JPH09253490A - Catalyst for clarification of exhaust gas and its preparation - Google Patents

Catalyst for clarification of exhaust gas and its preparation

Info

Publication number
JPH09253490A
JPH09253490A JP8067714A JP6771496A JPH09253490A JP H09253490 A JPH09253490 A JP H09253490A JP 8067714 A JP8067714 A JP 8067714A JP 6771496 A JP6771496 A JP 6771496A JP H09253490 A JPH09253490 A JP H09253490A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
metal
metal cluster
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8067714A
Other languages
Japanese (ja)
Inventor
Toshitaka Tanabe
稔貴 田辺
Hideo Sofugawa
英夫 曽布川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP8067714A priority Critical patent/JPH09253490A/en
Publication of JPH09253490A publication Critical patent/JPH09253490A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent Pt particles from growing and to suppress reaction of Rh with a carrier. SOLUTION: A metal cluster consisting of an alloy wherein at least parts of Pt and Rh are under solid soln. condition each other by reducing a soln. contg. Pt and Rh in a liq. phase and and the metal cluster is carried on a porous carrier. Rh with higher affinity with oxygen is deposited partially and the metal cluster particles are prevented thereby from growing and decrease in active points of the catalyst is suppressed. In addition, the reaction of Rh with alumina is also suppressed by preparing the metal cluster.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は排ガス浄化用触媒及
びその製造方法に関する。本発明の排ガス浄化用触媒に
よれば、触媒貴金属の粒成長や担体との反応を抑制する
ことができ、排ガス浄化用触媒の耐久性が向上する。
TECHNICAL FIELD The present invention relates to an exhaust gas purifying catalyst and a method for producing the same. According to the exhaust gas-purifying catalyst of the present invention, it is possible to suppress grain growth of the catalytic noble metal and the reaction with the carrier, and the durability of the exhaust gas-purifying catalyst is improved.

【0002】[0002]

【従来の技術】従来より、自動車の排ガス浄化用触媒と
して、CO及びHCの酸化とNOx の還元とを行って排
ガスを浄化する三元触媒が用いられている。このような
三元触媒としては、例えばコーディエライトなどからな
る耐熱性基材にγ−アルミナからなる多孔質担体層を形
成し、その多孔質担体層に白金(Pt)、ロジウム(R
h)などの触媒貴金属を担持させたものが広く知られて
いる。
2. Description of the Related Art Conventionally, a three-way catalyst for purifying exhaust gas by oxidizing CO and HC and reducing NO x has been used as an exhaust gas purifying catalyst for automobiles. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat resistant base material made of cordierite, and platinum (Pt) and rhodium (R) are formed on the porous carrier layer.
A catalyst carrying a precious metal such as h) is widely known.

【0003】この三元触媒においては、PtとRhを共
存させた場合に特に高い活性が得られることが知られて
いる。そこで例えば特開昭57−207544号公報に
は、アルカリ性状態の白金化合物溶液を用いて担体にP
tを担持させ、酸性状態のロジウム化合物溶液を用いて
担体にRhを担持させる方法が開示されている。この製
造方法で得られる排ガス浄化用触媒によれば、担体中の
Pt担持部分とRh担持部分の層厚がほぼ同等となるの
で、PtとRhが共存しやすくなり高い三元活性が得ら
れる。
It is known that in this three-way catalyst, particularly high activity is obtained when Pt and Rh coexist. Therefore, for example, in JP-A-57-207544, P is used as a carrier by using a platinum compound solution in an alkaline state.
There is disclosed a method of supporting t and supporting Rh on a carrier by using a rhodium compound solution in an acidic state. According to the exhaust gas-purifying catalyst obtained by this production method, the layer thickness of the Pt-supported portion and the Rh-supported portion in the carrier are approximately equal, so that Pt and Rh easily coexist and high ternary activity is obtained.

