JPH1014300A - Control system-switching system - Google Patents

Control system-switching system

Info

Publication number
JPH1014300A
JPH1014300A JP8155120A JP15512096A JPH1014300A JP H1014300 A JPH1014300 A JP H1014300A JP 8155120 A JP8155120 A JP 8155120A JP 15512096 A JP15512096 A JP 15512096A JP H1014300 A JPH1014300 A JP H1014300A
Authority
JP
Japan
Prior art keywords
control
sensor
control system
failure
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8155120A
Other languages
Japanese (ja)
Inventor
Katashige Yamada
堅滋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP8155120A priority Critical patent/JPH1014300A/en
Publication of JPH1014300A publication Critical patent/JPH1014300A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To enable an electric automobile to travel, even when a sensor fails by switching a vector control to V/F control or sensorless vector control upon the failure of the sensor, thereby driving a motor without using the sensor. SOLUTION: A control system switch 22 is controlled by delivering a sensor failure signal, and a vector control system 23 is switched to a V/F control system 24. Consequently, an inverter 13 is controlled by an inverter control command, without using a sensor, and a motor 4 is driven. According to the system, drive control of an automobile can be performed by V/F control or sensorless vector control without using any sensor, even when the sensor fails or a signal line is disconnected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気自動車用ベク
トル制御装置におけるモータ速度検出故障時の制御方式
切替装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control system switching device for a motor speed detection failure in a vector control device for an electric vehicle.

【0002】[0002]

【従来の技術】電気自動車駆動用モータにあっては、い
わゆるベクトル制御にて制御される誘導電動機(IM)
が多く用いられている。ここで、ベクトル制御の概要を
図1にて説明するに、制御に当ってはまず一次電流を励
磁電流I0 とトルク電流It とに分け、各々を独立に制
御することにより、トルクの高速応答及び高精度制御を
実現している。一般には、過渡現象を防止するため、定
出力運転などの特別な場合を除いて、運転状態に関係な
く励磁電流I0 を一定にしてベクトル制御をしている。
2. Description of the Related Art In an electric vehicle driving motor, an induction motor (IM) controlled by so-called vector control is used.
Is often used. Here, an outline of the vector control in FIG. 1, divided first primary current is hitting the control on the excitation current I 0 and the torque current I t, by controlling independently, fast torque Response and high-precision control are realized. Generally, in order to prevent transient phenomena, vector control is performed with the excitation current I 0 constant regardless of the operation state, except in special cases such as constant output operation.

【0003】このトルク電流It を得るためには、電流
指令演算・保護制御回路2により算出されるが、この回
路2は駆動のためのアクセル開度指令回路1a、及び制
動のためのブレーキ指令回路1bに接続されており、更
にモータ温度、インバータ温度、バッテリ電圧の各情報
が入力されて保護制御を行なっている。ここで、電流指
令演算・保護制御回路2では、駆動に当りアクセル開度
に比例したトルク電流It を出力し、また一定の励磁電
流I0 を出力するものである。
[0003] In order to obtain this torque current I t is calculated by the current command calculation and protection control circuit 2, the brake command for the circuit 2 is accelerator opening command circuit 1a for driving, and braking The circuit is connected to a circuit 1b, and furthermore, each information of a motor temperature, an inverter temperature, and a battery voltage is inputted to perform protection control. Here, one in which the current calculation and protection control circuit 2, and outputs a torque current I t which is proportional to the accelerator opening per the driving, and outputs a constant excitation current I 0.

【0004】すべり周波数演算部3は、トルク電流指令
t と、これに直交する励磁電流指令I0 と、誘導電動
機4の二次時定数τ2 から、すべり周波数ωs を求め
る。速度検出器5は、誘導電動機4の回転速度を示す速
度検出器ωr を求める。
[0004] slip frequency calculating unit 3, and the torque current command I t, the excitation current command I 0 orthogonal thereto from the induction motor 4 of the secondary time constant tau 2, obtaining the slip frequency omega s. Speed detector 5 determines the speed detector omega r indicative of the rotational speed of the induction motor 4.

【0005】すべり周波数ωs は、誘導電動機4の速度
検出値ωr と加算されて一次角速度ωに変換され、この
角速度ωは積分演算部6によって積分されて位相角θと
して求められる。
The slip frequency ω s is added to the detected speed value ω r of the induction motor 4 to be converted into a primary angular speed ω. The angular speed ω is integrated by an integration operation unit 6 to obtain a phase angle θ.

