JPH09252505A - Drive control apparatus for electric vehicle - Google Patents

Drive control apparatus for electric vehicle

Info

Publication number
JPH09252505A
JPH09252505A JP8058830A JP5883096A JPH09252505A JP H09252505 A JPH09252505 A JP H09252505A JP 8058830 A JP8058830 A JP 8058830A JP 5883096 A JP5883096 A JP 5883096A JP H09252505 A JPH09252505 A JP H09252505A
Authority
JP
Japan
Prior art keywords
motor
difference
speed
wheel
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8058830A
Other languages
Japanese (ja)
Other versions
JP3591118B2 (en
Inventor
Tadashi Ashikaga
正 足利
Masato Mori
真人 森
Kazutoshi Nagayama
和俊 永山
Takayuki Mizuno
孝行 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP05883096A priority Critical patent/JP3591118B2/en
Publication of JPH09252505A publication Critical patent/JPH09252505A/en
Application granted granted Critical
Publication of JP3591118B2 publication Critical patent/JP3591118B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a drive control apparatus which suppresses the rotation speed rise of a motor when a wheel slips, by a method wherein the difference in the detection value of the speed of rotation of the motor between wheels is found and, when the difference is at a predetermined value or higher, a torque instruction value on the side on which of the motor rotation speed is high is subtracted according to the difference. SOLUTION: The rotation speed of every wheel is detected by speed detection parts 9 at respective controllers X1, X2 so as to be computed by an adder 10, and a result is inputted to discriminators 111, 112. Then, when their difference is at an instruction value or higher, a torque instruction value is subtracted by an adder 141, 142 and outputted. As a result, when a switch 121 or 122 is closed, a torque instruction value on the side of a high speed of rotation is lowered. Then, the rotation speed rise of a motor can be suppressed when a wheel or both wheels slip, and a safe driving operation can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車の駆動
制御装置に係り、特に前輪の左右輪または後輪の左右輪
更には4輪をそれぞれ独立のモータにて駆動する場合の
駆動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive control device for an electric vehicle, and more particularly to a drive control device for driving left and right front wheels, left and right rear wheels, and four wheels by independent motors. .

【0002】[0002]

【従来の技術】電気自動車は、モータにて車輪を駆動さ
せるもので、図5に示すような概略構成を有する。図5
に示す構成は、前輪の左右輪1FL,1FRを独立のP
M(永久磁石)モータ2L,2Rにて駆動しようとする
もので、アクセルペダル3のストロークに連動したポテ
ンショメータ4による信号を図6に示すコントローラC
(図5では電源部5として一括して表示する)へのトル
ク指令として与え、このコントローラによる指令に基づ
きインバータ6L,6Rを制御し、モータ2L,2Rを
駆動制御する。
2. Description of the Related Art An electric vehicle is one in which wheels are driven by a motor and has a schematic structure as shown in FIG. FIG.
In the configuration shown in, the left and right front wheels 1FL and 1FR have independent P
It is intended to be driven by M (permanent magnet) motors 2L and 2R, and a signal from the potentiometer 4 which is interlocked with the stroke of the accelerator pedal 3 is used as a controller C shown in FIG.
It is given as a torque command to (indicated collectively as the power supply unit 5 in FIG. 5), the inverters 6L and 6R are controlled based on the command from this controller, and the motors 2L and 2R are drive-controlled.