【0004】また特開昭62−282641号公報に
は、予めRhを含有させた酸化ジルコニウムと予めセリ
ウムを含有させた活性アルミナとを含むスラリーから担
体にコート層を形成し、次いでコート層に白金化合物溶
液を含浸させてPtを担持する方法が開示されている。
この方法によれば、Pt及びRhの担持量を少なくして
も浄化性能の低下がなく、耐熱性が向上した排ガス浄化
用触媒を製造することができる。
Further, in JP-A-62-282641, a coat layer is formed on a carrier from a slurry containing zirconium oxide containing Rh in advance and activated alumina containing cerium in advance, and then platinum is formed on the coat layer. A method of impregnating a compound solution to support Pt is disclosed.
According to this method, even if the supported amounts of Pt and Rh are reduced, the purification performance does not deteriorate, and an exhaust gas purification catalyst with improved heat resistance can be manufactured.

【0005】[0005]

【発明が解決しようとする課題】ところで近年の排ガス
規制の強化及びエンジン性能の向上により、自動車の排
ガス温度が上昇している。そのため従来の排ガス浄化用
触媒においては、高温で酸化雰囲気に曝された場合、担
体に担持されている触媒貴金属の微粒子に粒成長が生
じ、その結果活性点の減少により触媒活性が低下すると
いう不具合が生じていた。またRhは担体であるアルミ
ナと反応し、活性が低下するという問題もある。
By the way, the exhaust gas temperature of automobiles is increasing due to the recent tightening of exhaust gas regulations and improvement of engine performance. Therefore, in the conventional exhaust gas purifying catalyst, when exposed to an oxidizing atmosphere at a high temperature, particle growth occurs in the fine particles of the catalytic noble metal supported on the carrier, and as a result, the catalytic activity decreases due to a decrease in active points. Was occurring. There is also a problem that Rh reacts with alumina as a carrier to lower the activity.

【0006】本発明はこのような事情に鑑みてなされた
ものであり、Ptの粒成長を防止でき、かつRhと担体
との反応を抑制できる排ガス浄化用触媒とすることを目
的とする。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an exhaust gas-purifying catalyst capable of preventing Pt grain growth and suppressing the reaction between Rh and a carrier.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、多孔質担体と、多孔質
担体に担持されPt及びRhの少なくとも一部が互いに
固溶した合金よりなる金属クラスターとを有することに
ある。またこの排ガス浄化用触媒を製造するのに最適な
本発明の排ガス浄化用触媒の製造方法の特徴は、Pt及
びRhを含む溶液を液相中において還元しPtとRhの
少なくとも一部が互いに固溶した合金からなる金属クラ
スターを調製する第1工程と、金属クラスターを多孔質
担体に担持する第2工程と、を含むことにある。
The features of the exhaust gas purifying catalyst of the present invention for solving the above-mentioned problems are characterized by a porous carrier and an alloy in which at least a part of Pt and Rh are supported on the porous carrier as a solid solution. To have a metal cluster. Further, the feature of the method for producing an exhaust gas purifying catalyst of the present invention, which is most suitable for producing this exhaust gas purifying catalyst, is that a solution containing Pt and Rh is reduced in a liquid phase so that at least a part of Pt and Rh are mutually solid. It is to include a first step of preparing a metal cluster composed of a molten alloy and a second step of supporting the metal cluster on a porous carrier.

【0008】[0008]

【発明の実施の形態】本発明にいう金属クラスターと
は、複数個の原子が原子レベルで集まったものから、平
均粒径が100nm程度の金属微粒子のものまでをい
う。本発明の排ガス浄化用触媒では、Pt及びRhは少
なくとも一部が互いに固溶した合金からなる金属クラス
ターとして担持されている。このため高温の酸化雰囲気
に曝された場合にも、触媒活性の低下が抑制される。
BEST MODE FOR CARRYING OUT THE INVENTION The metal cluster referred to in the present invention refers to a cluster of a plurality of atoms at the atomic level to a cluster of metal fine particles having an average particle size of about 100 nm. In the exhaust gas purifying catalyst of the present invention, Pt and Rh are supported as metal clusters made of an alloy in which at least some of them are solid-solved with each other. Therefore, even when the catalyst is exposed to a high temperature oxidizing atmosphere, a decrease in catalytic activity is suppressed.

