JP6346919B2 - Method for producing thermoplastic polyurethane expanded particles - Google Patents

Method for producing thermoplastic polyurethane expanded particles Download PDF

Info

Publication number
JP6346919B2
JP6346919B2 JP2016175429A JP2016175429A JP6346919B2 JP 6346919 B2 JP6346919 B2 JP 6346919B2 JP 2016175429 A JP2016175429 A JP 2016175429A JP 2016175429 A JP2016175429 A JP 2016175429A JP 6346919 B2 JP6346919 B2 JP 6346919B2
Authority
JP
Japan
Prior art keywords
thermoplastic polyurethane
particles
tpu
foaming agent
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016175429A
Other languages
Japanese (ja)
Other versions
JP2018039919A (en
Inventor
展允 越田
展允 越田
政春 及川
政春 及川
林 達也
林  達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2016175429A priority Critical patent/JP6346919B2/en
Priority to PCT/JP2017/031875 priority patent/WO2018047794A1/en
Priority to CN201780054362.0A priority patent/CN109689752B/en
Priority to TW106130361A priority patent/TW201815922A/en
Publication of JP2018039919A publication Critical patent/JP2018039919A/en
Application granted granted Critical
Publication of JP6346919B2 publication Critical patent/JP6346919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers

Description

本発明は、熱可塑性ポリウレタン(Thermoplastic Polyurethane;以下、TPUと略称する場合もある)発泡粒子の製造方法に関する。   The present invention relates to a method for producing foamed particles of thermoplastic polyurethane (hereinafter, sometimes abbreviated as TPU).

TPUは、熱可塑性エラストマーの一種であるが、加硫ゴムに近い特性を示し、耐摩耗性や耐寒性、反発弾性に優れている。また、機械的強度も高いため、エンジニアリングエラストマーとして位置付けられ、緩衝材や防振材、スポーツ用品、自動車用部材等の様々な用途で使用されている。   TPU is a kind of thermoplastic elastomer, but exhibits properties similar to vulcanized rubber, and is excellent in wear resistance, cold resistance, and resilience. In addition, since it has high mechanical strength, it is positioned as an engineering elastomer and is used in various applications such as cushioning materials, vibration-proof materials, sporting goods, and automobile members.

このTPUを発泡させた発泡成形体は、耐摩耗性や反発弾性等の優れた特性を保ちつつ、軽量化や柔軟化を図ることができるため、今後、スポーツ用品、自動車用部材等でのさらなる用途展開が期待される。
しかしながら、TPU発泡粒子の製造方法は、未だ開発途上であって確立されていないのが実情である。
TPU発泡粒子の製造方法としては、例えば、特許文献1及び2に記載されている。
特許文献1には、超臨界状態の二酸化炭素が含浸されたTPU粒子を発泡させ、TPU発泡粒子を製造する方法が記載されている。具体的には、まず、反応釜中にTPU粒子及び水を添加し、さらに二酸化炭素を添加する。次に、反応釜内の温度と圧力とを制御して二酸化炭素を超臨界状態とした後、反応釜内を90〜140℃に上昇させて、その温度で保持する。そして、反応釜内から保圧された圧力タンク中に、超臨界状態の二酸化炭素が含浸されたTPU粒子を放出し、70℃以下まで降温させ、一段目の発泡を行いTPU一次発泡粒子を得る。その後、TPU一次発泡粒子に対して二段目の常圧発泡を行いTPU発泡粒子を製造する方法が記載されている。
Since the foamed molded body obtained by foaming this TPU can achieve weight reduction and flexibility while maintaining excellent properties such as wear resistance and impact resilience, it will be further used in sporting goods, automotive parts, etc. in the future. Application expansion is expected.
However, the manufacturing method of TPU expanded particles is still under development and has not been established.
As a manufacturing method of TPU expanded particle, it describes in patent documents 1 and 2, for example.
Patent Document 1 describes a method of producing TPU foamed particles by foaming TPU particles impregnated with carbon dioxide in a supercritical state. Specifically, first, TPU particles and water are added to the reaction kettle, and carbon dioxide is further added. Next, after controlling the temperature and pressure in the reaction kettle to bring carbon dioxide into a supercritical state, the temperature in the reaction kettle is raised to 90 to 140 ° C. and maintained at that temperature. Then, TPU particles impregnated with carbon dioxide in a supercritical state are released into the pressure tank held from the inside of the reaction kettle, the temperature is lowered to 70 ° C. or lower, and first-stage foaming is performed to obtain TPU primary foamed particles. . Thereafter, a method of producing TPU expanded particles by performing second-stage normal pressure expansion on the TPU primary expanded particles is described.

特許文献2には、0.1〜5phrの気泡核剤を混合したTPU粒子を、発泡剤と水と共に耐圧容器に添加し、容器内を110〜135℃、10〜25bar(1.0〜2.5MPa)に昇温、昇圧して保持した後、容器内の内容物を大気中に放出することにより、発泡剤が含浸されたTPU粒子を発泡させて、TPU発泡粒子を製造する方法が記載されている。   In Patent Document 2, TPU particles mixed with 0.1 to 5 phr of cell nucleating agent are added to a pressure vessel together with a blowing agent and water, and the inside of the vessel is set to 110 to 135 ° C. and 10 to 25 bar (1.0 to 2). And a method of producing TPU foamed particles by foaming the TPU particles impregnated with the foaming agent by releasing the contents in the container to the atmosphere after the temperature is raised to 5 MPa) Has been.

中国特許公開第104130439号公報Chinese Patent Publication No. 104130430 中国特許公開第104231592号公報Chinese Patent Publication No. 104231592

しかしながら、引用文献1のように、発泡剤として超臨界状態の二酸化炭素を用いると、TPU粒子への二酸化炭素の含浸量が過度に多くなりすぎる。そのため、超臨界状態の二酸化炭素を用いて、100〜300kg/mのTPU発泡粒子を一段で製造しようとする場合、発泡時の温度をかなり下げて発泡を抑制する必要があるため、TPU発泡粒子に残留応力が残りやすくなる。さらに、容器内の圧力と放出雰囲気下の圧力との差が大きくなりすぎるため、TPU粒子の発泡速度が速くなりすぎ、その結果、TPU発泡粒子において結晶が配向しやすくなる。そのため、このようなTPU発泡粒子を型内成形して良好な成形体を得るためには、成形スチームの圧力をかなり高くしなければならないといった問題が生じる。また、発泡時の圧力差が大きすぎると、発泡速度が速くなりすぎるばかりではなく、TPU発泡粒子の気泡が微細化しやすくなり、その結果、型内成形性が低下するといった問題や、得られるTPU発泡粒子成形体の圧縮永久歪みなどの物性が低下するといった問題も生じる。そのため、引用文献1では、一定の加圧下にTPU粒子を発泡させて低発泡倍率のTPU発泡粒子を作製し、その後別工程でさらに発泡させる、二段階での発泡(二段発泡)を行っているが、このような二段発泡法では生産性に劣るという問題や、TPU発泡粒子の気泡の均一性が低下するといった問題があった。 However, when carbon dioxide in a supercritical state is used as the foaming agent as in the cited document 1, the amount of carbon dioxide impregnated into the TPU particles becomes excessively large. Therefore, when it is going to manufacture 100-300 kg / m 3 TPU foam particles in one step using carbon dioxide in a supercritical state, it is necessary to considerably reduce the temperature at the time of foaming. Residual stress tends to remain on the particles. Furthermore, since the difference between the pressure in the container and the pressure in the discharge atmosphere becomes too large, the foaming speed of the TPU particles becomes too fast, and as a result, the crystals are easily oriented in the TPU foamed particles. Therefore, in order to obtain such a good molded body by molding such TPU foamed particles in the mold, there arises a problem that the pressure of the forming steam has to be considerably increased. In addition, if the pressure difference during foaming is too large, not only will the foaming speed be too high, but the bubbles in the TPU foamed particles will tend to become finer, resulting in a decrease in in-mold moldability and the resulting TPU. There also arises a problem that physical properties such as compression set of the foamed particle molded body are lowered. For this reason, in Cited Document 1, TPU particles are foamed under a certain pressure to produce TPU foam particles with a low expansion ratio, and then foamed in a separate process, followed by two-stage foaming (two-stage foaming). However, such a two-stage foaming method has a problem that it is inferior in productivity and a problem that the uniformity of bubbles of the TPU foamed particles is lowered.