【0003】図6に示すコントーラCでは、まずトルク
指令をトルク制御部C1にてトルク電流指令Iq * 及び
励磁電流指令Id * とし、電流制御系C2にてこのトル
ク電流指令Iq * 及び励磁電流指令Id * とトルク電流
検出値Iq 及び励磁電流検出値Id との偏差を比例・積
分演算することにより、トルク電圧指令Vq * 及び励磁
電圧指令Vd * を得た後、座標変換部C3にて三相の電
圧指令Vu * ,Vv *,Vw * を得ている。そして、こ
の電圧指令Vu * ,Vv * ,Vw * にてインバータ6を
制御しPMモータ2を駆動制御する。なお、C4は電流
検出値Iu ,I W からV相の電流検出値IV を求め、更
に三相の電流検出値Iu ,Iv ,Iw を三相/二相変換
し、トルク電流検出値Iq 及び励磁電流検出値Id を求
める座標変換部である。更に図6中7はPMモータ2の
回転子の速度検出器、8は回転子位置(位相)θを求め
る位置検出部であり、9は速度ωr を求める速度検出部
である。
In the controller C shown in FIG. 6, the torque is first
A torque current command I is issued by the torque control unit C1.q *as well as
Excitation current command Id *And the current control system C2
Current command Iq *And exciting current command Id *And torque current
Detection value IqAnd exciting current detection value IdProportion and product of deviation from
By calculating the minutes, the torque voltage command Vq *And excitation
Voltage command Vd *After obtaining the
Pressure command Vu *, Vv *, Vw *Have gained. And this
Voltage command Vu *, Vv *, Vw *Inverter 6
The PM motor 2 is driven and controlled. C4 is the current
Detection value Iu, I WTo V phase current detection value IVSeeking
Three-phase current detection value Iu, Iv, IwTo three-phase / two-phase conversion
The detected torque current IqAnd exciting current detection value IdSeeking
This is a coordinate conversion unit for Further, 7 in FIG. 6 indicates the PM motor 2.
Rotor speed detector, 8 calculates rotor position (phase) θ
Is a position detection unit, and 9 is the speed ωrSpeed detection unit
It is.

【0004】[0004]

【発明が解決しようとする課題】上述の従来構成にあっ
て、通常図5に示す左右輪1FL、1FRには同一のト
ルク指令が与えられており、例えば車が左にカーブする
場合には、左側の車輪1FLにかかる負荷トルクが増加
するため、モータ2Lの回転数が低下してモータの出力
トルクと負荷トルクとがつりあうように動作する。この
場合、右側の車輪1FRにかかる負荷トルクは減少する
ため、モータ回転数が上昇し、モータ出力トルクと負荷
トルクがバランスするように動作する。この結果左右輪
1FL、1FRを同一トルク指令値にて運転したとして
もカーブの際には外輪側の車輪回転数が高くなり、内輪
側の回転数が小さくなって安定運転が可能となる。
In the above-mentioned conventional structure, the same torque command is normally given to the left and right wheels 1FL and 1FR shown in FIG. 5, and for example, when the vehicle curves to the left, Since the load torque applied to the left wheel 1FL increases, the rotation speed of the motor 2L decreases, and the output torque of the motor and the load torque operate to balance each other. In this case, since the load torque applied to the right wheel 1FR decreases, the motor rotation speed increases and the motor output torque and the load torque operate in a balanced manner. As a result, even if the left and right wheels 1FL, 1FR are driven with the same torque command value, the wheel rotation speed on the outer wheel side becomes higher and the rotation speed on the inner wheel side becomes smaller at the time of a curve, which enables stable operation.

【0005】しかしながら、車のカーブに際して片方の
車輪がスリップした場合については、急激に片方の輪の
負荷トルクが減少してしまい、この片側の車輪に対応す
るモータ回転数が急速に上昇して不安定となる。また、
車のカーブにかかわらず車輪1FL,1FRの左右両輪
がスリップすることもあり、両輪モータの回転数が同時
に上昇した場合にも問題である。
However, when one of the wheels slips when the vehicle is turning, the load torque of the one wheel suddenly decreases, and the motor rotation speed corresponding to the one wheel rapidly rises, resulting in a failure. Be stable. Also,
The left and right wheels of the wheels 1FL and 1FR may slip regardless of the curve of the vehicle, which is a problem even when the rotational speeds of the two-wheel motors simultaneously increase.