【0009】この触媒活性が抑制される理由は、金属ク
ラスター表面に酸素との親和性の高いRhが偏析し、こ
れによりPtの粒成長が抑制されるため金属クラスター
の粒成長が抑制され、触媒活性点の減少が抑制されるか
ら、と考えられる。またPtとRhとの合金よりなる金
属クラスターとすることにより、Rhと多孔質担体との
反応も抑制される。
The reason why the catalytic activity is suppressed is that Rh, which has a high affinity for oxygen, is segregated on the surface of the metal clusters, which suppresses the particle growth of Pt and thus suppresses the particle growth of the metal clusters. It is considered that this is because the decrease in active sites is suppressed. Further, by using a metal cluster composed of an alloy of Pt and Rh, the reaction between Rh and the porous carrier is also suppressed.

【0010】本発明の排ガス浄化用触媒に用いられる多
孔質担体としては、γ−アルミナを始めとして、シリ
カ、チタニア、ジルコニア、シリカ−チタニア、ゼオラ
イトなどが例示される。金属クラスターとして担持され
るPtの担持量は、多孔質担体100gあたり0.1〜
20g程度が好ましく、1〜10g程度が特に好まし
い。Ptの担持量が多孔質担体100gあたり0.1g
より少ないと触媒活性が不足して浄化性能が不十分とな
り、20gより多く担持しても触媒活性が飽和するとと
もにコストの上昇を招く。
Examples of the porous carrier used in the exhaust gas purifying catalyst of the present invention include γ-alumina, silica, titania, zirconia, silica-titania, zeolite and the like. The amount of Pt supported as a metal cluster is 0.1 to 100 g per 100 g of the porous carrier.
About 20 g is preferable, and about 1 to 10 g is particularly preferable. The amount of Pt supported is 0.1 g per 100 g of the porous carrier.
If the amount is less, the catalytic activity will be insufficient and the purification performance will be insufficient. Even if more than 20 g is carried, the catalytic activity will be saturated and the cost will increase.

【0011】また上記Ptと固溶した合金よりなる金属
クラスターを構成するRhの量は、Ptに対して重量比
で1/100〜1/2程度が望ましく、1/20〜1/
3程度が特に好ましい。Rhの担持量がPtに対して重
量比で1/100より少ないと、Ptの粒成長を抑制す
る機能が低くなり金属クラスターの粒成長による浄化性
能が低下する。また1/2より多くなると、効果が飽和
するとともにコストの上昇を招く。
The amount of Rh forming a metal cluster made of an alloy solid-soluted with Pt is preferably about 1/100 to 1/2 by weight ratio with respect to Pt, and 1/20 to 1/1.
About 3 is particularly preferable. If the supported amount of Rh is less than 1/100 by weight ratio with respect to Pt, the function of suppressing the particle growth of Pt becomes low and the purification performance by the particle growth of metal clusters deteriorates. On the other hand, when it is more than 1/2, the effect is saturated and the cost is increased.

【0012】そして金属クラスター中に合金化している
Pt及びRhは、担持されているPt及びRhの少なく
とも一部であればよいが、全体の50重量%以上が合金
化していることが好ましい。さらに好ましくは、実質的
にすべてのPt及びRhが金属クラスター中に合金化し
ていることが望ましい。合金化している割合が多いほど
粒成長を効果的に防止することができ、触媒活性の低下
を一層防止することができる。
The Pt and Rh alloyed in the metal cluster may be at least a part of the supported Pt and Rh, but 50% by weight or more of the whole is preferably alloyed. More preferably, it is desirable that substantially all Pt and Rh are alloyed in the metal cluster. The larger the proportion of alloying, the more effectively grain growth can be prevented, and the further reduction in catalyst activity can be prevented.

【0013】なお、本発明の排ガス浄化用触媒には、酸
化セリウム(セリア)や炭酸ランタンを含むこともでき
る。セリアは酸素吸蔵・放出作用を有するので、排ガス
雰囲気がストイキからずれた際に、酸素を吸蔵・放出す
ることによって雰囲気をストイキに保持することがで
き、浄化性能が一層向上する。このセリアの含有量とし
ては、多孔質担体100gあたり50〜100gが適当
である。
The exhaust gas-purifying catalyst of the present invention may contain cerium oxide (ceria) or lanthanum carbonate. Since ceria has an oxygen storage / release function, when the exhaust gas atmosphere deviates from the stoichiometry, the atmosphere can be kept stoichiometric by storing and releasing oxygen, further improving the purification performance. The content of this ceria is preferably 50 to 100 g per 100 g of the porous carrier.