一方、引用文献2のように、圧力容器内の圧力を2.5MPa以下としてTPU発泡粒子を作製する際に、発泡剤として二酸化炭素を用いた場合、TPU粒子への二酸化炭素の含浸量が少なくなりすぎる。そのため、100〜300kg/mのTPU発泡粒子を作製しようとする場合、発泡時の温度を高めて発泡倍率を向上させる必要や、分子量が極度に小さな(メルトフローレイトが極度に高い)TPU原料を用いて発泡倍率を向上させる必要がある。その結果、TPUの加水分解が促進され、表面性の悪いTPU発泡粒子しか得られなくなるといった問題や、得られるTPU発泡粒子成形体の機械的物性が低下するといった問題があった。さらに、引用文献2の技術では、得られるTPU発泡粒子の気泡が不均一になりやすいといった問題もあった。 On the other hand, when the carbon dioxide is used as the foaming agent when producing the TPU foamed particles with the pressure in the pressure vessel set to 2.5 MPa or less as in the cited document 2, the amount of carbon dioxide impregnated into the TPU particles is small. Too much. Therefore, when preparing TPU expanded particles of 100 to 300 kg / m 3 , it is necessary to increase the expansion ratio by increasing the temperature during expansion, and the TPU raw material has an extremely small molecular weight (extremely high melt flow rate). It is necessary to improve the foaming ratio by using. As a result, hydrolysis of TPU is promoted, and only TPU foam particles having poor surface properties can be obtained, and mechanical properties of the obtained TPU foam particle molded body are lowered. Furthermore, the technique of the cited document 2 has a problem that the bubbles of the obtained TPU expanded particles are likely to be non-uniform.

本発明は、上記課題を解決するためになされたものであり、型内成形性に優れ、表面性に優れた成形体を得ることができるTPU発泡粒子の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a method for producing TPU foamed particles, which is capable of obtaining a molded article having excellent in-mold moldability and excellent surface properties. .

すなわち、本発明は、次の[1]〜[9]を提供する。
[1]密閉容器内で水性媒体に分散させた熱可塑性ポリウレタン粒子に加熱下で発泡剤を含浸させ、発泡剤を含む熱可塑性ポリウレタン粒子を水性散媒と共に密閉容器から放出して発泡させて、見掛け密度100〜300kg/mの熱可塑性ポリウレタン発泡粒子を製造する方法であって、
発泡剤が二酸化炭素を主成分とする物理発泡剤であり、
熱可塑性ポリウレタン粒子は、300〜2000質量ppmの無機粉体を含み、
前記放出時の容器内圧力が2.5MPa(G)を超え4.0MPa(G)以下であることを特徴とする熱可塑性ポリウレタン発泡粒子の製造方法。
[2]無機粉体がタルクであり、タルクの50%体積平均粒子径が1〜15μmであることを特徴とする[1]に記載の熱可塑性ポリウレタン発泡粒子の製造方法。
[3]前記発泡剤含浸時の水性媒体の温度を、80℃以上かつ熱可塑性ポリウレタン粒子の融解温度Tm−20℃以下とし、該温度条件下で、密閉容器内の圧力が2.5MPa(G)を超え7.0MPa(G)以下となるまで、密閉容器内に二酸化炭素を主成分とする物理発泡剤を圧入することにより、熱可塑性ポリウレタン粒子に前記物理発泡剤を含浸させることを特徴とする[1]又は[2]に記載の熱可塑性ポリウレタン発泡粒子の製造方法。
[4]前記放出時の水性媒体の温度が、熱可塑性ポリウレタン粒子の融解温度Tm−60℃以上かつ熱可塑性ポリウレタン粒子の融解温度Tm−20℃以下であることを特徴とする[1]〜[3]のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。
[5]前記放出時の容器内圧力が2.6〜3.4MPa(G)であることを特徴とする[1]〜[4]のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。
[6]熱可塑性ポリウレタン粒子を構成している熱可塑性ポリウレタンがエーテル系熱可塑性ポリウレタンであることを特徴とする[1]〜[5]のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。
[7]熱可塑性ポリウレタン粒子は、300〜950質量ppmの無機粉体を含むことを特徴とする[1]〜[6]のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。
[8]熱可塑性ポリウレタン粒子の190℃、荷重10kgにおけるメルトフローレイトが10〜50g/10分であることを特徴とする[1]〜[7]のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。
[9]熱可塑性ポリウレタン粒子を構成している熱可塑性ポリウレタンのタイプAデュロメータ硬さが90以下であることを特徴とする[1]〜[8]のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。
That is, the present invention provides the following [1] to [9].
[1] A thermoplastic polyurethane particle dispersed in an aqueous medium in a sealed container is impregnated with a foaming agent under heating, and the thermoplastic polyurethane particles containing the foaming agent are discharged together with the aqueous dispersion medium from the sealed container and foamed. A method for producing thermoplastic polyurethane foam particles having an apparent density of 100 to 300 kg / m 3 , comprising:
The foaming agent is a physical foaming agent mainly composed of carbon dioxide,
The thermoplastic polyurethane particles contain 300 to 2000 mass ppm of inorganic powder,
The method for producing thermoplastic polyurethane foam particles, wherein the pressure in the container at the time of release is more than 2.5 MPa (G) and not more than 4.0 MPa (G).
[2] The method for producing thermoplastic polyurethane foam particles according to [1], wherein the inorganic powder is talc and the talc has a 50% volume average particle diameter of 1 to 15 μm.
[3] The temperature of the aqueous medium when impregnated with the foaming agent is 80 ° C. or higher and the melting temperature Tm−20 ° C. or lower of the thermoplastic polyurethane particles, and the pressure in the sealed container is 2.5 MPa (G ) To 7.0 MPa (G) or less, and the physical foaming agent is impregnated with thermoplastic polyurethane particles by press-fitting a physical foaming agent mainly composed of carbon dioxide into a sealed container. The method for producing thermoplastic polyurethane foam particles according to [1] or [2].
[4] The temperature of the aqueous medium at the time of release is not lower than the melting temperature Tm-60 ° C. of the thermoplastic polyurethane particles and not higher than the melting temperature Tm-20 ° C. of the thermoplastic polyurethane particles. 3] The process for producing thermoplastic polyurethane foam particles according to any one of [3].
[5] The method for producing thermoplastic polyurethane foam particles according to any one of [1] to [4], wherein the pressure in the container at the time of discharge is 2.6 to 3.4 MPa (G).
[6] The method for producing thermoplastic polyurethane foam particles according to any one of [1] to [5], wherein the thermoplastic polyurethane constituting the thermoplastic polyurethane particles is an ether-based thermoplastic polyurethane.
[7] The method for producing thermoplastic polyurethane foam particles according to any one of [1] to [6], wherein the thermoplastic polyurethane particles contain 300 to 950 mass ppm of inorganic powder.
[8] The thermoplastic polyurethane foam particles according to any one of [1] to [7], wherein the thermoplastic polyurethane particles have a melt flow rate of 10 to 50 g / 10 min at 190 ° C. and a load of 10 kg. Production method.
[9] The thermoplastic polyurethane foam particles according to any one of [1] to [8], wherein the type A durometer hardness of the thermoplastic polyurethane constituting the thermoplastic polyurethane particles is 90 or less. Production method.

本発明のTPU発泡粒子の製造方法によれば、型内成形性に優れ、表面性に優れた成形体を得ることができる発泡粒子が得られる。   According to the method for producing TPU foamed particles of the present invention, foamed particles that are excellent in in-mold moldability and capable of obtaining a molded article having excellent surface properties are obtained.

[熱可塑性ポリウレタン(TPU)]
本発明で製造するTPU発泡粒子(以下、単に発泡粒子ともいう。)を構成するTPUは、ジイソシアネートと鎖延長剤(短鎖グリコールなどのジオール化合物)とがウレタン結合で重合したハードセグメントと、エーテル基、エステル基、カーボネート基などを含む高分子鎖からなるソフトセグメントが、相互に結合した構造を有している。そして、常温領域では、ソフトセグメントが弾性を発現し、かつ、ハードセグメントが強固な水素結合を生成して物理架橋点として作用することによりゴムに近い弾性を示す。
[Thermoplastic polyurethane (TPU)]
The TPU constituting the TPU expanded particles produced in the present invention (hereinafter also simply referred to as expanded particles) is a hard segment obtained by polymerizing a diisocyanate and a chain extender (a diol compound such as a short-chain glycol) via a urethane bond, and an ether. A soft segment composed of a polymer chain containing a group, an ester group, a carbonate group or the like has a structure in which they are bonded to each other. In the normal temperature region, the soft segment exhibits elasticity, and the hard segment generates a strong hydrogen bond and acts as a physical crosslinking point, thereby exhibiting elasticity close to rubber.

TPUにおいては、ソフトセグメントのタイプが、TPUの特性に大きな影響を与える。エステル系TPUは、特に、機械的強度や耐熱性等に優れ、一方、エーテル系TPUは、特に、耐寒性や耐加水分解、耐菌性等に優れている。したがって、TPU発泡粒子成形体に求められる特性に応じて、使用するTPUの種類を適宜選択することができる。   In TPU, the type of soft segment has a great influence on the characteristics of TPU. The ester-based TPU is particularly excellent in mechanical strength, heat resistance, and the like, while the ether-based TPU is particularly excellent in cold resistance, hydrolysis resistance, bacteria resistance, and the like. Therefore, the type of TPU to be used can be appropriately selected according to the characteristics required for the TPU expanded particle molded body.