【0006】本発明は、上述の問題に鑑み、片方の車輪
又は両方の車輪がスリップ等を生じて回転数が上昇しよ
うとしても、それを抑えるようにした電気自動車の駆動
制御装置の提供を目的とする。
In view of the above problems, the present invention has an object of providing a drive control device for an electric vehicle, which suppresses an increase in the number of revolutions even if one or both wheels are slipped and the like and the number of revolutions is increased. And

【0007】[0007]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の発明特定事項を有する。 (1)トルク指令にてインバータを制御しモータを駆動
する系を車輪ごとに有する電気自動車の駆動制御装置に
おいて、上記系相互にて上記モータの回転数検出値の差
を求め、この差が一定値以上の場合は上記モータの回転
数の高い側のトルク指令値を上記差に応じて減算するこ
とを特徴とする。 (2)トルク指令にてインバータを制御しモータを駆動
する系を車輪ごとに有する電気自動車の駆動制御装置に
おいて、上記系相互にて上記モータの回転数検出値の差
を求め、この差が一定値以上の場合はモータ回転数の低
速回転側電流制御系出力を高速回転側にも出力したこと
を特徴とする。 (3)トルク指令にてインバータを制御しモータを駆動
する系を車輪ごとに有する電気自動車の駆動制御装置に
おいて、上記系ごとに上記モータの回転数の検出値の変
化率と一定値との差を求め、この差が所定値以上の場合
にはその系のトルク指令をその差に応じて減算すること
を特徴とする。 (4)上記(3)において、一定値はトルク指令をモー
タ慣性JM と車両慣性J v との和にて割算して得ること
を特徴とする。
A book which achieves the above objects.
The invention has the following invention specifying matters. (1) Drive the motor by controlling the inverter with the torque command
Drive system for electric vehicles that has a system for each wheel
The difference in the detected value of the motor speed between the above systems.
If this difference exceeds a certain value, the motor rotation
The torque command value on the higher side can be subtracted according to the above difference.
And features. (2) Drive the motor by controlling the inverter with the torque command
Drive system for electric vehicles that has a system for each wheel
The difference in the detected value of the motor speed between the above systems.
If this difference exceeds a certain value, the motor speed is low.
Outputting the current control system output on the high-speed rotation side to the high-speed rotation side
It is characterized by. (3) Drive the motor by controlling the inverter with the torque command
Drive system for electric vehicles that has a system for each wheel
The detected value of the motor rotation speed changes for each system.
If the difference between the conversion rate and a fixed value is found and this difference is greater than or equal to the specified value,
To subtract the torque command of the system according to the difference
It is characterized by. (4) In (3) above, the constant value is the torque command.
Inertia JMAnd vehicle inertia J vTo obtain by dividing by the sum of
It is characterized by.

【0008】車輪のスリップ等が生じたとしてもその車
輪の制御系でのトルク指令や電圧指令等を抑えることに
より、異常な回転数上昇を防止することができる。
Even if the wheel slips or the like, it is possible to prevent an abnormal increase in the number of revolutions by suppressing the torque command and the voltage command in the control system of the wheel.

【0009】[0009]

【発明の実施の形態】ここで、図1〜図4を参照して本
発明の実施の形態を説明する。なお、図1〜図4におい
て、図6と同一部分には同符号を付して説明を省略す
る。なお、図1〜図4においては、コントローラCの
外、インバータ6、モータ2、等を含めた図6全体構成
をコントローラX1,X2として説明する。図1におい
て、左右輪それぞれを制御するコントローラX1,X2
には、トルク指令Tref が入力される一方、各コントロ
ーラX1,X2の速度検出部9からの検出信号ωr1,ω
r2が加算器10に入力されωr1−ωr2が計算される。こ
の加算結果は判別器111と112に入力されるが、一
方の判別器111はωr1>ω r2の場合にΔωr >Δωn
か否かの判別を行ない、他方の判別器112ではωr1
ωr2の場合にΔωr の符号を反転させてΔωr >Δωn
か否かの判別を行なっている。ここで、ωr1とωr2とが
Δωn 以上の差を生じたとき、いずれかの判別器111
又は112からの出力にてスイッチ121又は122を
投入することになる。このスイッチ121又は122の
投入によって乗算器131又は132にてΔω r に比例
定数Kを乗算した信号を加算器141又は142に加え
るものである。また、加算器141又は142ではトル
ク指令Tref からK・Δωr を減算してTref ´とした
トルク指令を出力するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Referring now to FIGS.
An embodiment of the invention will be described. In addition, in FIGS.
6, the same parts as those in FIG.
You. 1 to 4, the controller C
The entire configuration of FIG. 6 including the outside, the inverter 6, the motor 2, etc.
Will be described as controllers X1 and X2. Figure 1
And the controllers X1 and X2 for controlling the left and right wheels respectively
The torque command TrefIs input while each control
Of the detection signals ω from the speed detectors 9 of the cameras X1 and X2r1, Ω
r2Is input to the adder 10 and ωr1−ωr2Is calculated. This
The addition result of is input to the discriminators 111 and 112.
One discriminator 111 is ωr1> Ω r2Δω forr> Δωn
It is determined whether or not ω is determined by the other discriminator 112.r1<
ωr2Δω forrΔω by inverting the sign ofr> Δωn
Whether or not it is determined. Where ωr1And ωr2And
ΔωnWhen the above difference occurs, one of the discriminators 111
Or switch 121 or 122 with the output from 112
Will be thrown in. Of this switch 121 or 122
By inputting Δω in the multiplier 131 or 132 rProportional to
The signal multiplied by the constant K is added to the adder 141 or 142.
Things. In addition, in the adder 141 or 142,
Command TrefTo K · ΔωrAnd subtract TrefWas'
It outputs a torque command.

