JPH09252771A - Biological carrier and its production - Google Patents

Biological carrier and its production

Info

Publication number
JPH09252771A
JPH09252771A JP8068195A JP6819596A JPH09252771A JP H09252771 A JPH09252771 A JP H09252771A JP 8068195 A JP8068195 A JP 8068195A JP 6819596 A JP6819596 A JP 6819596A JP H09252771 A JPH09252771 A JP H09252771A
Authority
JP
Japan
Prior art keywords
specific gravity
biological carrier
carrier
particles
polyvinyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8068195A
Other languages
Japanese (ja)
Inventor
Yoshio Tomita
美穂 富田
Kiwamu Matsubara
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP8068195A priority Critical patent/JPH09252771A/en
Publication of JPH09252771A publication Critical patent/JPH09252771A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To obtain a biological carrier predicable without using precipitation separation process or screen separation process having various problems and to provide a process for the production of the biological carrier. SOLUTION: This biological carrier is composed of a hydrated gel of a polyvinyl alcohol containing 20-50vol.% of dispersed polymethylpentene particles and 5-13vol.% of dispersed foamed polystyrene particles and has a specific gravity of 0.92-0.99 and a particle diameter of 2-10mm. The carrier can be produced by adding dispersible particles of the above resins to an aqueous solution of a polyvinyl alcohol, mixing the composition, repeating the freezing and thawing of the mixture to obtain a gel having the above specific gravity and granulating the gel to the above particle diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、下水など廃水処理
の用いる硝化菌、脱窒菌などの有用な微生物を固定化す
るための担体とその製造方法に関する。
TECHNICAL FIELD The present invention relates to a carrier for immobilizing useful microorganisms such as nitrifying bacteria and denitrifying bacteria used for treating wastewater such as sewage, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、硝化菌または脱窒菌などを固定化
する生物担体としては、ポリビニルアコールのゲル化物
が知られており、その製造方法として冷凍法と硼酸法が
一般的である。これらの方法では、ポリビニルアコール
を水に加熱溶解した後、固定化する菌体を大量に含む種
汚泥を混合し、これを冷凍法では、冷凍と融解を繰り返
し、硼酸法では、飽和硼酸溶液中に滴下するなどによっ
て、ゲル化して造粒することで生物担体を得ることがで
きる。
2. Description of the Related Art Conventionally, as a biological carrier for immobilizing nitrifying bacteria or denitrifying bacteria, a gelled product of polyvinyl alcohol has been known, and a freezing method and a boric acid method are generally used as the production method. In these methods, after polyvinyl alcohol is heated and dissolved in water, seed sludge containing a large amount of cells to be immobilized is mixed. In the freezing method, freezing and thawing are repeated, and in the boric acid method, in a saturated boric acid solution. A biological carrier can be obtained by gelling and granulating by, for example, dropping into.

【0003】このようにして得られる担体の廃水処理に
おける挙動を図8によって説明すると、無数の担体10
が、嫌気槽11と好気槽12からなる反応槽1の後半部
分の好気槽12内において、活性汚泥混合液に配合され
ていて、散気装置14によるエアレーションにより前記
混合液とともに上下に循環流動して酸化作用を促進す
る。この場合、担体10は、比重が1.26〜1.28
のポリビニルアコールを素材とした水より僅かに大であ
る比重が1.02〜1.03のゲル化物で形成されてい
るので、前記混合液とよく共存するのである。
The behavior of the thus obtained carrier in the treatment of waste water will be described with reference to FIG.
Is mixed with the activated sludge mixed solution in the latter half of the aerobic tank 12 of the reaction tank 1 including the anaerobic tank 11 and the aerobic tank 12, and is circulated up and down together with the mixed solution by aeration by the air diffuser 14. Flows and promotes oxidative action. In this case, the carrier 10 has a specific gravity of 1.26 to 1.28.
Since it is formed of a gelled product having a specific gravity of 1.02 to 1.03, which is slightly larger than that of water, which is made from the polyvinyl alcohol as a raw material, it coexists well with the mixed solution.

【0004】ついで、好気槽12の末端において、担体
10と活性汚泥混合液とは分離され、分離された混合液
は次段の沈殿池に移行する。この担体10と活性汚泥混
合液とを分離する操作として、図8に示すウェッジワイ
ヤスクリーン13を用いるスクリーン分離法と活性汚泥
混合液との比重差を利用した沈殿分離法とがある。
Next, at the end of the aerobic tank 12, the carrier 10 and the activated sludge mixed solution are separated, and the separated mixed solution is transferred to the next settling tank. As an operation for separating the carrier 10 and the activated sludge mixed solution, there are a screen separation method using a wedge wire screen 13 shown in FIG. 8 and a precipitation separation method using a difference in specific gravity between the activated sludge mixed solution.