前記TPUの構成要素は、特に限定されるものではなく、発泡粒子を型内成形して得られるTPU発泡粒子成形体(以下、単に発泡成形体ともいう。)に求められる物性に応じて適宜選択することができる。エーテル系TPUは、エステル系TPUに比べ、耐加水分解性が優れることから、エーテル系TPUを原料として用いることで、本発明の製造方法のように、水性媒体を用いる発泡法においても、加水分解による分子量低下が生じにくく、発泡時に気泡が破泡しにくく、良好な気泡構造が維持されるため、良好な型内成形性を有する発泡粒子が得られやすい。   The constituent elements of the TPU are not particularly limited, and are appropriately selected according to physical properties required for a TPU foamed particle molded body (hereinafter also simply referred to as a foamed molded body) obtained by in-mold molding of foamed particles. can do. Since ether-based TPU is superior in hydrolysis resistance compared to ester-based TPU, by using ether-based TPU as a raw material, hydrolysis can be performed even in a foaming method using an aqueous medium as in the production method of the present invention. The molecular weight is not easily lowered by foaming, bubbles are hard to break during foaming, and a good cell structure is maintained, so that it is easy to obtain expanded particles having good moldability.

また、前記TPUは、発泡成形体の用途、目的に応じて、ポリオレフィン系樹脂やポリスチレン系樹脂、スチレン系エラストマー等の他の重合体を、本発明の目的を阻害しない範囲で前記TPUに混合して使用することもできる。なお、これらの他の重合体の使用量は、TPU100質量部に対して、30質量部以下であることが好ましく、より好ましくは20質量部以下、さらに好ましくは10質量部以下である。発泡粒子は、TPU以外の他の重合体を含まないことが特に好ましい。   The TPU may be mixed with other polymers such as polyolefin resins, polystyrene resins, styrene elastomers, etc. in the TPU within a range that does not impair the purpose of the present invention. Can also be used. In addition, it is preferable that the usage-amount of these other polymers is 30 mass parts or less with respect to 100 mass parts of TPU, More preferably, it is 20 mass parts or less, More preferably, it is 10 mass parts or less. It is particularly preferable that the expanded particles do not contain any polymer other than TPU.

また、前記発泡粒子の製造に用いられるTPU原料は、その融解温度が140〜170℃であることが好ましい。TPUの融解温度が上記範囲内であれば、より型内成形性に優れた発泡粒子を得ることができる。上記観点から、前記融解温度は、150〜170℃であることがより好ましい。
上記融解温度はJIS K7121−1987に基づき、試験片の状態調節として「一定の熱処理を行った後、融解温度を測定する場合」(試験片の状態調節における加熱速度と冷却速度は、いずれも10℃/分とする。)を採用し、熱流束示差走査熱量測定法により、加熱速度10℃/分で得られるDSC曲線の融解ピークのピーク頂点温度として求められる値である。DSC曲線が複数の融解ピークを有する場合、最も温度の高い融解ピークのピーク頂点温度を融解温度として採用する。
Moreover, it is preferable that the TPU raw material used for manufacture of the said foaming particle is 140-170 degreeC of the melting temperature. If the melting temperature of TPU is within the above range, expanded particles with better moldability can be obtained. From the above viewpoint, the melting temperature is more preferably 150 to 170 ° C.
The melting temperature is based on JIS K7121-1987, and the test piece condition adjustment is “when the melting temperature is measured after performing a certain heat treatment” (the heating rate and the cooling rate in the test piece condition adjustment are both 10 This is a value obtained as a peak apex temperature of a melting peak of a DSC curve obtained by a heat flux differential scanning calorimetry method at a heating rate of 10 ° C./min. When the DSC curve has a plurality of melting peaks, the peak apex temperature of the melting peak with the highest temperature is adopted as the melting temperature.

また、前記TPUは、タイプAデュロメータ硬さが、90以下であると好ましい。
硬さが90以下であれば、過度に成形時のスチーム圧力(成形圧)を高めなくとも、良好な発泡成形体を得ることができる。また、硬さが低すぎると、成形条件や発泡成形体の形状によっては、発泡成形体を成形型から離型した後、発泡成形体が著しく収縮、変形する、所謂ヒケが生じやすくなる。そのため、タイプAデュロメータ硬さは70〜90であることが好ましく、より好ましくは80〜88である。
なお、タイプAデュロメータ硬さは、JIS K6253−3:2012に基づき測定される値である。
The TPU preferably has a type A durometer hardness of 90 or less.
If the hardness is 90 or less, a good foamed molded article can be obtained without excessively increasing the steam pressure (molding pressure) during molding. On the other hand, if the hardness is too low, depending on the molding conditions and the shape of the foamed molded product, after the foamed molded product is released from the mold, the foamed molded product tends to shrink or deform so that a so-called sink is likely to occur. Therefore, the type A durometer hardness is preferably 70 to 90, more preferably 80 to 88.
The type A durometer hardness is a value measured based on JIS K6253-3: 2012.

[TPU発泡粒子の製造方法]
本発明の発泡粒子の製造方法は、密閉容器内で水性媒体に分散させたTPU粒子に加熱下で発泡剤を含浸させ、発泡剤を含むTPU粒子を水性散媒と共に密閉容器から放出して発泡させて、見掛け密度100〜300kg/mのTPU発泡粒子を製造する方法であって、発泡剤が二酸化炭素を主成分とする物理発泡剤であり、TPU粒子は、300〜2000質量ppmの無機粉体を含み、前記放出時の容器内圧力が2.5MPa(G:ゲージ圧)を超え4.0MPa(G)以下である。
[Method for producing TPU expanded particles]
In the method for producing foamed particles of the present invention, TPU particles dispersed in an aqueous medium in a sealed container are impregnated with a foaming agent under heating, and TPU particles containing the foaming agent are discharged from the sealed container together with the aqueous dispersion medium to foam. And producing a TPU foam particle having an apparent density of 100 to 300 kg / m 3 , wherein the foaming agent is a physical foaming agent mainly composed of carbon dioxide, and the TPU particle is an inorganic material having a concentration of 300 to 2000 ppm by mass. Including the powder, the pressure in the container at the time of discharge exceeds 2.5 MPa (G: gauge pressure) and is 4.0 MPa (G) or less.

本発明において、TPU粒子を分散させる水性媒体としては、特に限定されないが、水等を用いることができる。
TPU粒子に含浸させる発泡剤は、二酸化炭素を主成分とする物理発泡剤である。発泡剤として二酸化炭素を使用し、二酸化炭素が超臨界状態とならないように圧力容器内の圧力を制御することにより、気泡を過度に微細化させずにTPU発泡粒子を得ることができる。
なお、発泡剤としては、二酸化炭素に加え、その他の物理発泡剤や化学発泡剤を併用することもできる。
その他の物理発泡剤としては、プロパン、ブタン、ヘキサン、ペンタン、ヘプタン等の脂肪族炭化水素類、クロロフロロメタン、トリフロロメタン、1,1−ジフロロエタン、1,1,1,2−テトラフロロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素、ジメチルエーテル、ジエチルエーテル等のジアルキルエーテル等の有機物理発泡剤が挙げられる。また、窒素、アルゴン、空気、水等の無機物理発泡剤が挙げられる。
この場合、発泡剤中の二酸化炭素の配合比率は、50質量%以上であることが好ましく、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上である。
In the present invention, the aqueous medium in which the TPU particles are dispersed is not particularly limited, but water or the like can be used.
The foaming agent impregnated into the TPU particles is a physical foaming agent mainly composed of carbon dioxide. By using carbon dioxide as a foaming agent and controlling the pressure in the pressure vessel so that the carbon dioxide does not enter a supercritical state, TPU foam particles can be obtained without excessively miniaturizing the bubbles.
In addition to carbon dioxide, other physical foaming agents and chemical foaming agents can be used in combination as the foaming agent.
Other physical blowing agents include aliphatic hydrocarbons such as propane, butane, hexane, pentane, heptane, chlorofluoromethane, trifluoromethane, 1,1-difluoroethane, 1,1,1,2-tetrafluoroethane. And organic physical foaming agents such as halogenated hydrocarbons such as methyl chloride, ethyl chloride and methylene chloride, and dialkyl ethers such as dimethyl ether and diethyl ether. Moreover, inorganic physical foaming agents, such as nitrogen, argon, air, and water, are mentioned.
In this case, the blending ratio of carbon dioxide in the foaming agent is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 90% by mass or more.