【0010】こうして、モータ回転数差が生じその差が
Δωn 以上になったとき、例えばω r1がωr2よりΔωn
以上大きくなったとき、スイッチ121が閉じて、Δω
r ・Kが加算器141に加えられTref ´=Tref −K
・Δωr の減算を行ない、そのトルク指令をコントロー
ラX1に出力することになる。また、ωr2がωr1よりΔ
ωn 以上大きいときはスイッチ122が閉じることにな
る。この結果、高回転側のトルク指令が低下し、片輪ス
リップ時のモータ回転軸の上昇を抑えることができる。
In this way, a difference in motor rotational speed occurs and the difference is
ΔωnWhen it is above, for example ω r1Is ωr2Than Δωn
When it becomes larger than the above, the switch 121 is closed and Δω
r・ K is added to the adder 141 and Tref′ = Tref-K
・ ΔωrIs subtracted and the torque command is controlled.
It will be output to X1. Also, ωr2Is ωr1Than Δ
ωnIf it is larger than that, the switch 122 will be closed.
You. As a result, the torque command on the high rotation side is reduced and
The rise of the motor rotation shaft at the time of lip can be suppressed.

【0011】図2は、別の例であり制御信号切替器20
を備えたものである。すなわち、コントローラX1,X
2にあって速度検出部9からの検出信号ωr を加算器1
0にて加え、ωr1−ωr2を計算する。この値Δωr を制
御信号切替器20にてΔωnと比較しΔωr >0にてΔ
ωr >Δωn の場合、Δωr <0にて|Δωr |>Δω
n の場合それぞれにて電圧指令を切替えるものである。
すなわち、制御信号切替器20にはコントローラX1,
X2それぞれの電流制御系C2の出力端子がその入力端
子に接続され、しかもその出力端子がコントローラX
1、X2それぞれの座標変換部C3の入力端子に接続さ
れる。そして、コントローラX1側の検出速度ωr1がコ
ントローラX2側の検出速度ωr2よりΔω n 以上大きい
とき、つまりΔωr >0でΔωr >Δωn のとき、コン
トローラX1の電流制御系C2の出力端子を解放し、コ
ントローラX2の電流制御系の出力端子をコントローラ
X1及びX2の各座標変換部C3にそれぞれ接続するも
のである。また、逆にωr2がωr1よりΔωn 以上大きい
とき、つまりΔωr <0で|Δω r |>Δωn のとき、
コントローラX2の電流制御系の出力端子を解放し、コ
ントローラX1の電流制御系の出力端子をコントローラ
X1及びX2の各座標変換部C3にそれぞれ接続するも
のである。かかる接続状態を電圧指令値にて表示すると
次式[数1]のようになる。
FIG. 2 shows another example of the control signal switch 20.
It is provided with. That is, the controllers X1, X
2 and the detection signal ω from the speed detection unit 9rAdder 1
Added at 0, ωr1−ωr2Is calculated. This value ΔωrControl
Δω at the signal switch 20nCompared with Δωr> 0 Δ
ωr> ΔωnThen Δωr<0 | Δωr| > Δω
nIn this case, the voltage command is switched in each case.
That is, the control signal switch 20 includes the controller X1,
The output terminal of the current control system C2 of each X2 is its input terminal.
It is connected to the child and its output terminal is the controller X
1 and X2 are connected to the input terminals of the coordinate conversion unit C3.
It is. Then, the detected speed ω on the controller X1 sider1Is
Detected speed ω on the controller X2 sider2Than Δω nGreater than
When, that is, Δωr> 0 for Δωr> ΔωnWhen
Release the output terminal of the current control system C2 of the tracker X1
Controller for the output terminal of the current control system of the controller X2
It is connected to each of the coordinate conversion units C3 of X1 and X2.
It is. On the contrary, ωr2Is ωr1Than ΔωnGreater than
When, that is, Δωr<0 | │Δω r| > ΔωnWhen,
Release the output terminal of the current control system of controller X2
Controller for the output terminal of the current control system of the controller X1
It is connected to each of the coordinate conversion units C3 of X1 and X2.
It is. If such a connection state is displayed as a voltage command value,
The following expression [Equation 1] is obtained.