【0005】スクリーンを用いるスクリーン分離法の場
合、原液とともに流入した固形夾雑物の排出がスクリー
ンで妨げられるため、それら夾雑物が逐次好気槽内に濃
縮滞留して、浄化処理を不安定にしたり、槽内に生成し
た綿状微生物によってスクリーンが目詰まりしたりし
て、それらを除去するため維持管理に多くの手間と費用
を要する問題があった。
In the case of a screen separation method using a screen, the discharge of solid impurities flowing in together with the stock solution is hindered by the screen, so that the impurities are successively concentrated and accumulated in the aerobic tank to make the purification treatment unstable. However, there is a problem that the screen is clogged by the flocculent microorganisms generated in the tank, and it takes a lot of labor and cost for maintenance to remove them.

【0006】また、活性汚泥混合液との比重差を利用し
た沈殿分離法の場合には、担体10の比重1.02〜
1.03が活性汚泥の比重と近似するため、活性汚泥と
の分離を確実に行うことが困難であり、担体10が反応
槽1から次段の沈殿池に汚泥に伴われて流出するという
問題があった。
Further, in the case of the precipitation separation method utilizing the difference in specific gravity from the activated sludge mixed liquid, the specific gravity of the carrier 10 is 1.02 to 1.02.
Since 1.03 is close to the specific gravity of the activated sludge, it is difficult to reliably separate it from the activated sludge, and the carrier 10 flows out from the reaction tank 1 to the next settling tank along with the sludge. was there.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な種々の問題がある沈殿分離法またはスクリーン分離法
を用いる必要のない生物担体およびその製造方法を提供
する。特に浮上分離法に好適な生物担体およびその製造
方法を提供する。ここに、浮上分離法の概要を説明する
と、図9は浮上分離槽の要部断面を示すもので、好気槽
を経た担体を含む活性汚泥混合液を上方流動部15の底
部入口から導入し、上方流動部15から下方流動部16
へと流動させる間に、活性汚泥混合液より比重の小さい
担体は浮力により浮上して上方に集合することになる。
一方、このように担体を分離した活性汚泥混合液は、第
2の上方流動部17の上部出口から取り出されるのであ
る。このように、浮上分離法は、担体の比重を活性汚泥
混合液の比重である1より小にすることにより生じる、
浮力を利用する方法である。
The present invention provides a biological carrier and a method for producing the same, which does not require the use of the precipitation separation method or the screen separation method which have various problems as described above. In particular, the present invention provides a biological carrier suitable for the floating separation method and a method for producing the same. Here, the outline of the flotation separation method will be described. FIG. 9 shows a cross section of the main part of the flotation separation tank. , The upper flow section 15 to the lower flow section 16
During the flow of the sludge, the carrier having a smaller specific gravity than the activated sludge mixed liquid floats by buoyancy and collects upward.
On the other hand, the activated sludge mixed liquid from which the carrier has been separated in this way is taken out from the upper outlet of the second upper fluidizing section 17. As described above, the flotation method is performed by making the specific gravity of the carrier smaller than 1, which is the specific gravity of the activated sludge mixed solution.
This is a method that uses buoyancy.

【0008】[0008]

【課題を解決するための手段】上記の問題は、以下の生
物担体によって解決することができる。 (1)合成樹脂の分散粒子を含むポリビニルアルコール
の水和ゲル化物の粒体からなり、比重が1.0未満であ
る生物担体。 (2)ポリビニルアルコールの水和ゲル化物により被覆
された、合成樹脂の中核粒体からなり、比重が1.0未
満である生物担体。
The above problems can be solved by the following biological carriers. (1) A biological carrier comprising granules of a hydrated gelled product of polyvinyl alcohol containing dispersed particles of a synthetic resin and having a specific gravity of less than 1.0. (2) A biological carrier comprising a core particle of a synthetic resin coated with a hydrated gel of polyvinyl alcohol and having a specific gravity of less than 1.0.

【0009】また、上記の解決手段は、以下の通り具体
化することができる。前記(1)の生物担体において、
分散粒子がポリメチルペンテンまたは発泡樹脂の粒子で
あり、水和ゲル化物の粒体の比重が0.92〜0.99
の範囲内のものである生物担体。前記(2)の生物担体
において、前記中核粒体が発泡ポリプロピレン、発泡ポ
リエチレン、ポリメチルペンテンまたは発泡ナイロンの
粒体であり、比重が0.92〜0.99の範囲内のもの
である生物担体。
The above-mentioned solving means can be embodied as follows. In the biological carrier according to (1) above,
The dispersed particles are particles of polymethylpentene or foamed resin, and the specific gravity of the hydrated gel particles is 0.92 to 0.99.
A biological carrier that is within the scope of. In the biological carrier according to (2), the core particle is a particle of expanded polypropylene, expanded polyethylene, polymethylpentene or expanded nylon, and has a specific gravity within the range of 0.92 to 0.99. .

【0010】また、上記の問題は、以下の生物担体の製
造方法によって解決することができる。 (3)ポリビニルアルコールの水溶液に合成樹脂の分散
粒子を添加、混合してから、冷凍、融解を繰り返して比
重が1.0未満のゲル化物を形成させることを特徴とす
る生物担体の製造方法。 (4)合成樹脂の中核粒体の表面にポリビニルアルコー
ル水溶液の被膜を形成させ、硼酸水溶液に接触させて前
記被膜をゲル化させ、比重が1.0未満のものとするこ
とを特徴とする生物担体の製造方法。
The above problems can be solved by the following method for producing a biological carrier. (3) A method for producing a biological carrier, characterized in that dispersed particles of a synthetic resin are added to an aqueous solution of polyvinyl alcohol, mixed, and then frozen and thawed repeatedly to form a gelled product having a specific gravity of less than 1.0. (4) An organism characterized by forming a film of an aqueous solution of polyvinyl alcohol on the surface of core particles of a synthetic resin, and bringing the film into gel by contacting with an aqueous solution of boric acid so that the specific gravity is less than 1.0. Method for producing carrier.

