obtained in advance in the following preliminary experiment for each quaternary expanded particle, and it was adopted. That is, at steam pressure, 0.50 kg
/ Cm 2 G to 1.80 kg / cm 2 G in the range of 0.0
After adjusting at 5 kg / cm 2 increments and aging the 5th pre-expanded particles obtained at each expansion temperature at room temperature for 1 day, the expansion ratio, closed cell ratio and average cell diameter were determined according to the evaluation methods according to the expansion temperature. To measure. From the respective measurement results, the optimum expansion temperature of the resin was determined to be close to the target expansion ratio of 60 cc / g, to have a high closed cell rate, and to have the average cell diameter close to the target value of 0.50 mm and the values were uniform. The fact that the target magnification was not reached was noted as "no foaming".

【0064】(3)成形体の製造工程 上記方法等で得た予備発泡粒子を常温常圧下で48時間
放置した後、圧力容器内に充填し2.5kg/cm2
の空気にて48時間加圧熟成した。次いで、予備発泡粒
子を成形機に取付けた一般タイプの金型内{雌雄二つの
型がはまり合った時その内部空間が、図8の各部の寸法
を示す、縦、横、高さの夫々が300、300、50m
mで、A部(厚み50mm)、B部(厚み13mm)、
C部(厚み15mm)の厚薄部の内寸を形成させる型
窩、そして雌雄型の内部全表面には、図9に示すごとく
一般に使用されている蒸気流入部材がピッチ20mmで
配設されてる}に充填し、加熱成形して冷却し成形金型
より取りだし成形発泡体を得た。
(3) Process for producing molded body The pre-expanded particles obtained by the above method etc. are allowed to stand for 48 hours at room temperature and normal pressure, and then filled in a pressure vessel to 2.5 kg / cm 2 G
It was aged under pressure for 48 hours. Then, in a mold of a general type in which the pre-expanded particles are attached to a molding machine {when the two male and female molds are fitted, the internal space thereof shows the dimensions of each part in FIG. 300, 300, 50m
m, part A (thickness 50 mm), part B (thickness 13 mm),
As shown in FIG. 9, a generally used steam inflow member is arranged at a pitch of 20 mm on the mold cavity for forming the inner dimension of the thick and thin part of the C portion (15 mm in thickness), and the entire inner surface of the male and female molds. Was filled in, molded by heating, cooled, and taken out from the molding die to obtain a molded foam.

【0065】《成形適性温度範囲の評価方法》成形温度
は、水蒸気圧力で1.00〜2.00kg/cm2 Gの
範囲で0.02kg/cm2 Gきざみで調節し成形し
た、各々の成形温度で得られた成形品を70℃で20時
間養生乾燥させ、室温で1日放置した後、成形温度別に
前述記載の評価方法により融着度、対金型寸法収縮率を
測定し、良好な成形品がえられるところの成形適性温度
範囲を調べた。良好な成形品を得る成形温度が全くない
場合は「なし」と記した。また同時にこの結果から、最
も良好な成形品が得られる所の最適成形温度を選んだ。
そしてこの選ばれた成形温度で再度成形して成形品を
得、前述記載の評価方法により型内成形性、成形品の特
性を評価した。
[0065] forming temperature "Evaluation method of moldability temperature range" was adjusted molded in at 0.02 kg / cm 2 G increments range 1.00~2.00kg / cm 2 G steam pressure, each forming The molded product obtained at the temperature was cured and dried at 70 ° C. for 20 hours, left at room temperature for 1 day, and then the fusion degree and the dimensional shrinkage ratio with respect to the mold were measured according to the above-mentioned evaluation methods according to the molding temperature. The temperature range suitable for molding at which a molded product was obtained was investigated. When there was no molding temperature at which a good molded product was obtained, it was described as "none". At the same time, from this result, the optimum molding temperature at which the best molded product was obtained was selected.
Then, molding was performed again at this selected molding temperature to obtain a molded product, and the in-mold moldability and the characteristics of the molded product were evaluated by the evaluation methods described above.

【0066】(実施例−1、比較例−1)ここでの実験
は、本発明で言う樹脂成分の領域を示すためのものであ
る。以下の実験は、前述記載の予備発泡粒子の製造方法
に基づいて、表4の樹脂粒子の項を各実験番号に対応す
る混合割合の組成で樹脂粒子を製造し、そして表2の発
泡条件項の各実験番号列に記した、予め選んでおいたと
ころの発泡、膨張温度で、低発泡、一回目膨張、二回目
膨張工程まで行って、発泡倍率16cc/gの予備発泡
粒子を製造した。得られた各々の発泡粒子について、上
記評価方法により発泡倍率、独立気泡率、平均気泡径
を、そして、前述記載の成形体の製造方法に基づいて、
成形適性温度範囲を評価し、その結果を表4に示す。
(Example-1, Comparative Example-1) The experiment here is for showing the range of the resin component in the present invention. In the following experiment, based on the above-described method for producing pre-expanded particles, resin particles in Table 4 were prepared with a mixing ratio composition corresponding to each experiment number, and the foaming condition section in Table 2 was used. The pre-expanded particles having an expansion ratio of 16 cc / g were manufactured by performing the low expansion, the first expansion, and the second expansion steps at the expansion and expansion temperatures selected in advance in the respective experiment number columns. For each of the obtained expanded particles, the expansion ratio by the evaluation method, the closed cell ratio, the average cell diameter, and based on the method for producing a molded body described above,
The temperature range suitable for molding was evaluated, and the results are shown in Table 4.