【0014】また炭酸ランタンは、Ptとの電子的な相
互作用によりPtの触媒活性を高める作用を有し、本発
明の排ガス浄化用触媒にさらに炭酸ランタンを含むこと
により浄化性能が一層向上する。この炭酸ランタンの含
有量としては、多孔質担体100gあたり30g程度が
適当である。この排ガス浄化用触媒を製造するのに最適
な本発明の排ガス浄化用触媒の製造方法では、第1工程
においてPt及びRhを含む溶液が液相中で還元され
る。すなわち、Ptの塩とRhの塩とが溶液状態で同時
に還元される。これによりPt及びRhの少なくとも一
部が固溶した合金よりなる金属クラスターが容易に得ら
れ、還元条件の調整によってPtとRhとが十分に固溶
した均一な組成の金属クラスターを容易に調製すること
ができる。
Further, lanthanum carbonate has a function of enhancing the catalytic activity of Pt by an electronic interaction with Pt, and the purification performance is further improved by further containing lanthanum carbonate in the exhaust gas purifying catalyst of the present invention. A suitable content of lanthanum carbonate is about 30 g per 100 g of the porous carrier. In the method for producing an exhaust gas purifying catalyst of the present invention, which is optimal for producing the exhaust gas purifying catalyst, the solution containing Pt and Rh is reduced in the liquid phase in the first step. That is, the salt of Pt and the salt of Rh are simultaneously reduced in a solution state. As a result, a metal cluster made of an alloy in which at least part of Pt and Rh is solid-solved can be easily obtained, and a metal cluster having a uniform composition in which Pt and Rh are sufficiently solid-solved can be easily prepared by adjusting reducing conditions. be able to.

【0015】この第1工程で用いられる溶液は、Ptの
塩及びRhの塩を同時に溶解したものであれば特に制限
なく、種々の塩及び溶媒を用いることができる。またこ
の溶液を還元するのに用いられる還元剤としては、燃焼
により消失して不純物を残さない有機系の還元剤が望ま
しく、溶媒としても用いられる低級アルコール、ホルム
アルデヒド、アセトアルデヒド、ギ酸、クエン酸、シュ
ウ酸などが例示される。また気体水素を反応液に導入す
ることによって還元を行ってもよい。
The solution used in the first step is not particularly limited as long as it is a solution of Pt salt and Rh salt dissolved at the same time, and various salts and solvents can be used. The reducing agent used to reduce this solution is preferably an organic reducing agent that disappears by combustion and does not leave impurities, and lower alcohols, formaldehyde, acetaldehyde, formic acid, citric acid, and oxalic acid which are also used as solvents. Examples thereof include acids. Further, the reduction may be performed by introducing gaseous hydrogen into the reaction solution.

【0016】この第1工程は、Pt塩及びRh塩の溶液
中に還元剤を加え、加熱などにより反応させることで行
うことができる。Pt塩とRh塩の還元反応は同時に進
行することが望ましい。なお、還元時に溶液中にポリビ
ニルピロリドン、ポリビニルアルコールなどの高分子化
合物、金属イオンへの配位作用を有するクエン酸、トリ
フェニルホスフィン、フェナントロリンなどの低分子化
合物を添加することも好ましい。このようにすれば生成
した金属クラスターの溶液中での安定性を向上させるこ
とができ、得られる排ガス浄化用触媒中の金属クラスタ
ーの組成を一層均一とすることができる。
The first step can be carried out by adding a reducing agent to a solution of Pt salt and Rh salt and reacting by heating. It is desirable that the reduction reaction of Pt salt and Rh salt proceed simultaneously. In addition, it is also preferable to add a high molecular compound such as polyvinylpyrrolidone or polyvinyl alcohol, a low molecular compound such as citric acid having a coordination action to a metal ion, triphenylphosphine, or phenanthroline to the solution during the reduction. By doing so, the stability of the produced metal clusters in the solution can be improved, and the composition of the metal clusters in the obtained exhaust gas-purifying catalyst can be made more uniform.