【0011】また、上記の解決手段は、以下の通り具体
化することができる。前記(3)の生物担体の製造方法
において、分散粒子がポリメチルペンテンまたは発泡樹
脂の粒子であり、比重が0.92〜0.99の範囲内の
ゲル化物を形成させる方法。前記(4)の生物担体の製
造方法において、中核粒体が発泡ポリプロピレン、発泡
ポリエチレン、ポリメチルペンテンまたは発泡ナイロン
の粒体であり、ゲル化後の比重が0.92〜0.99の
範囲内のものとする方法。上記のいずれかの生物担体の
製造方法において、ポリビニルアルコールの水溶液に活
性汚泥を添加、混合する方法。
The above solving means can be embodied as follows. The method for producing a biological carrier according to (3) above, wherein the dispersed particles are particles of polymethylpentene or expanded resin, and a gelled product having a specific gravity within the range of 0.92 to 0.99 is formed. In the method for producing a biological carrier according to (4), the core particles are particles of expanded polypropylene, expanded polyethylene, polymethylpentene or expanded nylon, and the specific gravity after gelation is within the range of 0.92 to 0.99. How to be. In the method for producing a biological carrier according to any one of the above, a method in which activated sludge is added to and mixed with an aqueous solution of polyvinyl alcohol.

【0012】[0012]

【発明の実施の形態】本発明の実施形態を図1〜7を用
いて説明する。先ず、本発明の生物担体の第1の実施形
態は、図1(A)に示すような、合成樹脂の分散粒子2
1を含むポリビニルアルコールの水和ゲル化物2の粒体
からなり、全体の比重を1.0未満とするものである。
この生物担体は、分散粒子として比重が0.8程度のポ
リメチルペンテンの粒子を20〜50容積%分散させる
か、または比重が0.25程度の発泡ポリスチレンのよ
うな発泡樹脂の粒子を5〜15容積%分散させて含有し
ていて、水和ゲル化物の粒体全体としての比重が0.9
2〜0.99の範囲内に、その大きさを球形の直径また
は6面体の1辺の長さとして2〜10mm程度に設定し
て具体化することができる。
DETAILED DESCRIPTION OF THE INVENTION An embodiment of the present invention will be described with reference to FIGS. First, the first embodiment of the biological carrier of the present invention is a synthetic resin dispersed particle 2 as shown in FIG.
It is composed of granules of hydrated gelled product 2 of polyvinyl alcohol containing 1 and has a specific gravity of less than 1.0 as a whole.
This biological carrier disperses, as dispersed particles, 20 to 50% by volume of particles of polymethylpentene having a specific gravity of about 0.8, or 5 to particles of expanded resin such as expanded polystyrene having a specific gravity of about 0.25. It is contained by being dispersed by 15% by volume, and the specific gravity of the whole hydrated gel material is 0.9.
It can be embodied by setting the size within a range of 2 to 0.99 as a spherical diameter or a length of one side of a hexahedron of about 2 to 10 mm.

【0013】また、本発明の生物担体の第2の実施形態
は、図1(B)に示すような、ポリビニルアルコールの
水和ゲル化物3により被覆された、合成樹脂の中核粒体
31からなるもので、全体の比重が1.0未満とするも
のである。さらに、この生物担体は、前記中核粒体が比
重が0.25程度の発泡ポリプロピレン、発泡ポリエチ
レン、比重が0.8程度のポリメチルペンテンまたは発
泡ナイロンの粒体であって、0.5〜1mm程度の厚さ
の前記水和ゲル化物3により被覆されるとともに、全体
の比重が0.92〜0.99の範囲内にあって、その大
きさを前記と同様に直径または1辺の長さを2〜10m
m程度に設定して具体化することができる。なお、前記
いずれの実施形態においても、硝化菌または脱窒菌など
の有用な微生物を担体に付与するには、前記水和ゲル化
物中に予め微生物を包括固定化しておくか、またはゲル
化後に結合法によって同微生物を植種すればよい。
The second embodiment of the biological carrier of the present invention comprises a core granule 31 of a synthetic resin coated with a hydrated gelation product 3 of polyvinyl alcohol as shown in FIG. 1 (B). The total specific gravity is less than 1.0. Further, in this biological carrier, the core particles are particles of expanded polypropylene, expanded polyethylene having a specific gravity of about 0.25, polymethylpentene or expanded nylon having a specific gravity of about 0.8, and 0.5 to 1 mm. It is covered with the hydrated gelation product 3 having a certain thickness, and the total specific gravity is within the range of 0.92 to 0.99, and the size thereof is the same as the diameter or the length of one side. 2-10m
It can be embodied by setting it to about m. In any of the above embodiments, in order to impart a useful microorganism such as a nitrifying bacterium or a denitrifying bacterium to a carrier, the microorganism is entrapped in advance in the hydrated gelled product, or bound after gelation. The same microorganism may be inoculated by the method.