【0067】表4の結果によると、本発明の樹脂成分領
域から製造して得たもの(実験No.1〜3は成分領域
の囲い中を、実験No.4〜15は成分領域の限界点を
示す)は、発泡倍率16cc/gの目標の予備発泡粒子
が得られ、且つ良好品が得られる成形適性温度範囲が広
く、生産時の型内成形性に優れていることが判る。これ
に対して、比較例として採用する本発明の成分外の領域
から製造して得たもの(実験No.16〜23)は、発
泡倍率16cc/gの目標の予備発泡粒子が得られない
か、16cc/gの目標の予備発泡粒子が得られる樹脂
成分であっても、良好品が得られる成形適性温度範囲の
狭いものであることが判る。この結果は、本発明の樹脂
成分の範囲が本発明の目的達成に必要であることを明ら
かにしている。
According to the results of Table 4, those obtained by manufacturing from the resin component region of the present invention (Experiment Nos. 1 to 3 are in the enclosure of the component region, and Experiment Nos. 4 to 15 are the limit points of the component region. Indicates that the target pre-expanded particles having an expansion ratio of 16 cc / g can be obtained and a good product can be obtained in a wide moldability temperature range, and the in-mold moldability during production is excellent. On the other hand, what was obtained by manufacturing from a region other than the component of the present invention used as a comparative example (Experiment Nos. 16 to 23) could obtain a target pre-expanded particle having an expansion ratio of 16 cc / g. , 16 cc / g of the target pre-expanded particles can be obtained, it can be seen that the molding temperature range for obtaining a good product is narrow. This result reveals that the range of the resin component of the present invention is necessary for achieving the purpose of the present invention.

【0068】(実施例−2,比較例−2)ここでの実験
は、本発明で言うところの予備発泡粒子にする原料樹脂
に特定の4成分混合樹脂を用いることの重要性を示すた
めのものである。以下の実験は、前述記載の予備発泡粒
子の製造方法に基づいて、表5の樹脂粒子の項を各実験
番号に対応する混合割合の組成で樹脂粒子を製造し、そ
して表5の発泡条件項の各実験番号列に記した、予め選
んでおいたところの発泡、膨張温度で、低発泡、一回目
膨張、二回目膨張工程まで行って、発泡倍率16cc/
gの予備発泡粒子を、16cc/gの予備発泡粒子が得
られたものについては更に、三回目の膨張を行って、発
泡倍率33cc/gの予備発泡粒子を製造した。
(Example-2, Comparative Example-2) The experiment here is to show the importance of using a specific four-component mixed resin as the raw material resin for the pre-expanded particles in the present invention. It is a thing. The following experiment was carried out based on the above-mentioned method for producing pre-expanded particles, in which the resin particle section of Table 5 was prepared with a mixing ratio composition corresponding to each experiment number, and the foaming condition section of Table 5 was prepared. The expansion ratio of 16 cc / is obtained by performing the low expansion, first expansion, and second expansion steps at the preselected foaming and expansion temperatures described in each experiment number column of
For the pre-expanded particles of 16 cc / g, the pre-expanded particles of 16 cc / g were further expanded a third time to produce pre-expanded particles having an expansion ratio of 33 cc / g.

【0069】なお実験No.24〜26のものは、実施
例−1の実験No.1〜3で得た発泡倍率16cc/g
の三次発泡粒子を用いて三回目の膨張を行い、発泡倍率
33cc/gの予備発泡粒子を製造した。得られた各々
の発泡粒子について、上記評価方法により発泡倍率、独
立気泡率、平均気泡径、耐油性、耐候性−1,2、耐熱
性−1,2を評価した、その結果を表5、6に示す。ま
た得られた各々の発泡粒子について、前述記載の成形体
の製造方法に基づいて、成形適性温度範囲を、最も良好
な成形品が得られたところの表6の成形条件の項に記載
の成形温度で再度成形し、得られた成形品を使い上記評
価方法により発泡倍率、柔軟性、引裂強度、耐屈曲疲労
性、耐圧縮弾性、圧縮強度を評価した、その結果を表6
に示す。
Experiment No. Nos. 24 to 26 are the same as Experiment No. 1 of Example-1. Foaming ratio of 16 cc / g obtained in 1-3
A third expansion was performed using the third expanded beads of to produce pre-expanded particles having an expansion ratio of 33 cc / g. With respect to each of the obtained expanded particles, the expansion ratio, closed cell ratio, average cell diameter, oil resistance, weather resistance-1, 2 and heat resistance-1, 2 were evaluated by the above evaluation method, and the results are shown in Table 5. 6 shows. Further, for each of the obtained expanded particles, based on the method for producing a molded article described above, the molding suitability temperature range is set to the molding condition described in the molding condition section of Table 6 where the best molded product is obtained. The molded product was remolded at a temperature, and the obtained molded product was used to evaluate the expansion ratio, flexibility, tear strength, flex fatigue resistance, compression elasticity, and compression strength by the above evaluation method. The results are shown in Table 6.
Shown in