【0017】第2工程では、第1工程で形成された金属
クラスターが多孔質担体に担持される。この担持方法と
しては、金属クラスターを含む溶液中に多孔質担体を浸
漬して担持する吸着担持法、あるいは多孔質担体粉末に
金属クラスターを含む溶液を所定量含浸させ、溶媒を蒸
発させて担持する含浸担持法などが利用できる。そして
金属クラスターが担持された多孔質担体粉末は、そのま
ま造粒してペレット触媒としてもよいし、コーディエラ
イト又はメタル製のハニカム担体基材にコートしてスト
レートフロータイプの触媒とすることもできる。
In the second step, the metal cluster formed in the first step is supported on the porous carrier. As the supporting method, an adsorption supporting method in which a porous carrier is immersed and supported in a solution containing a metal cluster, or a porous carrier powder is impregnated with a solution containing a metal cluster in a predetermined amount and the solvent is evaporated to carry the carrier. An impregnation supporting method or the like can be used. The porous carrier powder on which the metal clusters are supported may be granulated as it is to be used as a pellet catalyst, or may be coated on a honeycomb carrier base made of cordierite or metal to be a straight flow type catalyst. .

【0018】したがって本発明の製造方法により製造さ
れた排ガス浄化用触媒では、液相中においてPt−Rh
合金よりなる金属クラスターを得ているため、担持され
た金属クラスター中のPtとRhの組成比が各金属クラ
スター粒子で均一となる。すなわちRhの固溶量が少な
い金属クラスターや、Ptと固溶していないRhなどが
ほとんど存在しないため、Ptに起因する高温時の金属
クラスターの粒成長が一層抑制され、Rhと多孔質担体
との反応も一層抑制される。
Therefore, in the exhaust gas-purifying catalyst produced by the production method of the present invention, Pt-Rh is contained in the liquid phase.
Since the metal clusters made of the alloy are obtained, the composition ratio of Pt and Rh in the supported metal clusters is uniform in each metal cluster particle. That is, since there is almost no metal cluster having a small amount of solid solution of Rh or Rh which is not solid-dissolved with Pt, grain growth of the metal cluster at high temperature due to Pt is further suppressed, and Rh and the porous carrier are separated. Is further suppressed.

【0019】[0019]

【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1) <第1工程>1リットルの三口フラスコ中に水とエタノ
ールを各400mlずつ入れ、濃度0.0178mol
/LのRhCl3 水溶液28.8mlと、濃度0.02
15mol/LのH2 PtCl6 水溶液11.3mlと
を加えて溶解した。この溶液にさらにポリビニルピロリ
ドンを2.419g添加し、メカニカルスターラーで攪
拌しながらオイルバスを用いて加熱し、還流下で2時間
反応させた。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples. (Example 1) <First Step> 400 ml of water and 400 ml of ethanol were placed in a 1-liter three-necked flask, and the concentration was 0.0178 mol.
/ L RhCl 3 aqueous solution 28.8 ml, concentration 0.02
11.3 ml of a 15 mol / L H 2 PtCl 6 aqueous solution was added and dissolved. 2.419 g of polyvinylpyrrolidone was further added to this solution, and the mixture was heated with an oil bath while stirring with a mechanical stirrer and reacted under reflux for 2 hours.