【0014】本発明の生物担体は、以上説明したように
構成されているので、従来の担体と同様な硝化または脱
窒機能を有しながら浮上分離法に好ましく適用できる、
担体の比重あるいは粒径を前記の範囲に選定すれば、反
応槽中の流動均一性を維持し、担体が偏在することな
く、好ましい生物反応が期待できる。また、浮上分離槽
において適度な浮上速度を設定できるので、分離性が高
く分離後の混合液中に残留して流出するのを適正に防止
することができる。
Since the biological carrier of the present invention is constructed as described above, it can be preferably applied to the flotation separation method while having the same nitrifying or denitrifying function as the conventional carrier.
If the specific gravity or particle size of the carrier is selected within the above range, the flow uniformity in the reaction tank is maintained, and a preferable biological reaction can be expected without uneven distribution of the carrier. Further, since an appropriate floating speed can be set in the floating separation tank, the separation property is high and it is possible to properly prevent the residual liquid from flowing out of the mixed liquid after separation.

【0015】次に、本発明の生物担体の製造方法の第1
の実施形態を図2に基づいて説明する。まず、ポリビニ
ルアルコールの水溶液(PVA溶液)を作成準備する。
この場合、ポリビニルアルコールに濃度が10〜20%
になるよう水を加え、混合しながら約120℃に加熱し
て溶解するのがよい。なお、ポリビニルアルコールの濃
度を前記の範囲に選定する理由は、その濃度が10%未
満では後記のゲルの強度が充分でなく、また20%を超
えるときには出来上がりの担体の組織が過度に緻密にな
り内部の細孔に所要の微生物が生息しにくくなるからで
ある。
Next, the first method for producing a biological carrier of the present invention
An embodiment will be described with reference to FIG. First, an aqueous solution of polyvinyl alcohol (PVA solution) is prepared.
In this case, polyvinyl alcohol has a concentration of 10 to 20%.
It is advisable to add water so that the temperature of the mixture becomes, and heat the mixture to about 120 ° C. while mixing to dissolve it. The reason for selecting the concentration of polyvinyl alcohol in the above range is that the concentration of the gel is less than 10%, the strength of the gel described below is insufficient, and when it exceeds 20%, the structure of the finished carrier becomes excessively dense. This is because it becomes difficult for the required microorganisms to inhabit the internal pores.

【0016】ついで、このPVA溶液と活性汚泥濃縮液
と合成樹脂の分散粒子を混合するのであるが、その場合
全体の比重が1未満となるよう各成分の配合比率を選定
する。例えば、PVA溶液100容積部に対して、汚泥
濃度50〜200g/リットルの活性汚泥濃縮液100
容積部と、分散粒子として比重が0.8程度のポリメチ
ルペンテンの粒子を50〜200容積部(全体に対して
20〜50容積%)、または比重が0.25程度の発泡
ポリスチレンのような発泡樹脂の粒子を10〜35容積
部(5〜15容積%)を配合して、全体の比重が0.9
2〜0.99の範囲内の値となるよう設定する。なお、
この場合、硝化菌などの微生物を後から植種するときに
は、前記活性汚泥濃縮液の代えて同量の純水を用いるこ
ととする。
Next, the PVA solution, the activated sludge concentrate and the dispersed particles of the synthetic resin are mixed. In this case, the mixing ratio of each component is selected so that the overall specific gravity is less than 1. For example, with respect to 100 parts by volume of the PVA solution, 100 of activated sludge concentrate having a sludge concentration of 50 to 200 g / liter is used.
50 to 200 parts by volume (20 to 50% by volume of the whole) of polymethylpentene particles having a specific gravity of about 0.8 as dispersed particles, or expanded polystyrene having a specific gravity of about 0.25. 10 to 35 parts by volume (5 to 15% by volume) of the foamed resin particles is blended to give an overall specific gravity of 0.9.
It is set to a value within the range of 2 to 0.99. In addition,
In this case, when a microorganism such as a nitrifying bacterium is planted later, the same amount of pure water is used instead of the activated sludge concentrate.