【0070】表5、表6の結果によると、本発明の樹脂
密度0.940g/cm3 以上の特定の4成分混合樹脂
から製造して得たもの(実験No.1〜3と実験No.
24〜26)は、発泡倍率16cc/g、33cc/g
の目標の予備発泡粒子が得られ、且つ良好品が得られる
成形適性温度範囲が広く、生産時の型内成形性に優れて
いることが判る。これに対して、比較例として採用する
本発明の4成分のうち1成分以上欠如した比較品、すな
わちLL/HD1/HD2の混合樹脂(実験No.2
7)、HD1/HD2の混合樹脂(実験No.28)、
LL/HD1の混合樹脂(実験No.29)、LL/H
D2の混合樹脂(実験No.30)、LD/LL/HD
2の混合樹脂(実験No.31)から製造して得たもの
は、発泡倍率16cc/gの目標の予備発泡粒子が得ら
れない。また樹脂密度0.940g/cm3 未満のLD
/LL/HD2の混合樹脂から製造して得たもの(実験
No.32〜33)は、発泡倍率16cc/g、33c
c/gの目標の予備発泡粒子が得られるが、成形成形適
性温度範囲が狭く、得られた成形品の圧縮強度が低く、
本発明の目的が達成できないことが判る。
According to the results shown in Tables 5 and 6, those obtained from the specific four-component mixed resin of the present invention having a resin density of 0.940 g / cm 3 or more (Experiment Nos. 1 to 3 and Experiment No. 3).
24-26) is a foaming ratio of 16 cc / g, 33 cc / g
It can be seen that the target pre-expanded particles can be obtained and a good product can be obtained, and the moldability temperature range is wide, and the in-mold moldability during production is excellent. On the other hand, a comparative product lacking one or more of the four components of the present invention used as a comparative example, that is, a mixed resin of LL / HD1 / HD2 (Experiment No. 2).
7), HD1 / HD2 mixed resin (Experiment No. 28),
LL / HD1 mixed resin (Experiment No. 29), LL / H
D2 mixed resin (Experiment No. 30), LD / LL / HD
The product obtained from the mixed resin No. 2 (Experiment No. 31) cannot obtain the target pre-expanded particles having an expansion ratio of 16 cc / g. LD with a resin density of less than 0.940 g / cm 3
What was obtained by manufacturing from a mixed resin of / LL / HD2 (Experiment No. 32 to 33) was a foaming ratio of 16 cc / g, 33 c.
Although the target pre-expanded particles of c / g can be obtained, the temperature range suitable for molding and molding is narrow, and the compression strength of the obtained molded product is low,
It turns out that the object of the present invention cannot be achieved.

【0071】(実施例−3)ここでの実験は、本発明で
言うところの予備発泡粒子にする原料樹脂に特定の4成
分混合樹脂を用い、低発泡工程プラス4回の膨張工程で
良質の発泡倍率60cc/gの予備発泡粒子が得られる
ことを立証しようとするものである。以下の実験は、実
施例−2の実験No.25の発泡倍率33cc/gの予
備発泡粒子を用いて、前述記載の予備発泡粒子の製造方
法に基づいて四回目の膨張を行い、発泡倍率60cc/
gの予備発泡粒子を製造した。得られた予備発泡粒子は
独立気泡率97%、平均気泡径0.52mmの良質な発
泡粒子であった。 (追試例−1)ここでの実験は、特公昭60−1004
7号公報の開示の実施例の追試及び参考比較試験をした
ものである。参考の為の使用樹脂には、特公昭60−1
0048号公報に示すHDを一部追加して行った。
Example 3 In this experiment, a specific four-component mixed resin was used as a raw material resin to be the pre-expanded particles in the present invention, and a low foaming process plus four expansion processes were performed to obtain good quality. It is intended to prove that pre-expanded particles having an expansion ratio of 60 cc / g can be obtained. The following experiment is performed in accordance with the experiment No. Using the pre-expanded particles having an expansion ratio of 33 cc / g of 25, the fourth expansion was performed based on the method for producing the pre-expanded particles described above, and the expansion ratio was 60 cc / g.
g of pre-expanded particles were produced. The obtained pre-expanded particles were good quality expanded particles having a closed cell ratio of 97% and an average cell diameter of 0.52 mm. (Additional test example-1) The experiment here is performed in Japanese Examined Patent Publication No. 60-1004.
These are additional tests and reference comparative tests of the examples disclosed in Japanese Patent Publication No. The resin used for reference is Japanese Patent Publication Sho 60-1.
The HD shown in Japanese Patent Publication No. 0048 was partially added.

【0072】表7に示す樹脂を、93ミリの二軸押出機
を用いて溶融混練りし、押出機の先端に取付けダイスよ
りストランド状に押出し、冷却切断して樹脂粒子を製造
した。耐圧容器内に表7に示す樹脂粒子100重量部、
発泡剤としてジクロロジフルオロメタン25重量部、水
300重量部、及び分散剤として微粒状酸化アルミニウ
ム0.5重量部を収容し、撹拌下で各々の所定の温度
(90〜150℃)昇温し、耐圧容器内の圧力を10〜
50kg/cm2 Gに保持しながら容器の一端を開放
し、樹脂粒子と温水とを同時に大気下に放出して発泡さ
せて、すなわちフラッシュ発泡法により表7の実験N
o.イ〜チに示す発泡倍率16cc/gと33cc/g
の種々の予備発泡粒子を得た。この時の各実験毎の発泡
温度は次に示す温度℃で行った。実験No.イは121
℃。実験No.ロは120℃。実験No.ハは119
℃。実験No.ニは115℃。実験No.ホは114
℃。実験No.ヘは126℃。実験No.トは125
℃。実験No.チは120℃。
The resins shown in Table 7 were melt-kneaded using a 93 mm twin-screw extruder, attached to the tip of the extruder and extruded in a strand form from a die, and cooled and cut to produce resin particles. 100 parts by weight of the resin particles shown in Table 7 in the pressure container,
25 parts by weight of dichlorodifluoromethane as a foaming agent, 300 parts by weight of water, and 0.5 parts by weight of finely divided aluminum oxide as a dispersant are contained, and each predetermined temperature (90 to 150 ° C.) is raised under stirring, Adjust the pressure in the pressure vessel to 10
While holding at 50 kg / cm 2 G, one end of the container was opened, and the resin particles and warm water were simultaneously released into the atmosphere to foam, that is, the experiment N of Table 7 was performed by the flash foaming method.
o. Foaming ratio 16cc / g and 33cc / g
Various pre-expanded particles were obtained. The foaming temperature in each experiment at this time was carried out at the temperature shown below. Experiment No. I is 121
° C. Experiment No. B is 120 ℃. Experiment No. Ha is 119
° C. Experiment No. D is 115 ° C. Experiment No. E 114
° C. Experiment No. F is 126 ℃. Experiment No. Is 125
° C. Experiment No. The temperature is 120 ° C.