【0020】その後放冷し、予め蒸留水で洗浄されたイ
オン交換樹脂30gを加えて10分間攪拌した。その後
イオン交換樹脂を濾過により溶液と分離し、これにより
未反応の金属イオン及び溶液中に存在する塩素イオンな
どを溶液から除去して、Pt−Rh合金よりなる金属ク
ラスターを含むコロイド溶液を得た。 <第2工程>次に、上記で得られたコロイド溶液500
mlとγ−アルミナ粉末5gとを混合し、室温で8時間
攪拌した。その後攪拌しながら100℃に加熱し、溶媒
を蒸発乾固させることでPt−Rh金属クラスターをア
ルミナ粉末に担持させた。触媒粉末中のPt−Rh金属
クラスターの担持量は、アルミナ100gに対してPt
として1.0gであり、Rhとして0.22gである。
Thereafter, the mixture was allowed to cool, 30 g of an ion exchange resin washed with distilled water in advance was added, and the mixture was stirred for 10 minutes. Thereafter, the ion exchange resin was separated from the solution by filtration, whereby unreacted metal ions and chlorine ions existing in the solution were removed from the solution to obtain a colloidal solution containing a metal cluster made of a Pt-Rh alloy. . <Second Step> Next, the colloidal solution 500 obtained above.
ml and 5 g of γ-alumina powder were mixed and stirred at room temperature for 8 hours. Then, the mixture was heated to 100 ° C. with stirring, and the solvent was evaporated to dryness to support the Pt—Rh metal clusters on the alumina powder. The loading amount of Pt—Rh metal clusters in the catalyst powder was Pt based on 100 g of alumina.
Is 1.0 g and Rh is 0.22 g.

【0021】その後、得られた粉末を乾燥器中にて11
0℃で一晩乾燥させ、さらに空気流通下にて350℃で
3時間焼成して実施例1の触媒粉末を得た。 (比較例1)所定濃度に調製されたジニトロジアンミン
白金の硝酸溶液の所定量をγ−アルミナ粉末の所定量に
含浸させ、水分を蒸発乾固してPtを担持した。次いで
この粉末に対し、所定濃度に調製された硝酸ロジウムの
硝酸水溶液の所定量を含浸させ、水分を蒸発乾固してR
hを担持させた。これによりアルミナ100gに対して
Ptは1g担持され、Rhは0.22g担持された。
Then, the obtained powder is dried in a drier 11
It was dried overnight at 0 ° C., and further calcined at 350 ° C. for 3 hours under air flow to obtain a catalyst powder of Example 1. (Comparative Example 1) A predetermined amount of a nitric acid solution of dinitrodiammineplatinum adjusted to a predetermined concentration was impregnated with a predetermined amount of γ-alumina powder, and water was evaporated to dryness to support Pt. Next, this powder is impregnated with a predetermined amount of a nitric acid aqueous solution of rhodium nitrate adjusted to a predetermined concentration, and the water is evaporated to dryness to form R
h was supported. As a result, 1 g of Pt was loaded on 100 g of alumina and 0.22 g of Rh was loaded.

【0022】その後、得られた粉末を乾燥機中にて11
0℃で一晩乾燥させ、さらに空気流通下にて350℃で
3時間焼成して比較例1の触媒粉末を得た。 (活性評価)上記したそれぞれの触媒粉末をそれぞれ圧
粉成形し、0.3〜0.7mmの粒径のペレット触媒と
した。それぞれのペレット触媒を耐久試験装置に充填
し、表1に示す酸化性ガスAと還元性ガスを10分周期
で交互に流通させながら、それぞれ800℃で5時間加
熱するストイキ耐久試験を行った。また表1に示す酸化
性ガスA(O2 5%)と酸化性ガスB(O2 20%)を
それぞれ流通させながら、それぞれ800℃で5時間加
熱するリーン耐久試験を行った。
Then, the obtained powder is dried in a dryer for 11
The catalyst powder of Comparative Example 1 was obtained by drying overnight at 0 ° C. and further calcining at 350 ° C. for 3 hours under air circulation. (Activity Evaluation) Each of the above-mentioned catalyst powders was compacted into a pellet catalyst having a particle size of 0.3 to 0.7 mm. Each pellet catalyst was filled in an endurance test device, and a stoichiometric endurance test was performed in which the oxidizing gas A and the reducing gas shown in Table 1 were alternately flowed at a cycle of 10 minutes and each was heated at 800 ° C. for 5 hours. In addition, a lean endurance test was conducted in which the oxidizing gas A (O 2 5%) and the oxidizing gas B (O 2 20%) shown in Table 1 were respectively circulated while heating at 800 ° C. for 5 hours.