【0017】ここで分散粒子であるポリメチルペンテン
または発泡ポリスチレンの粒子は、粒径が0.1〜1m
mの範囲内に選定されるのが適当である。また、全体の
比重が0.92〜0.99の範囲内の値に設定する理由
は、この範囲を外れると生物担体の分離特性が低下して
浮上分離操作後も分離混合液中に残留しやすくなる、ま
た反応槽内の流動均一性が低下するなどの不具合が生じ
るからである。図4は、反応槽中の平均担体濃度10v
ol%、曝気強度1m3Air/m3 Hr、分離時間1分にお
いて、担体の比重と分離混合液中の担体残留率%および
反応槽底部の担体濃度%の関係を表すグラフであり、こ
れによれば、担体の比重が0.92を下回ると反応槽底
部の担体濃度%が8%(全体の80%相当)以下に低下
して流動均一性が悪化する、また比重が0.99を超え
ると分離混合液中の担体残留率%が0%から0.8%以
上に急激に増加し、分離特性が悪化することが理解でき
る。
The particles of polymethylpentene or expanded polystyrene, which are the dispersed particles, have a particle size of 0.1 to 1 m.
It is suitable to be selected within the range of m. The reason why the specific gravity of the whole is set to a value within the range of 0.92 to 0.99 is that if it is out of this range, the separation characteristics of the biological carrier are deteriorated and the biological carrier remains in the separation mixed solution even after the floating separation operation. This is because it becomes easier and causes problems such as deterioration of flow uniformity in the reaction tank. FIG. 4 shows an average carrier concentration of 10 v in the reaction tank.
ol%, aeration intensity 1 m 3 Air / m 3 Hr, separation time 1 minute, is a graph showing the relationship between the specific gravity of the carrier, the carrier residual ratio% in the separation mixture and the carrier concentration% at the bottom of the reaction vessel. According to this, when the specific gravity of the carrier is less than 0.92, the carrier concentration% at the bottom of the reaction tank is reduced to 8% (corresponding to 80% of the whole) or less, and the flow uniformity is deteriorated, and the specific gravity exceeds 0.99. It can be understood that the carrier residual ratio% in the separated mixed liquid rapidly increases from 0% to 0.8% or more, and the separation characteristics deteriorate.

【0018】また、図5は、この実施形態において、ポ
リメチルペンテンまたは発泡ポリスチレンの粒子の含有
量vol%と担体の出来上がり比重の関係を表すグラフ
(PVA溶液濃度:10%、活性汚泥添加:なし、ゲル
化:冷凍法、粒度:4mm□)であり、上記の好ましい
比重の範囲内にするためのポリメチルペンテンまたは発
泡ポリスチレンの配合量を求めることができる。
FIG. 5 is a graph showing the relationship between the content vol% of particles of polymethylpentene or expanded polystyrene and the finished specific gravity of the carrier in this embodiment (PVA solution concentration: 10%, activated sludge addition: none). , Gelation: freezing method, particle size: 4 mm □), and the compounding amount of polymethylpentene or expanded polystyrene can be determined in order to bring the above specific gravity range.

【0019】以上のように得た混合液を冷凍容器に移
し、−30℃〜−20℃の温度で5〜24時間冷凍す
る。冷凍後、−5℃〜室温で5〜12時間放置して融解
させる。かくして、内部に水を含む無数の微細な細孔が
形成され、その細孔に所定の微生物が繁殖しているポリ
ビニルアルコールの水和ゲル化物が得られるのである。
この場合、この冷凍→融解の操作を3回ないし5回繰り
返すのが好ましい。このように冷凍→融解を繰り返すこ
とにより、得られる担体の強度、例えば引張強度を繰り
返さない場合の0.5kg/cm2 から1kg/cm2
程度に向上させることができるのである。
The mixture thus obtained is transferred to a freezing container and frozen at a temperature of -30 ° C to -20 ° C for 5 to 24 hours. After freezing, leave at -5 ° C to room temperature for 5 to 12 hours to melt. Thus, a hydrated gelation product of polyvinyl alcohol in which a myriad of fine pores containing water are formed and a predetermined microorganism propagates in the pores can be obtained.
In this case, it is preferable to repeat this freezing → thawing operation 3 to 5 times. By repeating such frozen → melting, strength of the resulting carrier, for example, from 0.5 kg / cm 2 in the case of not repeated tensile strength 1 kg / cm 2
It can be improved to a certain degree.

【0020】得られたゲル化物を容器から取り出し、切
断器により適宜な大きさに造粒してから充分に水洗して
所要の微生物を固定化した生物担体を得ることができ
る。この実施形態において、前記PVA溶液に予め1〜
2%のアルギン酸ソーダを添加しておき、分散粒子など
を混合した後に0.2M塩化カルシウム溶液に滴下する
と、球形に造粒することができるので、これを冷凍、融
解するようにすれば、球形の生物担体を得ることができ
る。
The obtained gelled product can be taken out of the container, granulated into an appropriate size with a cutter, and then washed sufficiently with water to obtain a biological carrier on which desired microorganisms are immobilized. In this embodiment, the PVA solution is preliminarily 1 to
If 2% sodium alginate is added and the dispersed particles are mixed and then added dropwise to a 0.2 M calcium chloride solution, spherical granulation can be achieved. The biological carrier can be obtained.

【0021】この造粒操作において、生物担体の大きさ
は、球形の直径または6面体の1辺の長さとして、2〜
10mm程度の範囲に選定するのが好適である。図6
は、担体の粒径と反応槽中での硝化速度との関係、およ
び担体の浮上速度との関係を示すグラフ(反応槽温度:
20℃、NH4-N:25mg/リットル、担体濃度:1
0%)であり、担体の粒径が2〜10mmの範囲のもの
は、浮上分離槽において分離特性が損なわれず、かつあ
るレベル以上の硝化機能を発揮できるので、適当である
ことが理解される。
In this granulation operation, the size of the biological carrier is 2 to the spherical diameter or the length of one side of the hexahedron.
It is preferable to select within a range of about 10 mm. FIG.
Is a graph showing the relationship between the particle size of the carrier and the nitrification rate in the reaction tank, and the relationship with the floating speed of the carrier (reaction tank temperature:
20 ° C, NH 4 -N: 25 mg / liter, carrier concentration: 1
It is understood that a carrier having a particle size in the range of 2 to 10 mm is suitable because the separation characteristics are not impaired in the flotation tank and the nitrification function above a certain level can be exhibited. .