【0073】次に、上記フラッシュ発泡法で得られた発
泡倍率に合うように、前述記載の多段昇温発泡法による
予備発泡粒子の製造方法に基づいて、低発泡、一回目膨
張、二回目膨張工程まで行って、発泡倍率16cc/g
の予備発泡粒子を、16cc/gの予備発泡粒子が得ら
れたものについては更に、三回目の膨張を行って、発泡
倍率33cc/gの予備発泡粒子を製造した。この時の
各実験毎の発泡、膨張温度は、予め選んでおいたところ
の次に示す水蒸気圧kg/cm2 G(温度℃)で行っ
た。
Next, according to the method for producing pre-expanded particles by the above-described multi-stage temperature-increased foaming method, a low expansion, a first expansion, and a second expansion so as to match the expansion ratio obtained by the flash expansion method. Go up to the process, foaming ratio 16cc / g
With respect to the pre-expanded particles obtained in 16 cc / g, the pre-expanded particles having a foaming ratio of 33 cc / g were manufactured by further expanding the pre-expanded particles of 16 cc / g. The foaming and expansion temperatures in each experiment at this time were carried out at the following vapor pressure of kg / cm 2 G (temperature ° C) which was selected in advance.

【0074】[0074]

【表1】 [Table 1]

【0075】上記実験で得られた予備発泡粒子につい
て、上記評価方法により発泡倍率、独立気泡率、平均気
泡径、耐油性、耐候性−1,2、耐熱性−1,2を評価
し、その結果を表7に示す。また、得られた各々の発泡
粒子について、前述記載の成形体の製造方法に基づい
て、成形適性温度範囲を、最も良好な成形品が得られた
ところの表7の成形条件の項に記載の成形温度で再度成
形し、得られた成形品を使い上記評価方法により発泡倍
率、柔軟性、引裂強度、耐屈曲疲労性、耐圧縮弾性、圧
縮強度を評価し、その結果を表7に示す。
With respect to the pre-expanded particles obtained in the above experiment, the expansion ratio, closed cell ratio, average cell diameter, oil resistance, weather resistance-1, 2 and heat resistance-1, 2 were evaluated by the above evaluation methods, and The results are shown in Table 7. Further, for each of the obtained expanded particles, based on the above-mentioned method for producing a molded article, the molding suitability temperature range is set in the molding condition section of Table 7 where the best molded article is obtained. Remolding was performed at the molding temperature, and the obtained molded product was used to evaluate the expansion ratio, flexibility, tear strength, flex fatigue resistance, compression elasticity, and compression strength by the above evaluation methods, and the results are shown in Table 7.

【0076】表7の結果によると、実験No.イ〜チの
「フラッシュ発泡法」では、密度0.915〜0.95
0g/cc範囲のLLDPE、HDPEは、その樹脂密
度のほぼ全域で発泡倍率16cc/g、33cc/gの
予備発泡粒子を得ることが可能であるが、実験No.リ
〜レの「多段昇温発泡法」では、樹脂密度が0.915
g/cc以上、0.930g/cc未満の領域は発泡倍
率16cc/gの予備発泡粒子になり得ても、樹脂密度
が0.930g/cc以上、0.965g/ccの範囲
は発泡倍率16cc/gの発泡粒子なり得ない領域であ
ることが判る。また更に、樹脂密度が0.915g/c
c以上、0.930g/cc未満のLL樹脂から「多段
昇温発泡法」で得られた予備発泡粒子は、同一密度、種
類の樹脂から「フラッシュ発泡法」で得られた予備発泡
粒子より、型内成形性の劣るものであることが判る。こ
の事から、「多段昇温発泡法」で得られた予備発泡粒子
は、実用特性を満たす成形体になりうる良質の発泡粒子
とは言えないものであることは明白である。
According to the results of Table 7, the experiment No. In the "flash foaming method" of I to H, the density is 0.915 to 0.95.
With LLDPE and HDPE in the range of 0 g / cc, it is possible to obtain pre-expanded particles having an expansion ratio of 16 cc / g and 33 cc / g over almost the entire resin density. The resin density is 0.915 in the "multi-stage temperature rising foaming method"
Even if the area of g / cc or more and less than 0.930 g / cc can be pre-expanded particles having an expansion ratio of 16 cc / g, the resin density is 0.930 g / cc or more and the range of 0.965 g / cc has an expansion ratio of 16 cc. It can be seen that this is a region where the expanded particles of / g cannot be obtained. Furthermore, the resin density is 0.915 g / c
The pre-expanded particles obtained by the "multi-stage temperature-increasing foaming method" from the LL resin of c or more and less than 0.930 g / cc are more than the pre-expanded particles obtained by the "flash foaming method" from the resins of the same density and kind, It can be seen that the in-mold formability is poor. From this fact, it is clear that the pre-expanded particles obtained by the "multi-stage temperature rising foaming method" cannot be said to be high-quality expanded particles that can be formed into a molded product that satisfies practical characteristics.