発泡剤として二酸化炭素を使用する場合、得られる発泡粒子の気泡径を過度に微細化させないという観点から、密閉容器中の圧力が7.0MPa(G)以下となるように二酸化炭素を密閉容器内へ圧入すること、すなわち含浸圧力を7.0MPa(G)以下とすることが好ましく、より好ましくは5.0MPa(G)以下であり、さらに好ましくは4.0MPa(G)以下である。さらに、後述する発泡時の圧力を制御しやすくなるという観点から、含浸圧力を3.4MPa(G)以下とすることが特に好ましい。一方、TPU粒子に十分に発泡剤を含浸させるという観点から、含浸圧力は0.5MPa(G)以上とすることが好ましく、より好ましくは1.0MPa(G)以上であり、さらに、後述する発泡時の圧力を制御しやすくなるという観点から、さらに好ましくは2.5MPa(G)超であり、特に好ましくは2.6MPa(G)以上である。
また、TPU粒子への発泡剤の含浸性の観点から、含浸は加熱下(含浸温度)で行われることが好ましい。含浸温度は20℃以上TPU粒子の融解温度Tm℃以下が好ましく、より好ましくは80℃以上(Tm−20)℃以下である。また、含浸時間は、密閉容器内の圧力、TPU粒子の種類や質量等に応じて適宜設定されるが、発泡剤をTPU粒子に十分に含浸させることができる時間とし、また、生産性の観点から、好ましくは0.05〜3時間、さらに好ましくは0.1〜1時間である。
When carbon dioxide is used as the foaming agent, carbon dioxide is contained in the sealed container so that the pressure in the sealed container is 7.0 MPa (G) or less from the viewpoint of not excessively reducing the bubble diameter of the obtained foamed particles. It is preferable to press-fit, that is, the impregnation pressure is 7.0 MPa (G) or less, more preferably 5.0 MPa (G) or less, and still more preferably 4.0 MPa (G) or less. Furthermore, it is particularly preferable that the impregnation pressure is 3.4 MPa (G) or less from the viewpoint that the pressure at the time of foaming described later can be easily controlled. On the other hand, from the viewpoint of sufficiently impregnating the TPU particles with the foaming agent, the impregnation pressure is preferably 0.5 MPa (G) or more, more preferably 1.0 MPa (G) or more. From the viewpoint of easy control of the pressure at the time, it is more preferably more than 2.5 MPa (G), particularly preferably 2.6 MPa (G) or more.
Further, from the viewpoint of impregnation of the foaming agent into the TPU particles, the impregnation is preferably performed under heating (impregnation temperature). The impregnation temperature is preferably 20 ° C. or higher and TPU particle melting temperature Tm ° C. or lower, more preferably 80 ° C. or higher (Tm−20) ° C. or lower. Further, the impregnation time is appropriately set according to the pressure in the sealed container, the type and mass of the TPU particles, etc., but is set as a time during which the TPU particles can be sufficiently impregnated with the foaming agent. Therefore, it is preferably 0.05 to 3 hours, more preferably 0.1 to 1 hour.

特に、前記水性媒体の温度を、80℃以上かつTPU粒子の融解温度Tm−20℃以下とし、該温度条件下で、密閉容器内の圧力が2.5MPa(G)を超え7.0MPa(G)以下となるまで、密閉容器内に二酸化炭素を主成分とする物理発泡剤を圧入することにより、TPU粒子に前記物理発泡剤を含浸させることが好ましい。
なお、融解温度とは、JIS K7121−1987に基づく、試験片の状態調節として「一定の熱処理を行った後、融解温度を測定する場合」(試験片の状態調節における加熱速度と冷却速度は、いずれも10℃/分とする。)を採用し、熱流束示差走査熱量測定法により、加熱速度10℃/分で得られるDSC曲線の融解ピークのピーク頂点温度として求められる値である。DSC曲線が複数の融解ピークを有する場合、最も温度の高い融解ピークのピーク頂点温度を融解温度として採用する。
In particular, the temperature of the aqueous medium is set to 80 ° C. or higher and the TPU particle melting temperature Tm−20 ° C. or lower, and the pressure in the sealed container exceeds 2.5 MPa (G) and 7.0 MPa (G ) It is preferable to impregnate the TPU particles with the physical foaming agent by press-fitting a physical foaming agent mainly composed of carbon dioxide into the hermetic container until the following is achieved.
Note that the melting temperature is “when the melting temperature is measured after performing a certain heat treatment” as the condition adjustment of the test piece based on JIS K7121-1987 (the heating rate and the cooling rate in the condition adjustment of the test piece are These are values obtained as the peak apex temperature of the melting peak of the DSC curve obtained at a heating rate of 10 ° C./min by a heat flux differential scanning calorimetry method. When the DSC curve has a plurality of melting peaks, the peak apex temperature of the melting peak with the highest temperature is adopted as the melting temperature.

本発明においては、TPU粒子が、300〜2000質量ppmの無機粉体を含む。TPU粒子中の無機粉体の含有量が少なすぎると、発泡粒子の表面にシワが発生しやすくなり、また、気泡が不均一となりやすくなり、良好な成形体を成形できなくなる場合がある。かかる観点から、TPU粒子中の無機粉体の含有量の下限は、400質量ppmであることが好ましい。また、無機粉体の含有量が多すぎると、発泡粒子の気泡が過度に細かくなり、また、発泡速度が速くなりすぎるためか、型内成形が低下するおそれがある。かかる観点から、TPU粒子中の無機粉体の含有量の上限は、1500質量ppmであることが好ましく、1000質量ppmであることがより好ましく、950質量ppmであることがさらに好ましい。
この無機粉体としては、特に限定されないが、タルクを用いることが好ましく、50%体積平均粒子径(d50)が1〜15μmのタルクを用いることがより好ましい。タルクのd50が、1μm以上であれば、発泡粒子の気泡径が過度に微細化することがないため、型内成形性に優れる発泡粒子を得ることができると共に、得られる発泡成形体の圧縮永久歪などの物性が悪化することが無い。一方、タルクのd50が15μm以下であれば、気泡が過度に粗大化しないため型内成形性に優れる発泡粒子を得ることができる。
In the present invention, TPU particles contain 300 to 2000 ppm by mass of inorganic powder. If the content of the inorganic powder in the TPU particles is too small, wrinkles are likely to occur on the surface of the expanded particles, and the bubbles are likely to be non-uniform, which may make it impossible to form a good molded product. From this viewpoint, the lower limit of the content of the inorganic powder in the TPU particles is preferably 400 mass ppm. Moreover, when there is too much content of inorganic powder, there exists a possibility that the bubble of an expanded particle may become too fine and the foaming speed may become too fast, or in-mold shaping | molding may fall. From this viewpoint, the upper limit of the content of the inorganic powder in the TPU particles is preferably 1500 ppm by mass, more preferably 1000 ppm by mass, and even more preferably 950 ppm by mass.
Although it does not specifically limit as this inorganic powder, It is preferable to use a talc, and it is more preferable to use a talc whose 50% volume average particle diameter (d50) is 1-15 micrometers. If d50 of talc is 1 μm or more, the bubble diameter of the foamed particles will not be excessively refined, so that foamed particles having excellent in-mold moldability can be obtained, and the obtained molded foam can be permanently compressed. There is no deterioration of physical properties such as strain. On the other hand, if d50 of talc is 15 μm or less, bubbles are not excessively coarsened, and thus expanded particles having excellent in-mold moldability can be obtained.

本発明の製造方法において、TPU粒子の放出時の容器内圧力(発泡圧力)を2.5MPa(G)を超え4.0MPa(G)以下とする必要がある。
発泡圧力が2.5MPa(G)以下の場合、発泡粒子の表面にシワが発生し、また、気泡径が不均一になる。
発泡圧力が4.0MPa(G)を超えると、TPU粒子の発泡速度が速くなりすぎ、その結果、発泡粒子においてTPUの結晶が配向しやすくなる。そのため、このような発泡粒子を型内成形して良好な成形体を得るためには、成形スチームの圧力を高くしなければならなくなる。
このような観点から、発泡圧力は、2.6〜3.4MPa(G)であると好ましい。
In the production method of the present invention, the pressure in the container (foaming pressure) at the time of releasing the TPU particles needs to be more than 2.5 MPa (G) and 4.0 MPa (G) or less.
When the foaming pressure is 2.5 MPa (G) or less, wrinkles are generated on the surface of the foamed particles, and the bubble diameter is not uniform.
When the foaming pressure exceeds 4.0 MPa (G), the foaming speed of the TPU particles becomes too high, and as a result, the TPU crystals are easily oriented in the foamed particles. Therefore, in order to obtain such a molded article by molding such expanded particles in the mold, the pressure of the forming steam must be increased.
From such a viewpoint, the foaming pressure is preferably 2.6 to 3.4 MPa (G).

本発明の製造方法において、前記放出時の水性媒体の温度(発泡温度)が、(Tm−60)℃以上かつ(Tm−20)℃以下であることが好ましい。発泡温度を(Tm−60)℃以上かつ(Tm−20)℃以下の範囲とすることにより、より型内成形性に優れる発泡粒子を得ることができる。かかる観点から、前記放出時の水性媒体の温度(発泡温度)が、(Tm−40)℃以上かつ(Tm−25)以下であることがより好ましい。   In the production method of the present invention, the temperature (foaming temperature) of the aqueous medium at the time of release is preferably (Tm-60) ° C. or higher and (Tm-20) ° C. or lower. By setting the foaming temperature to a range of (Tm-60) ° C. or higher and (Tm-20) ° C. or lower, foamed particles having better in-mold moldability can be obtained. From this viewpoint, the temperature (foaming temperature) of the aqueous medium at the time of release is more preferably (Tm-40) ° C. or higher and (Tm-25) or lower.