【0022】次に、本発明の生物担体の製造方法の第2
の実施形態を図3に基づいて説明すると、この方法は、
合成樹脂の中核粒体の表面にポリビニルアルコール水溶
液の被膜を形成した後、硼酸水溶液と反応させてその被
膜をゲル化させ、比重が1.0未満のものとするもので
ある。先ず、第1の方法と同様にPVA溶液(濃度10
〜20%)を準備し、等量の活性汚泥濃縮液(濃度50
〜250g/リットル)と混合し、これに合成樹脂の中
核粒体として、例えば、ば比重が0.8程度のポリメチ
ルペンテンまたは発泡ナイロンあるいは比重が0.25
程度の発泡ポリプロピレンまたは発泡ポリエチレンなど
の粒径2〜10mmの粒体を浸漬してから引き上げて厚
さ0.5〜1mm程度のPVA混合液被膜で被覆する。
ついでこれを飽和硼酸溶液中に浸漬してゲル化してか
ら、引き続き1〜3日程度浸漬したまま熟成させる。そ
の後十分に水洗して所定の生物担体を得ることができ
る。
Next, the second method for producing a biological carrier of the present invention
An embodiment of the present invention will be described with reference to FIG.
After forming a film of an aqueous solution of polyvinyl alcohol on the surface of core particles of a synthetic resin, it is reacted with an aqueous solution of boric acid to gel the film so that the specific gravity is less than 1.0. First, as in the first method, the PVA solution (concentration 10
~ 20%) and prepare an equal volume of activated sludge concentrate (concentration 50
˜250 g / liter), and as a core particle of the synthetic resin, for example, polymethylpentene or foamed nylon having a specific gravity of about 0.8 or a specific gravity of 0.25.
A granular material such as expanded polypropylene or expanded polyethylene having a particle diameter of 2 to 10 mm is dipped and then pulled up to be coated with a PVA mixed liquid film having a thickness of about 0.5 to 1 mm.
Then, this is immersed in a saturated boric acid solution to form a gel, and then aged for 1 to 3 days. Then, it can be sufficiently washed with water to obtain a predetermined biological carrier.

【0023】前記PVA混合液被膜の厚さを0.5〜1
mmとするのは、硝化菌などの微生物の生息領域がこれ
ら被膜の表面から深さ0.5mm程度までの範囲である
ことから、若干の余裕をみた前記範囲が好適であること
による。また被膜の厚さを前記範囲に調節するには、P
VA混合液の粘性が大であるため中核粒体を引き上げた
ときに付着する過剰な液を、滴下させるまたは振り切る
などして除去すればよい。
The thickness of the PVA mixed liquid coating is 0.5 to 1
The mm is set because the habitat region of microorganisms such as nitrifying bacteria is a range from the surface of these coatings to a depth of about 0.5 mm, and therefore the above range with a slight margin is preferable. To adjust the thickness of the coating within the above range, P
Since the viscosity of the VA mixed liquid is large, excess liquid attached when the core particle is pulled up may be removed by dropping or shaking it off.

【0024】なお、担体の粒径が2〜10mmの範囲に
あるのが好ましい点は、図6に基づいてすでに説明した
通りであるが、この中核粒体を用いる実施形態では、図
7に示す中核粒体の粒径と担体の比重の関係を表すグラ
フ(被膜厚さ:0.5〜1.0mm、PVA溶液:10
%、活性汚泥:添加せず、ゲル化:硼酸法)のように、
発泡ナイロン71、ポリメチルペンテン72、発泡ポリ
プロピレン73などを上記の粒径の中核粒体に適用すれ
ば、すでに説明した通り好ましい値である比重0.92
〜0.99の範囲の生物担体を得ることができる。
The point that the particle size of the carrier is preferably in the range of 2 to 10 mm is as described above with reference to FIG. 6, but in the embodiment using this core particle, it is shown in FIG. Graph showing the relationship between the particle size of the core granules and the specific gravity of the carrier (coating thickness: 0.5 to 1.0 mm, PVA solution: 10
%, Activated sludge: no addition, gelation: boric acid method),
When foamed nylon 71, polymethylpentene 72, foamed polypropylene 73, etc. are applied to the core particles of the above particle size, the specific gravity of 0.92, which is a preferable value, as already described.
Biological carriers in the range of -0.99 can be obtained.

【0025】以上詳細に説明したように、本発明の生物
担体の製造方法によれば、前記の浮上分離法に好適な生
物担体を容易に製造できる、あるいは廃水処理のスペッ
クに応じて、担体の比重、粒径、形状、ゲル化物組織な
どを適合するように容易に調節することも可能となるな
どの利点がある。
As explained in detail above, according to the method for producing a biological carrier of the present invention, a biological carrier suitable for the above-mentioned flotation method can be easily produced, or the biological carrier can be prepared according to the specifications of wastewater treatment. There is an advantage that the specific gravity, particle size, shape, gelled structure and the like can be easily adjusted to suit.