【0077】(追試例−2)ここでの実験は、追試例−
1の実験No.ル(樹脂は表3のVI、ポリマ−密度
0.940cc/g)の製造過程の一回目の膨張で得ら
れたところの発泡倍率9cc/g、独立気泡率68%、
平均気泡径0.25mmの予備発泡粒子に対して、型内
成形性がどうかみた実験である。前述記載の成形体の製
造方法に基づいて成形し、良好品の成形体が得られるか
どうか調べた。その結果、良好な成形品は得られず、型
内成形性は×記号のものであった。
(Additional test example-2) The experiment here is an additional test example-
Experiment No. 1 (Resin is VI in Table 3, polymer density 0.940 cc / g), the expansion ratio was 9 cc / g, the closed cell ratio was 68%, which was obtained by the first expansion of the manufacturing process.
This is an experiment in which the in-mold moldability was checked for pre-expanded particles having an average cell diameter of 0.25 mm. Molding was carried out based on the above-described method for manufacturing a molded product, and it was examined whether a good molded product could be obtained. As a result, a good molded product was not obtained, and the in-mold moldability was x.

【0078】(追試例−3)ここでの実験は、追試例−
1での多段昇温発泡法で発泡倍率16cc/gの発泡粒
子になり得なかったところの表7の実験No.ヌに示す
樹脂(表3のVII、ポリマ−密度0.945cc/
g)粒子に対して、低発泡工程の発泡剤をフラッシュ発
泡法で使用したものに替えてみたら、発泡粒子になり得
るかどうかみた実験である。
(Additional test example-3) The experiment here is an additional test example-
Experiment No. 1 in Table 7 shows that expanded multi-stage temperature-increasing foaming method in Example 1 could not result in expanded particles having an expansion ratio of 16 cc / g. No. resin (VII in Table 3, polymer density 0.945 cc /
g) It is an experiment to see if the foaming agent in the low foaming step may be replaced with the one used in the flash foaming method for the particles to form expanded particles.

【0079】発泡剤としてジクロロジフルオロメタンの
蒸気と温度80℃、圧力10kg/cm2 Gの条件下で
30分かけて樹脂粒子中にジクロロジフルオロメタンを
含浸した以外は、前述記載の多段昇温発泡法による予備
発泡粒子の製造方法に基づいて、低発泡、一回目膨張、
二回目膨張工程まで行って、発泡倍率16cc/gの予
備発泡粒子を製造した。この時の各実験毎の発泡、膨張
温度は、予め選んでおいたところの、低発泡温度が水蒸
気圧1.20kg/cm2 G(123.2℃)、一回目
の膨張温度が水蒸気圧1.25kg/cm2 G(124
℃)、二回目の膨張温度が水蒸気圧1.25kg/cm
2 G(124℃)で行った。その結果、目標とする発泡
倍率16cc/gの予備発泡粒子を得ることができなか
った。
The multi-stage temperature-increased foaming described above except that dichlorodifluoromethane was used as a foaming agent and the resin particles were impregnated with dichlorodifluoromethane for 30 minutes under the conditions of a temperature of 80 ° C. and a pressure of 10 kg / cm 2 G. Based on the method of manufacturing pre-expanded particles by the method, low foaming, first expansion,
The pre-expanded particles having an expansion ratio of 16 cc / g were manufactured by performing the second expansion step. Regarding the foaming and expansion temperatures for each experiment, the low foaming temperature was 1.20 kg / cm 2 G (123.2 ° C.), and the first expansion temperature was 1 0.25 kg / cm 2 G (124
℃), the second expansion temperature is steam pressure 1.25kg / cm
Performed at 2 G (124 ° C). As a result, the target pre-expanded particles with an expansion ratio of 16 cc / g could not be obtained.

【0080】(追試例−4)ここでの実験は、追試例−
1での多段昇温発泡法で発泡倍率16cc/gの発泡粒
子になり得なかったところの表7の実験No.ルに示す
樹脂(表3のVI、ポリマ−密度0.940cc/g)
粒子に対して、発泡工程の前にこの樹脂粒子を熱処理し
て発泡、膨張に適性な加熱温度範囲を広げてみたら、発
泡粒子になり得るかどうかみた実験である。
(Additional test example-4) The experiment here is an additional test example-
Experiment No. 1 in Table 7 shows that expanded multi-stage temperature-increasing foaming method in Example 1 could not result in expanded particles having an expansion ratio of 16 cc / g. Resin shown in Table 3 (VI in Table 3, polymer density 0.940 cc / g)
This is an experiment to see if the resin particles can be heat-treated before the foaming step to expand the heating temperature range suitable for foaming and expansion to form expanded particles.