【0012】[0012]

【数1】 こうして、左右輪の回転数差Δωr がある値Δωn を超
えた場合、高回転側の電流制御を中断し低回転側の電流
制御出力として得られる電圧指令を高速側の電圧指令と
して用いており、このため左右両モータへ低い方の電圧
が印加されるため、略同一の回転数にて運転することが
できる。もっとも、スリップにより負荷トルクが減少し
ている車輪側のモータは正常動作側のモータに対して軽
い負荷分だけ回転数が高くなるが、回転数差がΔωn
程度に抑制される。
[Equation 1] Thus, when the rotational speed difference Δω r between the left and right wheels exceeds a certain value Δω n , the current control on the high speed side is interrupted and the voltage command obtained as the current control output on the low speed side is used as the high speed side voltage command. Therefore, since the lower voltage is applied to both the left and right motors, the motors can be operated at substantially the same rotation speed. Of course, the wheel-side motor whose load torque is reduced due to the slippage has a higher rotation speed than the normal-operation side motor by a light load, but the rotation speed difference is suppressed to about Δω n .

【0013】こうして片車輪のスリップ等による片側モ
ータの異常回転を抑制することが可能となり安定な運転
が可能となる。
In this way, abnormal rotation of the one-sided motor due to slip of one wheel or the like can be suppressed, and stable operation becomes possible.

【0014】次に、図3にて別の例を説明する。上述の
説明では、片方の車輪の負荷トルクが小さくなった場合
を述べているが、場合によっては両輪共がスリップ等に
て高速回転となることがある。この例及び次の例(図
4)ではこのケースを述べている。今、電気自動車が正
常に運転している場合には、モータの回転数ωr は次の
ような変化をする。すなわち、指令トルクTref 、モー
タ負荷トルク(電気自動車の走行抵抗をモータ軸に換算
した値)Tl 、モータ慣性JM 、車両慣性(モータ軸に
換算した値)Jv とすると次式[数2]となる。
Next, another example will be described with reference to FIG. In the above description, the case where the load torque of one wheel becomes small is described, but in some cases both wheels may rotate at high speed due to slip or the like. This case and the next example (FIG. 4) describe this case. Now, when the electric vehicle is operating normally, the rotation speed ωr of the motor changes as follows. That is, when the command torque T ref , the motor load torque (value obtained by converting the running resistance of the electric vehicle into the motor shaft) T l , the motor inertia J M , and the vehicle inertia (value converted into the motor shaft) J v are given by the following equation 2].