【0006】電流制御部7はトルク電流指令It 及び励
磁電流指令I0 に対して夫々のトルク電流検出値ItFB
及び励磁電流検出値I0FB との偏差から比例積分演算に
よる演算を行い、さらに両演算結果に対して誘導電動機
内の干渉分を加減算して回転座標のトルク軸電圧制御信
号Vt と励磁軸電圧制御信号V0 を得る。
[0006] The current control unit 7 a torque current command I t and excitation current respectively of the torque current with respect to instruction I 0 detected value I tFB
And the exciting current detection value after calculation by the proportional integral operation from a deviation between I 0FB, further torque-axis voltage control signal V t and the excitation axis voltage addition and subtraction to the rotating coordinate interference component of the induction motor machine for both operation result obtaining a control signal V 0.

【0007】トルク電流検出値ItFB 及び励磁電流検出
値I0FB は誘導電動機4の二相電流検出値から演算され
る。この演算は二相電流IU ,IW をA/D変換部8で
夫々ディジタル値に変換し、両者の加算によってV相の
電流検出値IV も求め、各電流値IU ,IV ,IW から
三相/二相変換部9で固定座標の二相交流電流に変換
し、これを座標変換部10で回転座標のトルク電流検出
値ItFB と励磁電流検出値I0FB に変換する。
The torque current detection value ItFB and the excitation current detection value I0FB are calculated from the two-phase current detection values of the induction motor 4. In this calculation, the two-phase currents I U and I W are converted into digital values by the A / D converter 8, respectively, and the V-phase current detection value I V is also obtained by adding the two, and the respective current values I U , I V , It converted from I W to the two-phase alternating current of fixed coordinates in three-phase / two-phase converter 9, which converts the torque current detection value I tFB rotational coordinates and the exciting current detection value I 0FB coordinate transformation unit 10.

【0008】電流制御部7からの非干渉化した電圧制御
信号Vt ,V0 は座標変換部11によって極座標の一次
電圧指令V1 と位相角φに変換され、さらに極座標/三
相変換部12によって固定座標の三相電圧指令VU ,V
V ,VW に変換され、PWMインバータ13の出力電圧
制御信号にされる。
The decoupling voltage control signals V t and V 0 from the current controller 7 are converted into a primary voltage command V 1 of polar coordinates and a phase angle φ by a coordinate converter 11, and further converted to a polar coordinate / three-phase converter 12. The three-phase voltage commands V U , V
The signals are converted into V and VW and are used as output voltage control signals of the PWM inverter 13.

【0009】PWMインバータ13は、三相電圧指令V
U ,VV ,VW に応じて、車載バッテリーBの直流電流
を三相交流電流に変換して誘導電動機4に供給してい
る。これにより誘導電動機4が駆動して、電気自動車が
走行する。
The PWM inverter 13 has a three-phase voltage command V
According to U , V V , and V W , the DC current of the vehicle-mounted battery B is converted into a three-phase AC current and supplied to the induction motor 4. Thus, the induction motor 4 is driven, and the electric vehicle runs.

【0010】[0010]

【発明が解決しようとする課題】上述のベクトル制御装
置を自動車に搭載する場合、例えば速度センサや磁束セ
ンサが故障したりこれらセンサとコントローラとを結ぶ
信号線に断線が生じたとき、自動車の特性として自動車
が停止したままで動かないのでは具合が悪く、自力にて
移動できることが望ましい。このセンサの故障や信号線
の断線は生じる可能性が大きいと仮定して取り上げたも
のであるが、モータコントローラ(インバータ)13が
正常であっても、上述の異常にて移動不能に陥ることは
排除すべきである。例えて言えば、エンジン車の場合に
はエンジンが故障してもスタータモータを利用して自力
移動できるが、電気自動車についても同様の自力移動が
望ましい。
When the above-described vector control device is mounted on an automobile, for example, when a speed sensor or a magnetic flux sensor breaks down or a signal line connecting these sensors and the controller is disconnected, the characteristics of the automobile are reduced. If the car does not move while stopped, it is inconvenient, and it is desirable to be able to move on its own. The above description is based on the assumption that there is a high possibility that a failure of the sensor or disconnection of the signal line will occur. However, even if the motor controller (inverter) 13 is normal, the motor cannot be moved due to the above-described abnormality. Should be eliminated. For example, in the case of an engine car, even if the engine fails, the starter motor can be used to move on its own, but it is desirable for an electric vehicle to move in the same manner.

【0011】本発明は、上述の問題に鑑み、センサ等の
故障があっても自力移動可能な制御方式切替装置の提供
を目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a control system switching device that can move by itself even if there is a failure in a sensor or the like.