【0081】表7の実験No.ルに示す樹脂(表3のV
I)粒子を圧力容器を使い、追試例−1のフラッシュ発
泡方法と同様な方法で水に分散させ、発泡剤を入れない
で温度120℃、123℃、125℃の3水準で30分
間保持して熱処理した後常温まで冷却して、熱処理した
3種類の樹脂粒子を得た。得られた樹脂粒子を本文記載
の方法でDSC測定したところ、120℃熱処理粒子
(実験No.ツ)は、融解カ−ブに121℃と126℃
の二つのピ−ク温度を、全体の融解熱量の50%に当た
る温度(T50)が122℃、全体の融解熱量の70%
に当たる温度(T70)が125℃を、123℃熱処理
粒子(実験No.ネ)は融解カ−ブに122℃と127
℃の二つのピ−ク温度を、T50が121℃、T70が
125℃を、125℃熱処理粒子(実験No.ナ)は融
解カ−ブに127℃の一つのピ−ク温度を、T50が1
23℃、T70が125℃をもつものであった。これら
の熱処理した樹脂粒子を用い、前述記載の多段昇温発泡
法による予備発泡粒子の製造方法に基づいて、低発泡、
一回目膨張、二回目膨張工程まで行って、発泡倍率16
cc/gの予備発泡粒子を製造した。この時の各実験毎
の発泡、膨張温度は、予め選んでおいたところの、次に
示す水蒸気圧kg/cm2 G(温度℃)で行った。
Experiment No. 7 in Table 7 Resin (V in Table 3)
I) Using a pressure vessel, the particles are dispersed in water in the same manner as in the flash foaming method of additional test example-1, and the temperature is kept at three levels of 120 ° C, 123 ° C and 125 ° C for 30 minutes without adding a foaming agent. After heat treatment, it was cooled to room temperature to obtain three kinds of heat-treated resin particles. The obtained resin particles were subjected to DSC measurement by the method described in the text, and the heat-treated particles at 120 ° C. (experimental No.) were 121 ° C. and 126 ° C. in the melting curve.
The temperature (T50) corresponding to 50% of the total heat of fusion is 122 ° C and 70% of the total heat of fusion.
The temperature (T70) which hits is 125 ° C, and the heat-treated particles at 123 ° C (Experiment No. N) are 122 ° C and 127
Two peak temperatures of ℃, T50 is 121 ℃, T70 is 125 ℃, 125 ℃ heat-treated particles (Experiment No. na), the melting curve is one peak temperature of 127 ℃, T50 is 1
23 ° C., T70 was 125 ° C. Using these heat-treated resin particles, based on the method for producing pre-expanded particles by the multistage temperature rising foaming method described above, low foaming,
Expand to the first expansion and the second expansion process to obtain a foaming ratio of 16
Pre-expanded particles of cc / g were produced. The foaming and expansion temperatures in each experiment at this time were carried out at the following vapor pressure of kg / cm 2 G (temperature ° C), which was selected in advance.

【0082】[0082]

【表2】 [Table 2]

【0083】その結果、120℃熱処理粒子(実験N
o.ツ)と125℃熱処理粒子(実験No.ナ)からは
目標とする発泡倍率16cc/gの予備発泡粒子は得ら
れなかった。123℃熱処理粒子(実験No.ネ)から
は、発泡倍率16cc/g、独立気泡率72%、平均気
泡径0.35mmの予備発泡粒子が得られた。この予備
発泡粒子を前述記載の成形体の製造方法に基づいて成形
し、良好品の成形体が得られるかどうか調べた。その結
果、良好な成形品は得られず、型内成形性は×記号のも
のであった。
As a result, 120 ° C. heat treated particles (Experiment N
o. And the 125 ° C. heat-treated particles (Experiment No. NA), pre-expanded particles having a target expansion ratio of 16 cc / g could not be obtained. Pre-expanded particles having an expansion ratio of 16 cc / g, a closed cell ratio of 72%, and an average cell diameter of 0.35 mm were obtained from the 123 ° C. heat-treated particles (Experiment No. N). The pre-expanded particles were molded according to the method for producing a molded article described above, and it was examined whether a good molded article could be obtained. As a result, a good molded product was not obtained, and the in-mold moldability was x.

【0084】[0084]

【表3】 [Table 3]

【0085】[0085]

【表4】 [Table 4]

【0086】[0086]

【表5】 [Table 5]

【0087】[0087]

【表6】 [Table 6]

【0088】[0088]

【表7】 [Table 7]

【0089】[0089]

【発明の効果】本発明は、上述の構成を持つことによっ
て、樹脂密度が0.940〜0.952g/cm3 の領
域の高密度のポリエチレン系樹脂の無架橋予備発泡粒子
が容易に得られる「多段昇温発泡法」を完成した。そし
て輸送・貯蔵費が大幅に削減できると言う利点を活用出
来るし、得られる予備発泡粒子は、その基本特性(例え
ば剛性、圧縮強度)が高まっており、更に広い成形適性
温度範囲を有しているので、緩衝特性を損なわずに例え
ば荷重受け面積の縮小化、発泡体の肉厚みの縮小化、或
いは高発泡化した発泡成形体が生産規模で容易にできる
効果がある。従って本発明は、緩衝材(発泡成形体)の
総合的なコストダウンに貢献できる。
EFFECTS OF THE INVENTION According to the present invention, by having the above-mentioned constitution, non-crosslinked pre-expanded particles of high density polyethylene resin having a resin density of 0.940 to 0.952 g / cm 3 can be easily obtained. The "multi-stage temperature rising foaming method" was completed. In addition, the advantage that the transportation and storage costs can be greatly reduced can be utilized, and the obtained pre-expanded particles have higher basic properties (eg rigidity, compressive strength) and have a wider temperature range suitable for molding. Therefore, there is an effect that, for example, the load receiving area can be reduced, the foam wall thickness can be reduced, or a highly foamed foamed molded product can be easily produced without impairing the cushioning characteristics. Therefore, the present invention can contribute to the overall cost reduction of the cushioning material (foam molded article).