【0026】[0026]

【発明の効果】本発明では、生物担体として硝化または
脱窒性能を維持しながら、反応槽内の活性汚泥混合液と
の比重差を利用した浮上分離法に適用することが可能と
なる生物担体とその製造方法を提供できるので、沈殿分
離法またはスクリーン分離法を用いる必要がなく、当然
のことにそれらの方法に伴う問題を完全に回避できると
いう優れた効果がある。よって本発明は従来の問題点を
解消した生物担体とその製造方法として、その工業的価
値が極めて大なるものがある。
INDUSTRIAL APPLICABILITY According to the present invention, a biological carrier that can be applied to a flotation separation method utilizing a difference in specific gravity from an activated sludge mixed solution in a reaction tank while maintaining nitrification or denitrification performance as a biological carrier. Therefore, there is no need to use a precipitation separation method or a screen separation method, and naturally there is an excellent effect that problems associated with those methods can be completely avoided. Therefore, the present invention has an extremely great industrial value as a biological carrier and a method for producing the same, which solve the conventional problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の生物担体を模式的に示す断面図。FIG. 1 is a sectional view schematically showing a biological carrier of the present invention.

【図2】本発明の生物担体の製造方法の1例を示すフロ
ー図。
FIG. 2 is a flow chart showing an example of a method for producing a biological carrier of the present invention.

【図3】本発明の生物担体の製造方法の他の例を示すフ
ロー図。
FIG. 3 is a flowchart showing another example of the method for producing a biological carrier of the present invention.

【図4】担体の比重と担体の濃度の関係を示すグラフ。FIG. 4 is a graph showing the relationship between the specific gravity of the carrier and the concentration of the carrier.

【図5】担体の比重と分散粒子含有率の関係を示すグラ
フ。
FIG. 5 is a graph showing the relationship between the specific gravity of the carrier and the content of dispersed particles.

【図6】担体の粒径とその浮上速度等の関係を示すグラ
フ。
FIG. 6 is a graph showing the relationship between the particle size of a carrier and its floating speed.

【図7】中核粒体の粒径と担体の比重の関係を示すグラ
フ。
FIG. 7 is a graph showing the relationship between the particle size of the core particles and the specific gravity of the carrier.

【図8】従来の排水処理設備の要部を示す断面図。FIG. 8 is a sectional view showing a main part of a conventional wastewater treatment facility.

【図9】浮上分離槽の原理を示す断面図。FIG. 9 is a sectional view showing the principle of a flotation tank.

【符号の説明】[Explanation of symbols]

2、3 水和ゲル化物、21 分散粒子、31 中核粒
体。
2,3 hydrated gel, 21 dispersed particles, 31 core particles.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂の分散粒子を含むポリビニルア
ルコールの水和ゲル化物の粒体からなり、比重が1.0
未満である生物担体。
1. A hydrated gel product of polyvinyl alcohol containing dispersed particles of a synthetic resin, having a specific gravity of 1.0.
A biological carrier that is less than.
【請求項2】 前記分散粒子がポリメチルペンテンまた
は発泡樹脂の粒子であって、前記水和ゲル化物の粒体の
比重が0.92〜0.99の範囲内のものである請求項
1に記載の生物担体。
2. The dispersed particles are particles of polymethylpentene or a foamed resin, and the specific gravity of the granules of the hydrated gel is within the range of 0.92 to 0.99. The described biological carrier.
【請求項3】 ポリビニルアルコールの水和ゲル化物に
より被覆された、合成樹脂の中核粒体からなり、比重が
1.0未満である生物担体。
3. A biological carrier comprising a core particle of a synthetic resin coated with a hydrated gel of polyvinyl alcohol and having a specific gravity of less than 1.0.
【請求項4】 前記中核粒体が発泡ポリプロピレン、発
泡ポリエチレン、ポリメチルペンテンまたは発泡ナイロ
ンの粒体からなり、比重が0.92〜0.99の範囲内
のものである請求項3に記載の生物担体。
4. The core particle is made of expanded polypropylene, expanded polyethylene, polymethylpentene or expanded nylon particles, and has a specific gravity in the range of 0.92 to 0.99. Biological carrier.
【請求項5】 ポリビニルアルコールの水溶液に合成樹
脂の分散粒子を添加、混合した後、冷凍、融解を繰り返
して比重が1.0未満の水和ゲル化物を形成させること
を特徴とする生物担体の製造方法。
5. A biological carrier characterized in that dispersed particles of a synthetic resin are added to and mixed with an aqueous solution of polyvinyl alcohol, and then frozen and thawed repeatedly to form a hydrated gelled product having a specific gravity of less than 1.0. Production method.
【請求項6】 前記ポリビニルアルコールの水溶液に合
成樹脂の分散粒子とともに活性汚泥を添加、混合する請
求項5に記載の生物担体の製造方法。
6. The method for producing a biological carrier according to claim 5, wherein activated sludge is added and mixed together with the dispersed particles of the synthetic resin to the aqueous solution of polyvinyl alcohol.
【請求項7】 分散粒子がポリメチルペンテンまたは発
泡樹脂の粒子であり、比重が0.92〜0.99の範囲
内の水和ゲル化物を形成させる請求項5または6に記載
の生物担体の製造方法。
7. The biological carrier according to claim 5, wherein the dispersed particles are particles of polymethylpentene or a foamed resin, and a hydrated gelled product having a specific gravity within the range of 0.92 to 0.99 is formed. Production method.
【請求項8】 合成樹脂の中核粒体の表面にポリビニル
アルコール水溶液の被膜を形成させ、次いで硼酸水溶液
に接触させて前記被膜を水和ゲル化物とするとともに、
全体の比重が1.0未満の粒体とすることを特徴とする
生物担体の製造方法。
8. A coating of an aqueous solution of polyvinyl alcohol is formed on the surface of core particles of a synthetic resin, and then contacted with an aqueous solution of boric acid to form the hydrated gel product, and
A method for producing a biological carrier, characterized in that the entire specific gravity is less than 1.0.
【請求項9】 活性汚泥を添加、混合したポリビニルア
ルコールの水溶液の被膜を形成させる請求項8に記載の
生物担体の製造方法。
9. The method for producing a biological carrier according to claim 8, wherein a film of an aqueous solution of polyvinyl alcohol mixed with activated sludge is formed.
【請求項10】 前記中核粒体が発泡ポリプロピレン、
発泡ポリエチレン、ポリメチルペンテンまたは発泡ナイ
ロンの粒体であり、全体の比重が0.92〜0.99の
範囲内のものである請求項8または9に記載の生物担体
の製造方法。
10. The core particle is expanded polypropylene,
The method for producing a biological carrier according to claim 8 or 9, which is a granular body of expanded polyethylene, polymethylpentene or expanded nylon, and has a specific gravity of 0.92 to 0.99 as a whole.
JP8068195A 1996-03-25 1996-03-25 Biological carrier and its production Pending JPH09252771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8068195A JPH09252771A (en) 1996-03-25 1996-03-25 Biological carrier and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8068195A JPH09252771A (en) 1996-03-25 1996-03-25 Biological carrier and its production