【0015】[0015]

【数2】 ここで、駆動車輪のうち、片輪及び両輪がスリップする
とモータ負荷トルクT l が減少し更には車両慣性Jv
モータ軸にかからなくなる。一般には車両慣性Jv はモ
ータ慣性JM にて対して100倍程度あるため、スリッ
プした車輪に直結されたモータの回転数は次のようにな
る。
(Equation 2)Here, of the drive wheels, one wheel and both wheels slip.
And motor load torque T lIs reduced and the vehicle inertia JvBut
It will not affect the motor shaft. Generally, vehicle inertia JvIs
Data inertia JMSince it is about 100 times larger than
The rotation speed of the motor directly connected to the connected wheel is as follows.
You.

【0016】[0016]

【数3】 この結果、100倍以上の加速度にて回転数が上昇す
る。図3はこの点を解決するものである。図3におい
て、コントローラX1,X2の検出速度ωr は微分回路
301,302を介して加速度αw として得られる。つ
いで、加算器311,312では加速度αn はモータが
正常に運転している場合のモータ最大の回転数変化率で
あり、前場の[数2]にてTl =0 Tref を最大値T
MAX として微分することにより得られるものであって次
式[数4]にて得られる。
(Equation 3) As a result, the rotation speed increases at 100 times or more acceleration. FIG. 3 solves this point. In FIG. 3, the detected speed ω r of the controllers X1 and X2 is obtained as the acceleration α w via the differentiation circuits 301 and 302. Next, in the adders 311 and 312, the acceleration α n is the maximum rotation speed change rate of the motor when the motor is operating normally, and T 1 = 0 T ref is set to the maximum value T in the previous [Equation 2].
It is obtained by differentiating as MAX and is obtained by the following equation [Equation 4].

【0017】[0017]

【数4】 こうして、加算器311,312の出力はαw −αn
出力Δαw が得られ、判別器321,322にてΔαw
>Δαn であるか否かが判別される。この場合、Δαn
は任意に設定された定数である。Δαw がΔαn より大
きい場合、すなわち、加速度(回転数変化)が大きい場
合にはスイッチ331,332が投入され、Δαw ・K
の出力を得る乗算器341,342それぞれの出力が加
算器141,142それぞれに加えられる。こうして、
トルク指令Tref がTref −K・Δαw であるTref ´
としてトルク制御器に入力されることになる。
(Equation 4) In this way, the outputs of the adders 311 and 312 are the outputs Δα w of α w −α n , and the discriminators 321 and 322 output Δα w.
It is determined whether or not> Δα n . In this case, Δα n
Is an arbitrarily set constant. When Δα w is larger than Δα n , that is, when the acceleration (rotational speed change) is large, the switches 331 and 332 are turned on, and Δα w · K
The outputs of the multipliers 341 and 342 for obtaining the outputs of the above are added to the adders 141 and 142, respectively. Thus,
The torque command T ref is T ref −K · Δα w T ref
Will be input to the torque controller.

【0018】この結果、片方又は両方の車輪のスリップ
することによりコントローラX1もしくはX2又はX1
及びX2の速度ωr の変化率αw が増大しΔαw >Δα
n の条件にてスイッチ331もしくは332又は331
及び332が投入され、コントローラX1もしくはX2
又はX1及びX2のトルク指令Tref がTref ´に低下
する。このため、回転数の上昇率を正常に運転された場
合の最大回転数変化率αn より少し高い値(αn +Δα
n )に抑制でき、安定な運転を実現することができる。
As a result of this, the controller X1 or X2 or X1 is caused by slipping of one or both wheels.
And the rate of change α w of the speed ω r of X2 increases and Δα w > Δα
Switch 331 or 332 or 331 under the condition of n
And 332 are turned on and the controller X1 or X2
Alternatively, the torque command T ref of X1 and X2 decreases to T ref ′. Therefore, the rate of increase in rotational speed is slightly higher than the maximum rotational speed change rate α n under normal operation (α n + Δα
n ), and stable operation can be realized.