【図面の簡単な説明】[Brief description of drawings]

【図1】実験図であり、一旦発泡温度に迄加熱し冷却し
た後の原料樹脂を示差走査熱量計(DSC)で測った融
解吸熱曲線の図である。
FIG. 1 is an experimental diagram, and is a diagram of a melting endotherm curve measured by a differential scanning calorimeter (DSC) of a raw material resin once heated to a foaming temperature and cooled.

【図2】図1と同様に実験図で、一旦発泡温度に迄加熱
し冷却した後の原料樹脂を示差走査熱量計(DSC)で
測った融解吸熱曲線の図である。
FIG. 2 is a diagram of a melting endotherm curve measured by a differential scanning calorimeter (DSC) of a raw material resin after being once heated to a foaming temperature and cooled, which is an experimental diagram similar to FIG.

【図3】図1と同様に実験図で、一旦発泡温度に迄加熱
し冷却した後の原料樹脂を示差走査熱量計(DSC)で
測った融解吸熱曲線の図である。
FIG. 3 is a diagram of a melting endotherm curve measured by a differential scanning calorimeter (DSC) of a raw material resin after being once heated to a foaming temperature and cooled, which is an experimental diagram similar to FIG.

【図4】図1と同様に実験図で、一旦発泡温度に迄加熱
し冷却した後の原料樹脂を示差走査熱量計(DSC)で
測った融解吸熱曲線の図である。
FIG. 4 is a diagram of a melting endotherm curve measured by a differential scanning calorimeter (DSC) of a raw material resin after being once heated to a foaming temperature and cooled, which is an experimental diagram similar to FIG. 1.

【図5】図1と同様に実験図で、一旦発泡温度に迄加熱
し冷却した後の原料樹脂を示差走査熱量計(DSC)で
測った融解吸熱曲線の図である。
FIG. 5 is a diagram of a melting endotherm curve measured by a differential scanning calorimeter (DSC) of a raw material resin after being once heated to a foaming temperature and cooled, which is an experimental diagram similar to FIG. 1.

【図6】図1と同様に実験図で、一旦発泡温度に迄加熱
し冷却した後の原料樹脂を示差走査熱量計(DSC)で
測った融解吸熱曲線の図である。
FIG. 6 is a diagram of a melting endotherm curve measured by a differential scanning calorimeter (DSC) of a raw material resin after being once heated to a foaming temperature and cooled in an experimental diagram similar to FIG.

【図7】樹脂密度を高密度化することによる技術上の説
明図である。
FIG. 7 is a technical explanatory view by increasing the resin density.

【図8】本発明の評価に用いた金型(型窩の厚薄の様
子)を説明するための成形体の斜視図である。
FIG. 8 is a perspective view of a molded body for explaining a mold (a state in which a mold cavity is thick and thin) used for evaluation of the present invention.

【図9】金型の面に配置する蒸気流入部材の平面模式図
である。
FIG. 9 is a schematic plan view of a vapor inflow member arranged on the surface of a mold.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリエチレン系樹脂を原料樹脂とし、こ
の樹脂粒子に発泡剤を含浸させ、発泡させることからな
るポリエチレン系樹脂の無架橋予備発泡粒子の製造方法
において、下記(1)、(2)を特徴とするポリエチレ
ン系樹脂の無架橋予備発泡粒子の製造方法。 (1)上記原料樹脂としては、密度0.920〜0.
930g/cm3 、融点(mLD)108〜118℃の
高圧法低密度ポリエチレン樹脂30〜50重量%と、
密度0.916〜0.928g/cm3 、融点(mL
L)118〜123℃の直鎖状低密度ポリエチレン樹脂
5〜30重量%と、密度0.955〜0.970g/
cm3 、融点(mHD2)128〜135℃の直鎖状高
密度ポリエチレン樹脂20〜45重量%と、密度0.
940〜0.954g/cm3 、融点(mHD1)が
[(mHD2+mLL)÷2]±2℃の範囲にある直鎖
状高密度ポリエチレン樹脂10〜35重量%とからな
り、かつ該四成分からなる混合樹脂の密度が0.940
〜0.952g/cm3 である混合樹脂を用いること。 (2)樹脂粒子に発泡剤を含浸させ、発泡させるにあた
っては、該樹脂粒子に発泡剤を含浸せしめ、これを加熱
して、発泡倍率1.5〜3.5cc/gの低発泡粒子と
なし、次に該低発泡粒子の気泡内に発泡剤を含浸させ、
これを加熱してより高い発泡倍率の発泡粒子にする多段
昇温発泡方法を用いること。
1. A method for producing non-crosslinked pre-expanded polyethylene resin particles, which comprises using a polyethylene resin as a raw material resin and impregnating the resin particles with a foaming agent to foam the resin particles. A method for producing non-crosslinked pre-expanded particles of polyethylene resin, which comprises: (1) The raw material resin has a density of 0.920 to 0.
30 to 50% by weight of a high-pressure low-density polyethylene resin having a melting point (mLD) of 108 to 118 ° C. of 930 g / cm 3 .
Density 0.916 to 0.928 g / cm 3 , melting point (mL
L) 5 to 30% by weight of linear low-density polyethylene resin having a temperature of 118 to 123 ° C. and a density of 0.955 to 0.970 g /
cm 3, and a melting point (mHD2) 128~135 20~45 wt% of linear high density polyethylene resins ° C., density 0.
940 to 0.954 g / cm 3 and a linear high-density polyethylene resin having a melting point (mHD1) in the range of [(mHD2 + mLL) ÷ 2] ± 2 ° C. of 10 to 35% by weight and consisting of the four components. Density of mixed resin is 0.940
Use a mixed resin that is ˜0.952 g / cm 3 . (2) When the resin particles are impregnated with the foaming agent and foamed, the resin particles are impregnated with the foaming agent and heated to form low foamed particles having an expansion ratio of 1.5 to 3.5 cc / g. , And then impregnating a foaming agent in the bubbles of the low-expanded particles,
Use a multi-stage temperature-rising foaming method in which this is heated to form expanded particles having a higher expansion ratio.
【請求項2】 低発泡粒子の気泡内に発泡剤を含浸さ
せ、これを加熱してより高い発泡倍率の発泡粒子にする
工程を2〜4回繰り返えして、発泡倍率6〜60cc/
gの発泡粒子となすことを特徴とする請求項1記載のポ
リエチレン系樹脂の無架橋予備発泡粒子の製造方法。
2. The step of impregnating the foaming agent into the cells of the low-expanded particles and heating this to obtain expanded particles having a higher expansion ratio is repeated 2 to 4 times to obtain an expansion ratio of 6 to 60 cc /
The method for producing pre-expanded non-crosslinked polyethylene resin particles according to claim 1, wherein the expanded particles are g.
JP19409895A 1995-07-07 1995-07-07 Method for producing non-crosslinked pre-expanded particles of polyethylene resin Expired - Lifetime JP3537226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19409895A JP3537226B2 (en) 1995-07-07 1995-07-07 Method for producing non-crosslinked pre-expanded particles of polyethylene resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19409895A JP3537226B2 (en) 1995-07-07 1995-07-07 Method for producing non-crosslinked pre-expanded particles of polyethylene resin