【0012】[0012]

【課題を解決するための手段】本発明は次の発明特定事
項を有する。 (1)電流指令信号、電流検出信号、及び速度信号を得
てセンサ故障か否かを判別する判別器と、操作により故
障信号を得る操作手段と、の少なくとも一方を有し、上
記判別器や操作手段からの故障信号により制御方式をベ
クトル制御方式から他の制御方式に切替える切替器を有
する、ことを特徴とする。 (2)(1)にて、他の制御方式としては、V/F制御
方式あるいはセンサレスベクトル制御方式であることを
特徴とする。
The present invention has the following matters specifying the invention. (1) The discriminator includes at least one of a discriminator that obtains a current command signal, a current detection signal, and a speed signal to determine whether or not a sensor has failed, and operating means that obtains a failure signal by operation. A switch is provided for switching the control mode from the vector control mode to another control mode in response to a failure signal from the operating means. (2) In (1), the other control method is a V / F control method or a sensorless vector control method.

【0013】センサの故障や信号線の断線があったとし
ても、V/F制御やセンサレスベクトル制御ではセンサ
を用いず、またセンサとコントローラとの信号線の信号
を用いることもなく、自動車の駆動制御ができる。
Even if there is a sensor failure or disconnection of the signal line, the V / F control and the sensorless vector control do not use the sensor, nor use the signal of the signal line between the sensor and the controller to drive the vehicle. Can control.

【0014】[0014]

【発明の実施の形態】ここで、図2〜図7を参照して本
発明の実施の形態の一例を説明する。なお、図にて、図
1と同一部分には同符号を付し説明を省略する。センサ
故障時に制御方式をベクトル制御から切替えるに当って
は、まずセンサの故障を検出する必要がある。図2はセ
ンサ故障判別器20であり、このセンサ故障判別器20
は図1に示す電流制御部7の入力と同様の入力が接続さ
れる。すなわち、励磁電流I0 、トルク電流It 、励磁
電流検出値I0FB 、トルク電流検出値ItFB 、及び速度
パルスωが入力される。このセンサ故障判別器20で
は、電流が指令値どおり流れており、つまり電流I0
0FB であり、電流It =ItFB であり、また、トルク
電流It が車によって決定される設定値以上であり、車
速ωパルスが入力されないという条件を全て満たすこと
により、センサ故障が判断され、センサ故障信号を出力
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will now be described with reference to FIGS. In the figure, the same parts as those in FIG. When switching the control method from vector control when a sensor fails, it is necessary to first detect a sensor failure. FIG. 2 shows a sensor failure discriminator 20.
Is connected to the same input as the input of the current control unit 7 shown in FIG. That is, the excitation current I 0, the torque current I t, the excitation current detection value I 0FB, torque current detection value I tFB, and speed pulses ω is input. In this sensor failure discriminator 20, the current is flowing according to the command value, that is, the current I 0 =
An I 0FB, a current I t = I tFB, also not less than a set value of the torque current I t is determined by the vehicle, by satisfying all of the conditions that the vehicle speed ω pulse is input, sensor failure is determined And outputs a sensor failure signal.

【0015】また、図2に示す判別器20を備けること
なく運転者によるセンサ故障スイッチ21の投入により
故障信号を得るようにしてもよい。すなわち、運転席回
りに故障スイッチ21を設けておき、走行不能時に運転
車がそのスイッチ21をオンすることにより故障信号を
出力するものである。故障スイッチ21投入後のフロー
は図3の如く、制御方式の切替え、センサ故障にて自動
車を駆動し、センサ故障でない場合自動車は停止状態に
置くというものである。
A failure signal may be obtained by turning on the sensor failure switch 21 by the driver without providing the discriminator 20 shown in FIG. That is, a failure switch 21 is provided around the driver's seat, and when the vehicle cannot be driven, the driver turns on the switch 21 to output a failure signal. As shown in FIG. 3, after the failure switch 21 is turned on, the control system is switched, the vehicle is driven by the sensor failure, and if the sensor is not failed, the vehicle is stopped.

【0016】センサ故障信号の送出により、図4,図5
に示すように制御方式切替器22が制御され、ベクトル
制御方式23から図4の場合にはV/F制御方式24に
切替わり、図5の場合にはセンサレスベクトル制御方式
25に切替わる。
4 and 5 by sending the sensor failure signal.
As shown in FIG. 5, the control system switch 22 is controlled to switch from the vector control system 23 to the V / F control system 24 in FIG. 4 and to the sensorless vector control system 25 in FIG.