【0019】図4は他の例を示すものであり、図3の最
大回転数変化率αn の代りに、指令トルクTref に対し
てこの時点での正常運転時の回転数変化率を基準として
異常を判断している。つまり、前述の[数4]に示すα
n はTMAX でのαn であるが、Tref でのαn 、すなわ
ちTref でのαn =Tref /(JM +Jv )を求めるこ
とにより異常を判断するものである。このため図4では
乗算器40を備えている。その他の回路は図3と同じで
ある。この場合、αn がトルク指令Tref に対応して決
まるのでスリップによる急激な回転数の上昇をより早く
検出でき、上昇率の抑制を迅速に行なうことができる。
こうして、片輪又は両輪のスリップ等による回転数の急
激な上昇を防止でき、安定運転が可能となる。
FIG. 4 shows another example. Instead of the maximum rotational speed change rate α n in FIG. 3, the rotational speed change rate during normal operation at this time is used as a reference for the command torque T ref . Is judged as abnormal. That is, α shown in the above [Formula 4]
n is an alpha n in T MAX, is to determine abnormality by determining alpha n in T ref, i.e. T ref in the alpha n = T ref / a (J M + J v). Therefore, in FIG. 4, the multiplier 40 is provided. The other circuits are the same as those in FIG. In this case, since α n is determined corresponding to the torque command T ref , a rapid increase in the rotation speed due to slip can be detected earlier, and the increase rate can be suppressed quickly.
In this way, it is possible to prevent a rapid increase in the number of revolutions due to a slip of one wheel or both wheels, etc., and stable operation becomes possible.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、電
気自動車にて負荷トルクが異常に少なくなった場合のモ
ータの回転上昇を抑えることができ、安定運転を可能と
した。
As described above, according to the present invention, it is possible to suppress an increase in the rotation of the motor when the load torque is abnormally reduced in an electric vehicle, and to enable stable operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の一例の構成図。FIG. 1 is a configuration diagram of an example of an embodiment of the present invention.

【図2】他の例の構成図。FIG. 2 is a configuration diagram of another example.

【図3】その他の例の構成図。FIG. 3 is a configuration diagram of another example.

【図4】更に他の例の構成図。FIG. 4 is a configuration diagram of still another example.

【図5】電気自動車の概略構成図。FIG. 5 is a schematic configuration diagram of an electric vehicle.

【図6】コントローラのブロック図。FIG. 6 is a block diagram of a controller.

【符号の説明】[Explanation of symbols]

C,X1,X2 コントローラ 1FL,1FR 車輪 2,2L,2R モータ 6,6L,6R インバータ 9 速度検出部 10,141,142,311,312 加算器 111,112,321,322 判別器 20 制御信号切替器 301,302 微分回路 40,131,132,341,342 乗算器 C, X1, X2 controller 1FL, 1FR wheel 2,2L, 2R motor 6,6L, 6R inverter 9 speed detector 10,141,142,311,312 adder 111,112,321,322 discriminator 20 control signal switching Unit 301,302 Differentiation circuit 40,131,132,341,342 Multiplier

フロントページの続き (72)発明者 水野 孝行 東京都品川区大崎二丁目1番17号 株式会 社明電舎内Front Page Continuation (72) Inventor Takayuki Mizuno 2-17 Osaki, Shinagawa-ku, Tokyo Stock Company Meidensha