前記TPU粒子の1個の質量は、目的とする発泡粒子の大きさや発泡倍率に応じて適宜設定されるが、0.5〜30mgであることが好ましい。上記範囲内であれば、TPU粒子へ発泡剤を十分に含浸させることができ、また、型内への充填性と型内成形性とのバランスに優れた発泡粒子となる。かかる観点から、TPU粒子の質量の下限は1mgであることがより好ましく、さらに好ましくは3mgである。一方、その上限は20mgであることがより好ましく、さらに好ましくは15mgであり、特に好ましくは12mgである。
なお、TPU粒子の製造方法は、特に限定されるものではなく、公知の方法により得ることができる。例えば、原料TPUを押出機にて溶融させ、TPUの溶融物を押出機先端に付設されたダイの小孔からストランド状に押し出し、これを所定の質量となるように切断するストランドカット法や、TPUの溶融物を小孔から水中に押出した直後に切断するアンダーウォーターカット法(UWC法)、TPUの溶融物を小孔から気泡相中に押出して切断するホットカット法によりTPU粒子を得ることができる。TPU粒子の質量は、小孔の孔径、押出量、カット速度を調整することにより調整することができる。
The mass of one TPU particle is appropriately set according to the size of the target expanded particle and the expansion ratio, but is preferably 0.5 to 30 mg. Within the above range, the TPU particles can be sufficiently impregnated with the foaming agent, and the foamed particles have an excellent balance between the filling ability in the mold and the moldability in the mold. From this viewpoint, the lower limit of the mass of the TPU particles is more preferably 1 mg, and even more preferably 3 mg. On the other hand, the upper limit is more preferably 20 mg, further preferably 15 mg, and particularly preferably 12 mg.
In addition, the manufacturing method of TPU particle | grains is not specifically limited, It can obtain by a well-known method. For example, the raw material TPU is melted in an extruder, the melt of TPU is extruded into a strand form from a small hole in a die attached to the tip of the extruder, and this is cut into a predetermined mass, To obtain TPU particles by underwater cut method (UWC method) that cuts immediately after extruding TPU melt into water from small holes, and hot cut method that extrudes and cuts TPU melt from small holes into the bubble phase. Can do. The mass of the TPU particles can be adjusted by adjusting the hole diameter of the small holes, the extrusion amount, and the cutting speed.

また、TPU粒子には、気泡調整剤としての無機粉体のほかに、通常使用される帯電防止剤、導電性付与剤、滑剤、酸化防止剤、紫外線吸収剤、難燃剤、金属不活性剤、結晶核剤、充填材、着色剤等の各種の添加剤を、必要に応じて適宜配合することができる。これらの各種添加剤の添加量は、発泡粒子成形体の用途目的により異なるが、原料TPU100質量部に対して25質量部以下であることが好ましく、より好ましくは15質量部以下、さらに好ましくは10質量部以下、特に好ましくは5質量部以下である。   In addition to the inorganic powder as a bubble regulator, TPU particles include commonly used antistatic agents, conductivity imparting agents, lubricants, antioxidants, ultraviolet absorbers, flame retardants, metal deactivators, Various additives such as a crystal nucleating agent, a filler, and a colorant can be appropriately blended as necessary. The addition amount of these various additives varies depending on the purpose of use of the foamed particle molded body, but is preferably 25 parts by mass or less, more preferably 15 parts by mass or less, and further preferably 10 parts by mass with respect to 100 parts by mass of the raw material TPU. It is 5 parts by mass or less, particularly preferably 5 parts by mass or less.

本発明の製造方法により、得られた発泡粒子の見かけ密度は、100〜300kg/mである。本発明の製造方法により、気泡が均一で、型内成形性に優れる、見掛け密度100〜300kg/mの発泡粒子を1段階の発泡で製造することができる。
発泡粒子の見かけ密度が低すぎると、発泡粒子を型内成形した際に、得られた成形体が大きく変形、収縮しやすくなる。かかる観点から、発泡粒子の見掛け密度は150kg/m以上であることが好ましく、より好ましくは200kg/m以上である。一方、見掛け密度が高すぎると、型内成形時に発泡粒子が二次発泡しにくくなり、得られた成形体の発泡粒子間に空隙が残りやすくなり、また、所望の緩衝性を有する成形体が得られなくなるおそれがある。
発泡粒子の見掛け密度は、発泡粒子の重量を発泡粒子の体積で割算することにより求められる値である。発泡粒子の体積は、水没法により求めることができる。
The apparent density of the expanded particles obtained by the production method of the present invention is 100 to 300 kg / m 3 . By the production method of the present invention, foamed particles having an apparent density of 100 to 300 kg / m 3 and uniform foam and excellent moldability can be produced by one-stage foaming.
If the apparent density of the expanded particles is too low, the obtained molded product is likely to be greatly deformed and contracted when the expanded particles are molded in the mold. From this viewpoint, the apparent density of the expanded particles is preferably 150 kg / m 3 or more, more preferably 200 kg / m 3 or more. On the other hand, if the apparent density is too high, the foamed particles are less likely to be secondary foamed during in-mold molding, voids are likely to remain between the foamed particles of the obtained molded product, and a molded product having a desired buffering property is obtained. There is a risk that it will not be obtained.
The apparent density of the expanded particles is a value obtained by dividing the weight of the expanded particles by the volume of the expanded particles. The volume of the expanded particles can be determined by a submersion method.

本発明において、発泡粒子の平均気泡径は100〜500μmであることが好ましい。平均気泡径が100μm以上であれば、型内成形時に気泡が破泡しにくくなり、表面性に特に優れる発泡成形体が得られやすくなる。また、平均気泡径が500μm以下である場合、型内成形時にスチームが発泡粒子の内部まで浸透しやくなるため、発泡粒子が十分に二次発泡し、表面性に特に優れる発泡成形体を得ることができる。かかる観点から、発泡粒子の平均気泡径が150〜400μmであることがより好ましい。   In the present invention, the average cell diameter of the expanded particles is preferably 100 to 500 μm. When the average cell diameter is 100 μm or more, it is difficult for bubbles to break during molding in the mold, and a foamed molded product having particularly excellent surface properties is easily obtained. In addition, when the average cell diameter is 500 μm or less, steam easily penetrates into the inside of the foamed particles at the time of molding in the mold, so that the foamed particles are sufficiently secondary foamed to obtain a foamed molded product having particularly excellent surface properties. Can do. From this viewpoint, the average cell diameter of the expanded particles is more preferably 150 to 400 μm.

発泡粒子の平均気泡径は、ASTM D3576−77に準拠し、次のようにして測定される値である。発泡粒子をその中心部を通るように切断して2分割する。切断された各発泡粒子の一方の断面において、発泡粒子の最表面から中心部を通って反対側の最表面まで、等角度で4本の線分を引く。各線分と交差する気泡数をそれぞれ計測し、4本の線分の合計長さを線分と交差する全気泡数で割算して気泡の平均弦長を求め、さらに0.616で割算することにより、発泡粒子の平均気泡径を求める。   The average cell diameter of the expanded particles is a value measured as follows in accordance with ASTM D3576-77. The expanded particle is cut so as to pass through the central portion thereof and divided into two. In one cross section of each of the cut expanded particles, four line segments are drawn at equal angles from the outermost surface of the expanded particle to the outermost surface on the opposite side. Measure the number of bubbles intersecting each line segment and divide the total length of the four line segments by the total number of bubbles intersecting the line segment to obtain the average chord length of the bubbles, and further divide by 0.616 By doing this, the average cell diameter of the expanded particles is obtained.

また、本発明の発泡粒子において、190℃、荷重10kgにおけるメルトフローレイト(MFR)が10〜50g/10分であると好ましい。MFRが10g/10分以上であれば、型内成形時の二次発泡性が良好となり、特に表面良好な発泡粒子成形体が得られる。かかる観点から、MFRの下限は15g/10分であることがより好ましく、20g/10分であることがさらに好ましい。また、MFRが50g/10分以下であれば、得られる発泡成形体は、回復性に優れたものとなる。かかる観点から、MFRの上限は45g/10分であることがより好ましく、40g/10分であることがさらに好ましい。
このMFRは、JIS K7210−2:2014に基づき、温度190℃、荷重10kgの条件にて測定される値である。
In the expanded particles of the present invention, the melt flow rate (MFR) at 190 ° C. and a load of 10 kg is preferably 10 to 50 g / 10 minutes. When the MFR is 10 g / 10 min or more, the secondary foaming property at the time of in-mold molding becomes good, and a foamed particle molded body having a particularly good surface can be obtained. From this viewpoint, the lower limit of the MFR is more preferably 15 g / 10 minutes, and further preferably 20 g / 10 minutes. Moreover, if MFR is 50 g / 10min or less, the obtained foaming molding will be excellent in recoverability. From this viewpoint, the upper limit of MFR is more preferably 45 g / 10 minutes, and further preferably 40 g / 10 minutes.
This MFR is a value measured under conditions of a temperature of 190 ° C. and a load of 10 kg based on JIS K7210-2: 2014.