【0017】すなわち、図4の場合のV/F制御方式で
は、図1に示すベクトル制御の代りに例えば図6に示す
V/Fパターン回路24a、PWM回路24b、ドライ
バ24cを介してインバータ制御指令が出力されモータ
4を駆動させるものであり、指令によりセンサを用いる
ことなくインバータ13が制御されモータ4が駆動され
る。
That is, in the V / F control system shown in FIG. 4, instead of the vector control shown in FIG. 1, for example, an inverter control command is transmitted via a V / F pattern circuit 24a, a PWM circuit 24b, and a driver 24c shown in FIG. Is output to drive the motor 4. The inverter 13 is controlled by the command without using a sensor, and the motor 4 is driven.

【0018】また、図5に示すセンサレスベクトル制御
の場合は、図7に示す同一次元磁束オブザーバ25aと
速度適応機構25bとによりモータ4の実速度を推定す
るものであり、まず磁束オブザーバ25aにて固定子座
標の2次磁束とモータ1次電流とを指定し、速度適応機
構25bにてこの1次電流推定値と1次電流検出値とを
比較した誤差信号にて適応調整則を用いてモータ実速度
を推定したものである。したがって、この場合もセンサ
を用いることなく推定速度によってインバータ13が制
御されモータ4が駆動される。なお、センサレスベクト
ル制御はモータ温度変化時のパラメータ変化時の制御性
変化、つまりモータ温度変化時のモータ定数の同定がで
きず出力トルクが変動するが、それ以外の制御性能はセ
ンサ付きベクトル制御と同様の制御性を持つ。
In the case of the sensorless vector control shown in FIG. 5, the actual speed of the motor 4 is estimated by the same-dimensional magnetic flux observer 25a and the speed adapting mechanism 25b shown in FIG. The secondary magnetic flux of the stator coordinates and the primary current of the motor are designated, and the speed adaptation mechanism 25b uses an error signal obtained by comparing the estimated primary current with the detected primary current using an adaptive adjustment rule to obtain a motor. It is an estimate of the actual speed. Therefore, also in this case, the inverter 13 is controlled by the estimated speed without using a sensor, and the motor 4 is driven. In the sensorless vector control, the controllability change when the parameter changes when the motor temperature changes, that is, the output torque fluctuates because the motor constant cannot be identified when the motor temperature changes, but the other control performance is the same as the vector control with sensor. Has similar controllability.

【0019】上述の説明では、誘導電動機IMを用いた
電気自動車を例としたものであるが、永久磁石(PM)
を用いた制御についても種々のセンサレス制御方式が提
案されており、上述と同様センサ故障時にセンサレス制
御に切替ることにより、PMを用いた電気自動車でも故
障時の走行が可能となる。
In the above description, an electric vehicle using an induction motor IM is taken as an example, but a permanent magnet (PM) is used.
Various sensorless control methods have also been proposed for control using the PM. In the same way as described above, by switching to sensorless control when a sensor fails, even an electric vehicle using PM can run at the time of failure.

【0020】[0020]

【発明の効果】以上説明したように本発明では、センサ
故障時にベクトルに制御からV/F制御やセンサレスベ
クトル制御に切替えることにより、センサを用いること
なくモータ駆動ができ、センサ故障時での走行も可能と
なる。
As described above, according to the present invention, the motor can be driven without using a sensor by switching from vector control to V / F control or sensorless vector control in the event of a sensor failure. Is also possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ベクトル制御の概要を示すブロック図。FIG. 1 is a block diagram showing an outline of vector control.

【図2】センサ故障判別器の説明図。FIG. 2 is an explanatory diagram of a sensor failure classifier.

【図3】運転者による故障入力手段とそのフローチャー
ト。
FIG. 3 is a flowchart showing a failure input means by a driver and its flowchart.

【図4】V/F制御方式への切替ブロック図。FIG. 4 is a block diagram of switching to a V / F control method.

【図5】センサレスベクトル制御方式への切替ブロック
図。
FIG. 5 is a block diagram of switching to a sensorless vector control method.

【図6】V/F制御の概要のブロック図。FIG. 6 is a schematic block diagram of V / F control.

【図7】センサレスベクトル制御の概要のブロック図。FIG. 7 is a schematic block diagram of sensorless vector control.