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 トルク指令にてインバータを制御しモー
タを駆動する系を車輪ごとに有する電気自動車の駆動制
御装置において、 上記系相互にて上記モータの回転数検出値の差を求め、
この差が一定値以上の場合は上記モータの回転数の高い
側のトルク指令値を上記差に応じて減算することを特徴
とする電気自動車の駆動制御装置。
1. A drive control device for an electric vehicle having, for each wheel, a system for controlling an inverter by a torque command to drive a motor, wherein a difference between detected rotational speeds of the motor is obtained between the systems.
A drive control device for an electric vehicle, wherein when the difference is equal to or more than a certain value, the torque command value on the higher rotation speed side of the motor is subtracted according to the difference.
【請求項2】 トルク指令にてインバータを制御しモー
タを駆動する系を車輪ごとに有する電気自動車の駆動制
御装置において、 上記系相互にて上記モータの回転数検出値の差を求め、
この差が一定値以上の場合はモータ回転数の低速回転側
電流制御系出力を高速回転側にも出力したことを特徴と
する電気自動車の駆動制御装置。
2. A drive control device for an electric vehicle having, for each wheel, a system for controlling an inverter by a torque command to drive a motor, wherein a difference between detected values of the number of revolutions of the motor is obtained between the systems,
When the difference is equal to or more than a certain value, the low-speed rotation side current control system output of the motor rotation speed is also output to the high-speed rotation side.
【請求項3】 トルク指令にてインバータを制御しモー
タを駆動する系を車輪ごとに有する電気自動車の駆動制
御装置において、 上記系ごとに上記モータの回転数の検出値の変化率と一
定値との差を求め、この差が所定値以上の場合にはその
系のトルク指令をその差に応じて減算することを特徴と
する電気自動車の駆動制御装置。
3. A drive control device for an electric vehicle having, for each wheel, a system for controlling an inverter by a torque command to drive a motor, wherein a change rate and a constant value of a detected value of the rotational speed of the motor are set for each system. Is calculated, and when the difference is equal to or larger than a predetermined value, the torque command of the system is subtracted according to the difference.
【請求項4】 一定値はトルク指令をモータ慣性JM
車両慣性Jv との和にて割算して得ることを特徴とする
請求項3記載の電気自動車の駆動制御装置。
4. The drive control device for an electric vehicle according to claim 3, wherein the constant value is obtained by dividing the torque command by the sum of the motor inertia J M and the vehicle inertia J v .
JP05883096A 1996-03-15 1996-03-15 Drive control device for electric vehicles Expired - Lifetime JP3591118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05883096A JP3591118B2 (en) 1996-03-15 1996-03-15 Drive control device for electric vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05883096A JP3591118B2 (en) 1996-03-15 1996-03-15 Drive control device for electric vehicles

Publications (2)

Publication Number Publication Date
JPH09252505A true JPH09252505A (en) 1997-09-22
JP3591118B2 JP3591118B2 (en) 2004-11-17

Family

ID=13095573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05883096A Expired - Lifetime JP3591118B2 (en) 1996-03-15 1996-03-15 Drive control device for electric vehicles

Country Status (1)

Country Link
JP (1) JP3591118B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104553886A (en) * 2014-12-30 2015-04-29 北京现代汽车有限公司 Automatic electric vehicle parking control method and automatic electric vehicle parking control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104553886A (en) * 2014-12-30 2015-04-29 北京现代汽车有限公司 Automatic electric vehicle parking control method and automatic electric vehicle parking control device

Also Published As

Publication number Publication date
JP3591118B2 (en) 2004-11-17

Similar Documents

Publication Publication Date Title
KR950015169B1 (en) Control system for induction motor driven electric car
US6104148A (en) System and method for controlling an AC traction motor without sensing motor rotation speed
JP2752539B2 (en) Control device for vehicle electric motor
US8022659B2 (en) Control apparatus for AC rotary machine and control method for AC rotary machine
JPH07212915A (en) Control method for electric vehicle drive motor
US9862289B1 (en) Drive system with limited slip electric differential drive unit
JP2001028804A (en) Motor controller for vehicle
JPH09252505A (en) Drive control apparatus for electric vehicle
EP3745589B1 (en) Inverter control method and inverter control device
JP2023167670A (en) Electric vehicle control method and electric vehicle control device
JPH05115108A (en) Electric automobile
JP3127033B2 (en) Electric car
JP3706675B2 (en) Motor drive control device for electric vehicle
JP5240004B2 (en) Vehicle control device
JP2634856B2 (en) Electric vehicle inverter control device
JPH1014300A (en) Control system-switching system
JPS61150691A (en) Ac motor controller
JPH06219312A (en) Electrically driven power steering device
JP3969861B2 (en) Electric vehicle control device
JP2003219508A (en) Vehicle controller
JP3695805B2 (en) Induction motor control device
JP3190497B2 (en) Motor control device
US20230241982A1 (en) Electric vehicle control method and electric vehicle control system
JP2023167671A (en) Electric vehicle control method and electric vehicle control device
JP3525397B2 (en) Control device for traveling vehicles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

EXPY Cancellation because of completion of term