[発泡粒子成形体]
本発明の製造方法により得られた発泡粒子を型内成形することにより、発泡成形体を得ることができる。型内成形法は、従来公知の方法を採用することできる。
[Foamed particle compact]
A foam-molded article can be obtained by in-mold molding of the foamed particles obtained by the production method of the present invention. A conventionally known method can be adopted as the in-mold molding method.

以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。
実施例1〜6及び比較例1〜2
実施例で用いた原材料を以下に示す。
[原材料]
・TPU
TPU1(コベストロ社製、エーテル系熱可塑性ポリウレタン、グレード名:デスモパンDP9385A、MFR[190℃・荷重10kg]:17g/10min、タイプAデュロメータ硬さ:86、融解温度:164℃)
TPU2(コベストロ社製、エーテル系熱可塑性ポリウレタン、グレード名:デスモパンDP9386A、MFR[190℃・荷重10kg]:26g/10min、タイプAデュロメータ硬さ:86、融解温度:165℃)
・気泡核剤(無機粉体)
タルク1(林化成社製、グレード名:KFP−125B、d50:8μm)
タルク2(林化成社製、グレード名:PK−S、d50:12μm)
タルク3(松村産業社製、グレード名:ハイフィラー♯12、d50:3μm)
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this.
Examples 1-6 and Comparative Examples 1-2
The raw materials used in the examples are shown below.
[raw materials]
・ TPU
TPU1 (manufactured by Covestro, ether-based thermoplastic polyurethane, grade name: Desmopan DP9385A, MFR [190 ° C., load 10 kg]: 17 g / 10 min, type A durometer hardness: 86, melting temperature: 164 ° C.)
TPU2 (manufactured by Covestro, ether-based thermoplastic polyurethane, grade name: Desmopan DP9386A, MFR [190 ° C, load 10 kg]: 26 g / 10 min, type A durometer hardness: 86, melting temperature: 165 ° C)
・ Bubble nucleating agent (inorganic powder)
Talc 1 (manufactured by Hayashi Kasei Co., Ltd., grade name: KFP-125B, d50: 8 μm)
Talc 2 (manufactured by Hayashi Kasei Co., Ltd., grade name: PK-S, d50: 12 μm)
Talc 3 (Matsumura Sangyo Co., Ltd. grade name: High filler # 12, d50: 3 μm)

[TPU粒子の製造]
TPUと、該TPU100質量部に対して、表1に示す種類、量の気泡調整剤(無機粉体)としてのタルクとを内径20mmの二軸押出機に供給し、これらを加熱混練して、溶融TPU組成物とした。該溶融TPU組成物を押出機先端部に付設されたダイの小孔から水中に押出すと共に切断して、平均重量10mg、L/D=1.0のTPU粒子を得た。
[Manufacture of TPU particles]
TPU and 100 parts by mass of TPU are supplied to a twin screw extruder having an inner diameter of 20 mm with the types and amounts of talc shown in Table 1 as a bubble regulator (inorganic powder), and these are heated and kneaded. A molten TPU composition was obtained. The molten TPU composition was extruded into water from a small hole in a die attached to the tip of the extruder and cut to obtain TPU particles having an average weight of 10 mg and L / D = 1.0.

[発泡粒子の作製]
上記で得られたTPU粒子50kgと、分散媒として水270リットルとを、撹拌機を備えた400リットルのオートクレーブ内に仕込み、さらに、TPU粒子100質量部に対して、分散剤としてカオリン0.2質量部と、界面活性剤としてアルキルベンゼンスルホン酸ナトリウム0.008質量部とを分散媒に添加した。
オートクレーブ内の内容物を撹拌しながら昇温し、表1に示す温度(含浸温度)に到達後、該オートクレーブ内に発泡剤として二酸化炭素を、密閉容器内の圧力が表1に示す圧力(含浸圧力)となるまで圧入し、所定の圧力に到達後、圧力を維持しつつ、その温度で15分間保持した。その後、二酸化炭素にて背圧を加えて容器内圧力が表1に示す圧力(発泡圧力)で一定になるように調整しつつ、表1に示す分散媒の温度(発泡温度)にて、発泡剤が含浸されたTPU粒子を分散媒とともに大気圧下に放出して、発泡粒子を得た。
得られた発泡粒子を密閉容器内に入れ、30℃で、0.3MPa(G)の圧縮空気により12時間加圧処理した後、放圧して40℃の大気圧下で48時間放置した。
得られた発泡粒子の見掛け密度、MFR、及び平均気泡径の測定方法と、発泡粒子の表面性と大小気泡の有無を評価した。その結果を表1に示す。また、評価方法を以下に示す。
なお、これらの測定は、得られた発泡粒子を相対湿度50%、23℃、1atmの条件にて2日放置して状態調節した後に行なった。
[Production of expanded particles]
50 kg of the TPU particles obtained above and 270 liters of water as a dispersion medium are charged into a 400 liter autoclave equipped with a stirrer. Furthermore, with respect to 100 parts by mass of TPU particles, kaolin 0.2 Part by mass and 0.008 part by mass of sodium alkylbenzene sulfonate as a surfactant were added to the dispersion medium.
The contents in the autoclave are heated while stirring, and after reaching the temperature shown in Table 1 (impregnation temperature), carbon dioxide is used as a blowing agent in the autoclave, and the pressure in the sealed container is shown in Table 1 (impregnation). The pressure was maintained until the pressure reached, and the pressure was maintained for 15 minutes while maintaining the pressure. Thereafter, back pressure is applied with carbon dioxide, and the pressure in the container is adjusted to be constant at the pressure (foaming pressure) shown in Table 1, while foaming is performed at the temperature of the dispersion medium (foaming temperature) shown in Table 1. The TPU particles impregnated with the agent were discharged together with the dispersion medium under atmospheric pressure to obtain expanded particles.
The obtained foamed particles were put in a sealed container, pressurized at 30 ° C. with compressed air of 0.3 MPa (G) for 12 hours, then released and left at 40 ° C. under atmospheric pressure for 48 hours.
A method for measuring the apparent density, MFR, and average cell diameter of the obtained expanded particles, and the surface properties of the expanded particles and the presence or absence of large and small bubbles were evaluated. The results are shown in Table 1. The evaluation method is shown below.
These measurements were performed after the foamed particles obtained were conditioned for 2 days under conditions of 50% relative humidity, 23 ° C. and 1 atm.

(発泡粒子の見掛け密度)
まず、温度23℃の水の入ったメスシリンダーに質量W1の発泡粒子を、金網を使用して沈めた。そして、金網の体積を考慮して、水位上昇分より読みとられる発泡粒子の容積V1[L]を測定し、発泡粒子の質量W1[g]を容積V1で割り算し(W1/V1)、単位を[kg/m]に換算することにより、発泡粒子の見掛け密度を求めた。
(Apparent density of expanded particles)
First, foamed particles having a mass W1 were submerged in a graduated cylinder containing water at a temperature of 23 ° C. using a wire mesh. Then, taking into account the volume of the wire mesh, the volume V1 [L] of the expanded particles read from the rise in the water level is measured, and the mass W1 [g] of the expanded particles is divided by the volume V1 (W1 / V1). Was converted to [kg / m 3 ] to determine the apparent density of the expanded particles.

(発泡粒子の平均気泡径)
得られた発泡粒子群から無作為に50個の発泡粒子を選択した。発泡粒子をその中心部を通るように切断して2分割した。切断された各発泡粒子の一方の断面において、発泡粒子の最表面から中心部を通って反対側の最表面まで、等角度で4本の線分を引いた。
各線分と交差する気泡数をそれぞれ計測し、4本の線分の合計長さを線分と交差する全気泡数で割算して気泡の平均弦長を求め、さらに0.616で割算することにより、各発泡粒子の平均気泡径を求めた。そしてこれらの値を算術平均することにより発泡粒子の平均気泡径を求めた。
(発泡粒子のMFR)
JIS K7210−2:2014に基づき、温度190℃、荷重10kgの条件にて測定した。測定用試料として、発泡粒子を温度80℃で4時間乾燥後、水分含有量を500質量ppm以下としたものを用いた。
(Average cell diameter of expanded particles)
50 expanded particles were randomly selected from the obtained expanded particle group. The expanded particles were cut into two parts by passing through the center. In one cross section of each of the cut expanded particles, four line segments were drawn at equal angles from the outermost surface of the expanded particles through the central portion to the outermost surface on the opposite side.
Measure the number of bubbles intersecting each line segment and divide the total length of the four line segments by the total number of bubbles intersecting the line segment to obtain the average chord length of the bubbles, and further divide by 0.616 By doing this, the average cell diameter of each expanded particle was determined. Then, the average cell diameter of the expanded particles was obtained by arithmetically averaging these values.
(MFR of expanded particles)
Based on JIS K7210-2: 2014, the measurement was performed under conditions of a temperature of 190 ° C. and a load of 10 kg. As a sample for measurement, a foamed particle was dried at a temperature of 80 ° C. for 4 hours, and then the water content was 500 mass ppm or less.