Publications (1)

Publication Number Publication Date
JPH09252771A true JPH09252771A (en) 1997-09-30

Family

ID=13366772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8068195A Pending JPH09252771A (en) 1996-03-25 1996-03-25 Biological carrier and its production

Country Status (1)

Country Link
JP (1) JPH09252771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263674A (en) * 2001-03-08 2002-09-17 Takeda Chem Ind Ltd Carrier for water treatment, method for manufacturing the same, and facility for water treatment
JP2003103284A (en) * 2001-09-28 2003-04-08 Takeda Chem Ind Ltd Carrier for water treatment, method for manufacturing the same and water treatment apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263674A (en) * 2001-03-08 2002-09-17 Takeda Chem Ind Ltd Carrier for water treatment, method for manufacturing the same, and facility for water treatment
JP2003103284A (en) * 2001-09-28 2003-04-08 Takeda Chem Ind Ltd Carrier for water treatment, method for manufacturing the same and water treatment apparatus

Similar Documents

Publication Publication Date Title
US4256573A (en) Process for biological treatment of waste water in downflow operation
US3846289A (en) Waste treatment process
JP4224951B2 (en) Denitrification method
JP2017209647A (en) Inclusion carrier of microorganism for water treatment, water treatment method and manufacturing method of inclusion carrier
US6261456B1 (en) Waste water treatment method and waste water treatment equipment capable of treating waste water containing fuluorine, nitrogen and organic matter
US3956129A (en) Waste treatment apparatus
JPH10136980A (en) Support for bioreactor and its production
JP2003039093A (en) Denitrification method and denitrification apparatus
JPH09252771A (en) Biological carrier and its production
JP2003024988A (en) Biological denitrification method
JP3933230B2 (en) Nitrogen-containing organic wastewater treatment method
JP3387241B2 (en) Anaerobic treatment method
EP3024319B1 (en) New hybrid biodegradable polymer for efficient nitrogen and phosphate reduction
KR100566053B1 (en) Apparatus and method for treat biologic denitration of wastewater and sewage comprising nitrate nitrogen
US7244358B2 (en) Denitrification of aquarium water
JPS5851986A (en) Apparatus for biologically purifying waste water with aerobes
KR100770365B1 (en) Media for removal phosphorus, preparation method thereof and treatment system of sewage and wastewater using them
JP3136901B2 (en) Wastewater treatment method
JP2003265170A (en) Microorganism-immobilized carrier and method for purifying environment therewith
JPH0378157B2 (en)
KR101632952B1 (en) Nitrogen and phosphorus removal device for advanced treatment of wastewater
JPS63158194A (en) Biological treatment of organic sewage
JP2003001284A (en) Method for cleaning water and device therefor
KR100403288B1 (en) A treatment method of wastewater with low concentration of ammonia by the type of non-aeration nitrification
JPH0683832B2 (en) Microorganism carrier

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010608