【符号の説明】[Explanation of symbols]

20 センサ故障判別器 21 センサ故障スイッチ 22 制御方式切替器 23 ベクトル制御方式 24 V/F制御方式 25 センサレスベクトル制御方式 Reference Signs List 20 sensor failure discriminator 21 sensor failure switch 22 control method switch 23 vector control method 24 V / F control method 25 sensorless vector control method

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電流指令信号、電流検出信号、及び速度
信号を得てセンサ故障か否かを判別する判別器と、操作
により故障信号を得る操作手段と、の少なくとも一方を
有し、 上記判別器や操作手段からの故障信号により制御方式を
ベクトル制御方式から他の制御方式に切替える切替器を
有する、 ことを特徴とする制御方式切替装置。
1. A discriminator for determining whether a sensor failure has occurred by obtaining a current command signal, a current detection signal, and a speed signal, and operating means for obtaining a failure signal by an operation. A control system switching device, comprising: a switch for switching a control system from a vector control system to another control system in accordance with a failure signal from a device or an operation means.
【請求項2】 他の制御方式としては、V/F制御方式
あるいはセンサレスベクトル制御方式であることを特徴
とする請求項1記載の制御方式切替装置。
2. The control system switching device according to claim 1, wherein the other control system is a V / F control system or a sensorless vector control system.
JP8155120A 1996-06-17 1996-06-17 Control system-switching system Pending JPH1014300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155120A JPH1014300A (en) 1996-06-17 1996-06-17 Control system-switching system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155120A JPH1014300A (en) 1996-06-17 1996-06-17 Control system-switching system

Publications (1)

Publication Number Publication Date
JPH1014300A true JPH1014300A (en) 1998-01-16

Family

ID=15599013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155120A Pending JPH1014300A (en) 1996-06-17 1996-06-17 Control system-switching system

Country Status (1)

Country Link
JP (1) JPH1014300A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011542A (en) * 2008-06-24 2010-01-14 Jtekt Corp Motor controller
WO2012114903A1 (en) * 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
US9203332B2 (en) 2011-06-30 2015-12-01 Ntn Corporation Motor drive device
US9751409B2 (en) 2011-02-25 2017-09-05 Ntn Corporation Electric automobile
US10828779B2 (en) 2015-09-25 2020-11-10 Ntn Corporation Diagnostic device for link actuation device
US11646640B2 (en) 2021-03-29 2023-05-09 Mitsubishi Electric Corporation Controller for AC rotating electric machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011542A (en) * 2008-06-24 2010-01-14 Jtekt Corp Motor controller
WO2012114903A1 (en) * 2011-02-25 2012-08-30 Ntn株式会社 Electric automobile
JP2012178919A (en) * 2011-02-25 2012-09-13 Ntn Corp Electric vehicle
CN103392294A (en) * 2011-02-25 2013-11-13 Ntn株式会社 Electric automobile
US9031724B2 (en) 2011-02-25 2015-05-12 Ntn Corporation Electric automobile
US9751409B2 (en) 2011-02-25 2017-09-05 Ntn Corporation Electric automobile
EP2680436A4 (en) * 2011-02-25 2017-11-08 NTN Corporation Electric automobile
US9203332B2 (en) 2011-06-30 2015-12-01 Ntn Corporation Motor drive device
US9660561B2 (en) 2011-06-30 2017-05-23 Ntn Corporation Motor drive device
US10828779B2 (en) 2015-09-25 2020-11-10 Ntn Corporation Diagnostic device for link actuation device
US11646640B2 (en) 2021-03-29 2023-05-09 Mitsubishi Electric Corporation Controller for AC rotating electric machine

Similar Documents

Publication Publication Date Title
JP2861680B2 (en) Failure detection method for electric vehicles and fail-safe control method using the same
EP2566046B1 (en) Motor control apparatus
JP5055836B2 (en) Phase shift detection device and detection method for magnetic pole position sensor for synchronous motor
JPH09172791A (en) Failure detection device for a.c. motor control circuit
JP2008092708A (en) Motor drive controller
US10003289B2 (en) Method for controlling motor
JP2005218215A (en) Driving method and temperature-estimating method of pm motor
US10862419B2 (en) Motor drive system, and method of controlling motor drive system
KR101989596B1 (en) System and method for controlling motor
US10826425B2 (en) Drive device and control method for vehicle
JP3607960B2 (en) Motor control device and control method
JP2008043069A (en) Electric vehicle control unit
JP2006184160A (en) Current detection apparatus for three-phase a.c. motor with failure detection function
JPH1014300A (en) Control system-switching system
JPH06217596A (en) Controller for coil transfer type permanent magnet motor
JP2000023499A (en) Motor controller
JP2000191248A (en) Elevator control device
JP2000134976A (en) Elevator device using permanent-magnet synchronous motor
JP2002142499A (en) Speed sensorless vector controller
JP2004096828A (en) Electric vehicle controller
JPH07336807A (en) Drive control apparatus for electric car
JP2006129636A (en) Fault-detecting method and fault-detecting device of motor rotation detection
JP3969861B2 (en) Electric vehicle control device
JPH0923502A (en) Controller for electric car
WO2019171836A1 (en) Vehicle control device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040608