(発泡粒子の表面性)
以下の基準で目視により評価した。
○:発泡粒子表面にシワがなく良好な表面性
×:発泡粒子表面にシワが確認され凸凹した表面性
(Surface properties of expanded particles)
Visual evaluation was performed according to the following criteria.
○: Good surface properties without wrinkles on the surface of the expanded particles ×: Surface properties with wrinkles confirmed on the surfaces of the expanded particles

[発泡粒子成形体の作製]
上記で作製した発泡粒子を、縦200mm、横250mm、厚さ20mmの成形型のキャビティに充填し、表1に記載の成形圧に到達するまでスチームで加熱した。そして、冷却後、成形型から成形体を取り出し、板状の発泡粒子成形体を得た。
[Preparation of foamed particle compact]
The foamed particles produced above were filled into a cavity of a molding die having a length of 200 mm, a width of 250 mm, and a thickness of 20 mm, and heated with steam until the molding pressure shown in Table 1 was reached. Then, after cooling, the molded body was taken out from the molding die to obtain a plate-like foamed particle molded body.

(表面性)
得られた発泡粒子成形体の表面の発泡粒子間の空隙が埋まっていれば「○」と評価し、埋まっていなければ「×」と評価した。
(Surface property)
When the space between the foamed particles on the surface of the obtained foamed particle molded body was filled, it was evaluated as “◯”, and when it was not filled, it was evaluated as “x”.

(融着性)
得られた発泡粒子成形体の融着性を評価するため融着率を測定し、融着率が90%以上である場合を「○」、融着率が90%未満である場合を「×」と評価した。
発泡粒子成形体の融着率は、以下の方法により測定した。発泡粒子成形体から、縦170mm、横30mm、厚さをそのままとして試験片を切り出した。この試験片の表面の一方に、カッターナイフで該試験片の縦の長さを2等分する位置に厚み方向に約10mmの深さの切り込みを入れ、切り込み部から成形体を折り曲げて破断させた。破断面に存在する材料破壊した発泡粒子の個数mと、破断面に存在する全部の発泡粒子の個数nの比(m/n×100[%])を算出した。なお、成形体を折り曲げても破断できない場合は、融着率100%とした。異なる試験片を用いて前記測定を5回行い、それぞれの材料破壊率を求め、それらを算術平均して融着率とした。
(Fusability)
In order to evaluate the fusing property of the obtained foamed particle molded body, the fusing rate was measured. When the fusing rate was 90% or more, “◯” and when the fusing rate was less than 90%, “×” ".
The fusion rate of the foamed particle molded body was measured by the following method. A test piece was cut out from the foamed particle molded body with the length of 170 mm, the width of 30 mm, and the thickness as they were. On one surface of the test piece, a cut with a depth of about 10 mm is made in the thickness direction at a position where the vertical length of the test piece is bisected with a cutter knife, and the molded body is bent and broken from the cut portion. It was. A ratio (m / n × 100 [%]) of the number m of the foam particles whose material was broken on the fracture surface and the number n of all the foam particles present on the fracture surface was calculated. When the molded body could not be broken even when it was bent, the fusion rate was set to 100%. The above measurement was performed 5 times using different test pieces, the respective material destruction rates were obtained, and the arithmetic average of them was used as the fusion rate.

(回復性)
得られた発泡粒子成形体の中央部分と四隅部分の厚みをそれぞれ測定し、四隅部分のうち最も厚みが厚い部分に対する中央部分の厚みの比が90%以上である場合を「○」、90%未満である場合を「×」と評価した。
(Recovery)
The thicknesses of the center part and the four corner parts of the obtained foamed particle molded body were measured, respectively, and the case where the ratio of the thickness of the center part to the thickest part among the four corner parts was 90% or more, “◯”, 90% The case where it was less than "x" was evaluated.

得られた発泡粒子成形体について、その見掛け密度を測定した。その結果を表1に示す。また、見掛け密度の測定方法を以下に示す。なお、これらの測定は、得られた発泡粒子成形体を相対湿度50%、23℃、1atmの条件にて2日放置して状態調節した後に行なった。   The apparent density of the obtained foamed particle molded body was measured. The results are shown in Table 1. The method for measuring the apparent density is shown below. These measurements were performed after the foamed particle molded body thus obtained was left for 2 days under conditions of a relative humidity of 50%, 23 ° C. and 1 atm.

(成形体の見掛け密度)
発泡粒子成形体をエタノール中に水没させ、その水位上昇分から成形体の見掛けの体積を求めた。発泡粒子成形体の質量を該見掛けの体積で割算することにより、発泡粒子成形体の見掛け密度[kg/m]を求めた。
(Apparent density of molded product)
The foamed particle compact was submerged in ethanol, and the apparent volume of the compact was determined from the rise in the water level. The apparent density [kg / m 3 ] of the foamed particle molded body was determined by dividing the mass of the foamed particle molded body by the apparent volume.

Figure 0006346919
Figure 0006346919

表1に示した評価結果より、実施例1〜6では、表面性及び気泡の均一性が良好な発泡粒子を製造することができ、該発泡粒子を型内成形したところ、成形可能な範囲も広く、良好な発泡成形体を得ることができた。
これに対し、無機粉体の量が少ない条件で発泡粒子を製造した比較例1では、得られた発泡粒子の表面性が不良で、かつ気泡径が極めて不均一であり、型内成形により良好な発泡成形体を得ることができなかった。
また、発泡圧力が2.0MPa(G)と低い条件で発泡粒子を製造した比較例2では、得られた発泡粒子を型内成形することにより発泡成形体を得ることはできたものの、成形可能範囲は狭いものであった。また、発泡粒子の気泡径が不均一であるため、得られた発泡成形体も気泡径が不均一となり、気泡径が過度に細かい部分が白化しており、外観がマーブル状で劣る発泡成形体しか得られなかった。
From the evaluation results shown in Table 1, in Examples 1 to 6, it is possible to produce foamed particles having good surface properties and good air bubble uniformity. A wide and good foamed molded article could be obtained.
On the other hand, in Comparative Example 1 in which the foamed particles were produced under a condition where the amount of the inorganic powder was small, the surface properties of the obtained foamed particles were poor and the bubble diameter was extremely nonuniform, which was better due to in-mold molding. A foamed molded product could not be obtained.
Further, in Comparative Example 2 in which the foamed particles were produced under a low foaming pressure of 2.0 MPa (G), the foamed molded product could be obtained by molding the obtained foamed particles in-mold, but molding was possible. The range was narrow. In addition, since the foam diameter of the foamed particles is non-uniform, the resulting foam-molded product also has a non-uniform cell diameter, white portions of the excessively fine cell diameter are whitened, and the foam molded product is inferior in marble appearance. Only obtained.

Claims (9)