Publications (2)

Publication Number Publication Date
JPH0925356A true JPH0925356A (en) 1997-01-28
JP3537226B2 JP3537226B2 (en) 2004-06-14

Family

ID=16318921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19409895A Expired - Lifetime JP3537226B2 (en) 1995-07-07 1995-07-07 Method for producing non-crosslinked pre-expanded particles of polyethylene resin

Country Status (1)

Country Link
JP (1) JP3537226B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924244A2 (en) * 1997-12-15 1999-06-23 Kaneka Corporation Non-crosslinked linear low density polyethylene preexpanded particles
WO2015076306A1 (en) 2013-11-20 2015-05-28 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
CN105037912A (en) * 2015-07-29 2015-11-11 无锡会通新材料有限公司 Low-shrinkage high-resilience EPE beads and preparation method
JP2021509421A (en) * 2017-12-26 2021-03-25 ダウ グローバル テクノロジーズ エルエルシー Composition containing multimodal ethylene polymer and low density polyethylene (LDPE)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0924244A2 (en) * 1997-12-15 1999-06-23 Kaneka Corporation Non-crosslinked linear low density polyethylene preexpanded particles
EP0924244A3 (en) * 1997-12-15 2000-05-17 Kaneka Corporation Non-crosslinked linear low density polyethylene preexpanded particles
WO2015076306A1 (en) 2013-11-20 2015-05-28 株式会社カネカ Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
US10351688B2 (en) 2013-11-20 2019-07-16 Kaneka Corporation Polyethylene resin foamed particles, polyethylene resin in-mold foam-molded article, and production methods thereof
CN105037912A (en) * 2015-07-29 2015-11-11 无锡会通新材料有限公司 Low-shrinkage high-resilience EPE beads and preparation method
JP2021509421A (en) * 2017-12-26 2021-03-25 ダウ グローバル テクノロジーズ エルエルシー Composition containing multimodal ethylene polymer and low density polyethylene (LDPE)

Also Published As

Publication number Publication date
JP3537226B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP5360975B2 (en) Method for producing polyethylene resin foam blow molded article and polyethylene resin foam blow molded article
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
EP0775722A1 (en) Foamed particles of propylene homopolymer and moldings of said particles
JP3995714B2 (en) Polyethylene pre-expanded particles
JP5587867B2 (en) Polypropylene copolymer resin expanded particles
WO2016111017A1 (en) Propylene resin foam particles and foam particle molded article
JP5190426B2 (en) Polyethylene for hollow foam molding
CN117377719A (en) Polypropylene resin expanded beads, process for producing the same, and molded article of polypropylene resin expanded beads
CN113045827B (en) Polypropylene resin foam particles and molded article of the foam particles
JPH0925356A (en) Production of noncross-linked preexpanded polyethylene resin particle
JP6346919B2 (en) Method for producing thermoplastic polyurethane expanded particles
JP7130080B1 (en) Expanded polyethylene resin particles, method for producing expanded polyethylene resin particles
JP5841076B2 (en) Polypropylene-based resin foamed particles and polypropylene-based resin in-mold foam molding
JP7225038B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
JPH05293903A (en) Highly foamed sheet of non-crosslinked polypropylenebased resin and production thereof
JP5460227B2 (en) Polypropylene resin in-mold foam molding
JP5808841B2 (en) Method for producing polyethylene resin extruded foam sheet
EP4079797A1 (en) Multilayer expanded beads and molded article thereof
JPS59140033A (en) Manufacture of biaxially stretched polyethylene bottle
WO2023189114A1 (en) Expanded beads, and expanded bead molded body
WO2023189115A1 (en) Expanded bead production method, and expanded beads
CN117916297A (en) Polyethylene resin foam particles and method for producing same
JP2023176570A (en) Foamed particle
JP2023148536A (en) Foamed particle and foamed particle molding
JP2023161416A (en) Production method of expanded bead, and expanded bead

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

EXPY Cancellation because of completion of term