【0023】[0023]

【表1】 それぞれの耐久試験後のそれぞれのペレット触媒につい
て、粉末X線回折法により、Pt金属の回折線幅から貴
金属粒径を測定し、結果を表2に示す。またストイキ耐
久試験とリーン耐久試験(O2 20%)の各ペレット触
媒について、表1に示す評価ガスを用い、触媒量0.5
g、ガス流量3.3L/minの条件で入りガス温度を
100℃から500℃に昇温させてHC、CO及びNO
x の浄化率を測定し、それぞれの50%浄化温度を求め
た。それぞれの結果を表3に示す。
[Table 1] With respect to each pellet catalyst after each endurance test, the noble metal particle diameter was measured from the diffraction line width of Pt metal by the powder X-ray diffraction method, and the results are shown in Table 2. For each pellet catalyst in the stoichiometric durability test and lean durability test (O 2 20%), the evaluation gas shown in Table 1 was used, and the catalyst amount was 0.5.
g, a gas flow rate of 3.3 L / min, the gas temperature is increased from 100 ° C. to 500 ° C., and HC, CO and NO
The purification rate of x was measured, and the 50% purification temperature of each was determined. Table 3 shows the results.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 表3より、実施例1の触媒は比較例1に比べてHC、C
O及びNOx の浄化性能が向上していることがわかる。
実施例における浄化能の向上は、リーン耐久試験後に大
きくみられる。この差異は、表2より、実施例1の触媒
では耐久試験後も貴金属の粒成長が抑制されていること
によるものであると考えられる。
[Table 3] From Table 3, it can be seen that the catalyst of Example 1 has higher HC and C than Comparative Example 1.
It can be seen that the purification performance of O and NO x is improved.
The improvement of the purifying ability in the examples is largely seen after the lean endurance test. From Table 2, it is considered that this difference is due to the fact that the catalyst of Example 1 suppressed the grain growth of the noble metal even after the durability test.

【0026】すなわちPt塩とRh塩とを予め溶液状態
で還元して固溶させ合金化した金属クラスターをアルミ
ナ担体に担持することにより、耐久試験後の貴金属の粒
成長が抑制され、耐久性に優れた触媒が得られることが
明らかである。
That is, the Pt salt and the Rh salt are previously reduced in solution to form a solid solution and alloyed to support an alloyed metal cluster on an alumina carrier, whereby grain growth of the noble metal after the durability test is suppressed and durability is improved. It is clear that a good catalyst is obtained.

【0027】[0027]

【発明の効果】すなわち本発明の排ガス浄化用触媒によ
れば、高温耐久試験後にも貴金属の粒成長が防止されて
いるので、きわめて耐久性に優れている。また本発明の
排ガス浄化用触媒の製造方法によれば、PtとRhとが
互いに固溶した合金クラスターを任意の組成比で調製で
き、均一な組成を有する合金クラスターを担持した上記
排ガス浄化用触媒を容易にかつ確実に製造することがで
きる。
That is, the exhaust gas purifying catalyst of the present invention is extremely excellent in durability because the growth of precious metal particles is prevented even after the high temperature durability test. Further, according to the method for producing an exhaust gas purifying catalyst of the present invention, an alloy cluster in which Pt and Rh form a solid solution with each other can be prepared at an arbitrary composition ratio, and the exhaust gas purifying catalyst carrying an alloy cluster having a uniform composition is supported. Can be manufactured easily and reliably.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】多孔質担体と、該多孔質担体に担持され白
金及びロジウムの少なくとも一部が互いに固溶した合金
よりなる金属クラスターと、を有することを特徴とする
排ガス浄化用触媒。
1. An exhaust gas purifying catalyst comprising a porous carrier and a metal cluster made of an alloy which is supported on the porous carrier and in which at least a part of platinum and rhodium are solid-solved with each other.
【請求項2】 白金及びロジウムを含む溶液を液相中に
おいて還元し白金とロジウムの少なくとも一部が互いに
固溶した合金からなる金属クラスターを調製する第1工
程と、 該金属クラスターを多孔質担体に担持する第2工程と、
を含むことを特徴とする排ガス浄化用触媒の製造方法。
2. A first step of preparing a metal cluster composed of an alloy in which at least a part of platinum and rhodium are solid-solved by reducing a solution containing platinum and rhodium in a liquid phase, and the metal cluster is a porous carrier. A second step of supporting
A method for producing an exhaust gas-purifying catalyst, comprising:
JP8067714A 1996-03-25 1996-03-25 Catalyst for clarification of exhaust gas and its preparation Pending JPH09253490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8067714A JPH09253490A (en) 1996-03-25 1996-03-25 Catalyst for clarification of exhaust gas and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8067714A JPH09253490A (en) 1996-03-25 1996-03-25 Catalyst for clarification of exhaust gas and its preparation