密閉容器内で水性媒体に分散させた熱可塑性ポリウレタン粒子に加熱下で発泡剤を含浸させ、発泡剤を含む熱可塑性ポリウレタン粒子を水性散媒と共に密閉容器から放出して発泡させて、見掛け密度100〜300kg/mの熱可塑性ポリウレタン発泡粒子を製造する方法であって、
発泡剤が二酸化炭素を主成分とする物理発泡剤であり、
熱可塑性ポリウレタン粒子は、300〜2000質量ppmの無機粉体を含み、
前記放出時の容器内圧力が2.5MPa(G)を超え4.0MPa(G)以下であることを特徴とする熱可塑性ポリウレタン発泡粒子の製造方法。
Thermoplastic polyurethane particles dispersed in an aqueous medium in a closed container are impregnated with a foaming agent under heating, and the thermoplastic polyurethane particles containing the foaming agent are discharged together with the aqueous dispersion medium from the closed container and foamed to give an apparent density of 100. a method of manufacturing a thermoplastic polyurethane foam particles ~300kg / m 3,
The foaming agent is a physical foaming agent mainly composed of carbon dioxide,
The thermoplastic polyurethane particles contain 300 to 2000 mass ppm of inorganic powder,
The method for producing thermoplastic polyurethane foam particles, wherein the pressure in the container at the time of release is more than 2.5 MPa (G) and not more than 4.0 MPa (G).
無機粉体がタルクであり、タルクの50%体積平均粒子径が1〜15μmであることを特徴とする請求項1に記載の熱可塑性ポリウレタン発泡粒子の製造方法。   The method for producing thermoplastic polyurethane foam particles according to claim 1, wherein the inorganic powder is talc, and the 50% volume average particle diameter of talc is 1 to 15 µm. 前記発泡剤含浸時の水性媒体の温度を、80℃以上かつ熱可塑性ポリウレタン粒子の融解温度Tm−20℃以下とし、該温度条件下で、密閉容器内の圧力が2.5MPa(G)を超え7.0MPa(G)以下となるまで、密閉容器内に二酸化炭素を主成分とする物理発泡剤を圧入することにより、熱可塑性ポリウレタン粒子に前記物理発泡剤を含浸させることを特徴とする請求項1又は2に記載の熱可塑性ポリウレタン発泡粒子の製造方法。   The temperature of the aqueous medium when impregnated with the foaming agent is 80 ° C. or higher and the melting temperature of the thermoplastic polyurethane particles is Tm−20 ° C. or lower, and the pressure in the sealed container exceeds 2.5 MPa (G) under the temperature condition. The thermoplastic polyurethane particles are impregnated with the physical foaming agent by press-fitting a physical foaming agent mainly composed of carbon dioxide into the sealed container until the pressure becomes 7.0 MPa (G) or less. A process for producing the thermoplastic polyurethane expanded particles according to 1 or 2. 前記放出時の水性媒体の温度が、熱可塑性ポリウレタン粒子の融解温度Tm−60℃以上かつ熱可塑性ポリウレタン粒子の融解温度Tm−20℃以下であることを特徴とする請求項1〜3のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。   The temperature of the aqueous medium at the time of release is not lower than the melting temperature Tm-60 ° C of the thermoplastic polyurethane particles and not higher than the melting temperature Tm-20 ° C of the thermoplastic polyurethane particles. The manufacturing method of the thermoplastic polyurethane expanded particle as described in any one of. 前記放出時の容器内圧力が2.6〜3.4MPa(G)であることを特徴とする請求項1〜4のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。   The method for producing thermoplastic polyurethane foam particles according to any one of claims 1 to 4, wherein an internal pressure of the container at the time of discharge is 2.6 to 3.4 MPa (G). 熱可塑性ポリウレタン粒子を構成している熱可塑性ポリウレタンがエーテル系熱可塑性ポリウレタンであることを特徴とする請求項1〜5のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。   6. The method for producing thermoplastic polyurethane foam particles according to any one of claims 1 to 5, wherein the thermoplastic polyurethane constituting the thermoplastic polyurethane particles is an ether-based thermoplastic polyurethane. 熱可塑性ポリウレタン粒子は、300〜950質量ppmの無機粉体を含むことを特徴とする請求項1〜6のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。   The method for producing thermoplastic polyurethane foam particles according to any one of claims 1 to 6, wherein the thermoplastic polyurethane particles contain 300 to 950 mass ppm of inorganic powder. 熱可塑性ポリウレタン粒子の190℃、荷重10kgにおけるメルトフローレイトが10〜50g/10分であることを特徴とする請求項1〜7のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。   The method for producing thermoplastic polyurethane foam particles according to any one of claims 1 to 7, wherein the thermoplastic polyurethane particles have a melt flow rate of 10 to 50 g / 10 min at 190 ° C and a load of 10 kg. 熱可塑性ポリウレタン粒子を構成している熱可塑性ポリウレタンのタイプAデュロメータ硬さが90以下であることを特徴とする請求項1〜8のいずれかに記載の熱可塑性ポリウレタン発泡粒子の製造方法。   The method for producing thermoplastic polyurethane foam particles according to any one of claims 1 to 8, wherein the type A durometer hardness of the thermoplastic polyurethane constituting the thermoplastic polyurethane particles is 90 or less.
JP2016175429A 2016-09-08 2016-09-08 Method for producing thermoplastic polyurethane expanded particles Active JP6346919B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016175429A JP6346919B2 (en) 2016-09-08 2016-09-08 Method for producing thermoplastic polyurethane expanded particles
PCT/JP2017/031875 WO2018047794A1 (en) 2016-09-08 2017-09-05 Method for producing thermoplastic polyurethane foamed particles
CN201780054362.0A CN109689752B (en) 2016-09-08 2017-09-05 Thermoplastic polyurethane foamed particles
TW106130361A TW201815922A (en) 2016-09-08 2017-09-06 Method for producing thermoplastic polyurethane foamed particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016175429A JP6346919B2 (en) 2016-09-08 2016-09-08 Method for producing thermoplastic polyurethane expanded particles

Publications (2)

Publication Number Publication Date
JP2018039919A JP2018039919A (en) 2018-03-15
JP6346919B2 true JP6346919B2 (en) 2018-06-20

Family

ID=61562701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175429A Active JP6346919B2 (en) 2016-09-08 2016-09-08 Method for producing thermoplastic polyurethane expanded particles

Country Status (4)

Country Link
JP (1) JP6346919B2 (en)
CN (1) CN109689752B (en)
TW (1) TW201815922A (en)
WO (1) WO2018047794A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7326023B2 (en) * 2019-05-17 2023-08-15 株式会社ジェイエスピー Thermoplastic elastomer foamed particles and molded products thereof
CN112795174A (en) * 2020-12-31 2021-05-14 平湖华申汽车内饰件有限公司 Automatic foaming integrated process for automobile interior polyurethane
CN114456433B (en) * 2022-01-29 2022-09-13 浙江环龙新材料科技有限公司 High-hardness thermoplastic polyurethane foaming coiled material and semi-continuous preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3100844B2 (en) * 1994-10-18 2000-10-23 積水化成品工業株式会社 Thermoplastic polyurethane foam molded article and method for producing the same
JP2003003002A (en) * 2001-06-22 2003-01-08 Jsp Corp Expanded polyester resin particle
JP2007091840A (en) * 2005-09-28 2007-04-12 Sekisui Plastics Co Ltd Expandable thermoplastic resin particle, thermoplastic resin pre-expanded particle, method for producing the same and expanded molding
JP5654203B2 (en) * 2009-01-16 2015-01-14 日東電工株式会社 Cross-linked resin foam and method for producing the same
CN104364304B (en) * 2012-04-13 2017-07-14 巴斯夫欧洲公司 The preparation of swelling granular
CN105793337B (en) * 2013-10-09 2018-12-14 巴斯夫欧洲公司 The method for preparing the polyester form particle of expansion
CN103804889B (en) * 2014-02-18 2016-01-27 山东美瑞新材料有限公司 A kind of foamed thermoplastic polyurethane particle and its preparation method and application
CN105218850B (en) * 2014-06-06 2019-06-28 茂泰(福建)鞋材有限公司 A kind of preparation method of high-elastic thermoplastic polyurethane foam particle and its formed body
CN104231592B (en) * 2014-09-12 2017-02-15 美瑞新材料股份有限公司 Foaming type thermoplastic polyurethane particles and preparation method thereof

Also Published As

Publication number Publication date
TW201815922A (en) 2018-05-01
CN109689752A (en) 2019-04-26
CN109689752B (en) 2020-06-16
JP2018039919A (en) 2018-03-15
WO2018047794A1 (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6828979B2 (en) Thermoplastic polyurethane foam particles and thermoplastic polyurethane foam particle moldings
JP6761658B2 (en) Thermoplastic polyurethane foam particles
JP2018044042A (en) Thermoplastic polyurethane foaming particle and thermoplastic polyurethane foaming particle molded body
JP6353807B2 (en) Foamed particles and foamed molded body
JP6346919B2 (en) Method for producing thermoplastic polyurethane expanded particles
WO2018003316A1 (en) Thermoplastic polyurethane foam particle molded article and method for producing same, and thermoplastic polyurethane foam particles
JP2022127578A (en) Foamed particle and method for producing the same
EP3622013B1 (en) Z-hfo-1336mzz blowing agent blends for foaming thermoplastic polymers comprising polystyrene
JPWO2018084245A1 (en) Foamed particles and foamed particle molded body
WO2019026950A1 (en) Urethane-based thermoplastic elastomer foamed particles
JP6371821B2 (en) Thermoplastic polyurethane expanded particles and molded articles of thermoplastic polyurethane expanded particles
JP2018070735A (en) Foamed particle and method for producing foamed particle molding
JP6782152B2 (en) Thermoplastic polyurethane foam particles and thermoplastic polyurethane foam particle moldings
JP6397949B2 (en) Foamed particle molding
JP2018002801A (en) Thermoplastic polyurethane foam particles and thermoplastic polyurethane foam particle molded body
JP4577883B2 (en) Polyethylene resin open cell foam
JP5306137B2 (en) Method for producing foamed polylactic acid resin particles for in-mold foam molding
JP2022070043A (en) Manufacturing method for laminate
JP2023019516A (en) Polypropylene-based resin foam particle and method for producing the same
JP2018035220A (en) Thermoplastic polyurethane foamed particle molding and method for producing the same
JP2023146484A (en) Foamed molding of non-crosslinked olefinic elastomer, and production method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180403

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6346919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250