Publications (1)

Publication Number Publication Date
JPH09253490A true JPH09253490A (en) 1997-09-30

Family

ID=13352913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8067714A Pending JPH09253490A (en) 1996-03-25 1996-03-25 Catalyst for clarification of exhaust gas and its preparation

Country Status (1)

Country Link
JP (1) JPH09253490A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037159A1 (en) * 2005-09-29 2007-04-05 Toyota Jidosha Kabushiki Kaisha Method for production of noble metal catalyst
WO2007105747A1 (en) 2006-03-10 2007-09-20 Toyota Jidosha Kabushiki Kaisha Novel iridium-platinum complex and method for producing same
EP2140940A2 (en) 2006-03-01 2010-01-06 Toyota Jidosha Kabusiki Kaisha Metal complex and exhaust gas purification catalyst manufacture method using the same
WO2015087836A1 (en) 2013-12-11 2015-06-18 株式会社キャタラー Exhaust gas purifying catalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007037159A1 (en) * 2005-09-29 2007-04-05 Toyota Jidosha Kabushiki Kaisha Method for production of noble metal catalyst
EP2140940A2 (en) 2006-03-01 2010-01-06 Toyota Jidosha Kabusiki Kaisha Metal complex and exhaust gas purification catalyst manufacture method using the same
US7977271B2 (en) 2006-03-01 2011-07-12 Toyota Jidosha Kabushiki Kaisha Multiple-metal complex-containing compound and metal complex, and manufacture methods therefor, and exhaust gas purification catalyst manufacture method using the same
WO2007105747A1 (en) 2006-03-10 2007-09-20 Toyota Jidosha Kabushiki Kaisha Novel iridium-platinum complex and method for producing same
WO2015087836A1 (en) 2013-12-11 2015-06-18 株式会社キャタラー Exhaust gas purifying catalyst
US9597663B2 (en) 2013-12-11 2017-03-21 Cataler Corporation Exhaust cleaning catalyst
EP3081296A4 (en) * 2013-12-11 2017-08-09 Cataler Corporation Exhaust gas purifying catalyst

Similar Documents

Publication Publication Date Title
JP3145175B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4873582B2 (en) Precious metal-containing high-performance catalyst and process for producing the same
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
US7691772B2 (en) Catalyst and method for producing catalyst
JP3314897B2 (en) Method for producing exhaust gas purifying catalyst
JP3130903B2 (en) Catalyst for purifying waste gas from internal combustion engine, method for producing catalyst and method for purifying waste gas
US20060052243A1 (en) Oxygen storage material, process for its preparation and its application in a catalyst
JP3503101B2 (en) Exhaust gas purification catalyst
CZ20011120A3 (en) Single-layer highly efficient catalyst
JPH0626672B2 (en) Exhaust purification catalyst and method of manufacturing the same
JPH0653229B2 (en) Exhaust gas purification catalyst
WO2007145152A1 (en) Exhaust gas purifying catalyst
JP3988202B2 (en) Exhaust gas purification catalyst
JP3297825B2 (en) Exhaust gas purification catalyst
JP5078125B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JPH05237390A (en) Catalyst for purification of exhaust gas
JP3430823B2 (en) Exhaust gas purification catalyst
WO2012121388A1 (en) Method for producing catalyst, and catalyst
JPH09253490A (en) Catalyst for clarification of exhaust gas and its preparation
JPH10218620A (en) Oxygen-storable cerium compound oxide
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP3362532B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH10277389A (en) Catalyst for cleaning exhaust gas
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2734808B2 (en) Exhaust gas purification catalyst