JPH09251005A - Abnormality monitoring system for rock, protecting wall, rock bed and so on and inserting type transducer - Google Patents

Abnormality monitoring system for rock, protecting wall, rock bed and so on and inserting type transducer

Info

Publication number
JPH09251005A
JPH09251005A JP8057821A JP5782196A JPH09251005A JP H09251005 A JPH09251005 A JP H09251005A JP 8057821 A JP8057821 A JP 8057821A JP 5782196 A JP5782196 A JP 5782196A JP H09251005 A JPH09251005 A JP H09251005A
Authority
JP
Japan
Prior art keywords
rock
bedrock
ultrasonic
cracks
monitoring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8057821A
Other languages
Japanese (ja)
Inventor
Toshiya Masuda
俊也 増田
Hitoshi Fushimi
仁志 伏見
Kageyoshi Katakura
景義 片倉
Susumu Hibi
進 日比
Akihisa Fukami
明久 深見
Hisahiro Arao
寿浩 新穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8057821A priority Critical patent/JPH09251005A/en
Publication of JPH09251005A publication Critical patent/JPH09251005A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Traffic Control Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the cracks at the initial stage of the occurrence of abnormality and to avoid the danger of disaster by performing the monitoring for the occurrence of abnormality and the investigation and the monitoring for preventive maintenance all the time regardless of weather and the like for protecting railroads, roads and the like. SOLUTION: A transmitter for generating ultrasonic waves and a receiver for receiving the ultrasonic waves are embedded into the interior of an object such as a rock. The ultrasonic wave transmitted from the transmitter 101 is propagated in the interior of the object, and the reflections from the surface, the inner cracks and the like of the object are received by the receiver. The received signals are measured at the initial installation and inputted into a database. The difference between the received signals at the arbitrary measuring (can be continuous) and the data in the database are detected. Thus, the abnormality such as the occurrence of the cracks of the object and the like is monitored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、落石、崖崩れなど
を、監視、予知する、予防保全技術分野に関し、検知技
術は、超音波利用技術分野に関する。さらにデータ情報
処理技術、データ伝送技術分野に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of preventive maintenance technology for monitoring and predicting rockfalls, landslides, etc., and the detection technology relates to the field of ultrasonic wave application technology. Further, it relates to the field of data processing technology and data transmission technology.

【0002】[0002]

【従来の技術】鉄道、道路等を落石、崖崩れから守るた
めにおこなわれる予防保全のための監視は、従来から外
観検査による方法が主体である。この公知例として、特
開昭56−157862(自然災害検出装置)があり、
これは、災害発生に恐れのある場所を離れた場所から光
学系で監視し、直線縞状光電素子の出力信号として落
石、崖崩れ等を検出するものである。
2. Description of the Related Art Monitoring for preventive maintenance, which is carried out to protect railways, roads, etc. from falling rocks and landslides, has mainly been conducted by visual inspection. As a known example of this, there is Japanese Patent Laid-Open No. 56-157862 (natural disaster detection device),
This is to monitor a place where a disaster may occur from a remote place with an optical system and detect a rock fall, a landslide, etc. as an output signal of the linear stripe photoelectric device.

【0003】また、別の公知例である特開平03−21
1700(崖崩れ自動監視装置)は、テレビジョンカメ
ラその他の画像処理装置を用いて自動的に崖崩れを検出
し、遠隔地にある中央装置に警報信号及び画像データを
送信することにより、現地に人間が行かなくても24時
間監視可能とするものである。
Another known example is JP-A-03-21.
The 1700 (Automatic landslide monitoring device) automatically detects landslides using a television camera or other image processing device, and sends an alarm signal and image data to a central device in a remote location, so that It enables 24-hour monitoring without humans.

【0004】また、ワイヤを張り、このワイヤの張力を
監視し異常発生を検知する方法もある。
There is also a method of tensioning the wire and monitoring the tension of the wire to detect the occurrence of an abnormality.

【0005】特公昭51−26722(袋体による落石
事故発生予知装置)では、袋体に落石が衝突した際に生
ずる袋体の内圧変化を利用して落石や土砂崩れなどの発
生を予知する技術である。
Japanese Patent Publication No. 51-72622 (a device for predicting the occurrence of rockfall accidents due to a bag body) is a technique for predicting the occurrence of rockfalls or landslides by utilizing the change in the internal pressure of the bag body that occurs when a rockfall collides with the bag body. is there.

【0006】これらの公知例はいずれも、落石、崖崩れ
の予知を行うと言うよりも、その異常が発生した初期段
階の比較的大きな変化を感知するものであり、往々にし
て、予防が間に合わない恐れがある。即ち、微小な変化
を監視し、感知することが不可能である。
[0006] In all of these known examples, rather than predicting rockfalls and landslides, rather than detecting relatively large changes in the initial stage when the abnormality occurs, prevention is often delayed. There is a fear of not. That is, it is impossible to monitor and detect minute changes.

【0007】[0007]

【発明が解決しようとする課題】鉄道、道路などを落
石、崖崩れの災害から守るために、異常発生の監視、予
防保全のための調査、監視を行うことは非常に重要であ
る。これは、鉄道、道路のみに留まらず、その他一般の
危険地区に対しても同様である。本発明が解決しようと
する課題は、これら異常発生初期段階の亀裂を天候、特
に降雨、降雪、霧、温度、湿度、気圧などに左右される
こと無く常時検出をすることであり、これにより大災害
の危険を回避することである。
In order to protect railways and roads from disasters such as rockfalls and landslides, it is very important to monitor the occurrence of abnormalities and to investigate and monitor for preventive maintenance. This applies not only to railways and roads, but also to other general dangerous areas. The problem to be solved by the present invention is to constantly detect these cracks at the initial stage of abnormality occurrence without being affected by weather, particularly rainfall, snowfall, fog, temperature, humidity, and atmospheric pressure. It is to avoid the danger of disaster.

【0008】[0008]

【課題を解決するための手段】請求項1は、被対象物の
内部に超音波を発生する送波器及び超音波を受信する受
波器を埋め込み、この送信器から送信した超音波が被対
象物の内部を伝搬し、被対象物の表面及び内部亀裂等か
らの反射を受波器で受信する。この受信信号を初期設置
時に測定しデータベース化しておき、任意の測定時(連
続でも可)の受信信号とデータベースとの差違を検出す
ることにより、被対象物の亀裂発生等の変化を監視す
る。
According to a first aspect of the present invention, a transmitter for generating an ultrasonic wave and a receiver for receiving an ultrasonic wave are embedded inside an object, and the ultrasonic wave transmitted from this transmitter is covered. The wave is propagated inside the object and the reflection from the surface of the object and the internal crack is received by the wave receiver. This received signal is measured at the time of initial installation and stored in a database, and the difference between the received signal at any measurement (continuously possible) and the database is detected to monitor changes in the object such as cracks.

【0009】請求項2は、被対象物の内部に超音波を発
生する送波器及び超音波を受信する受波器を複数個埋め
込み、これらの送信器から送信した超音波が被対象物の
内部を伝搬し、被対象物の表面及び内部亀裂等からの反
射を複数の受波器で受信する。この受信信号をホログラ
フ処理等を行うことにより、被対象物の内部構造を表示
させる。これを任意の時期に測定し(連続でも可)内部
構造の変化を検出することにより、被対象物の亀裂発生
等の変化を監視する。
According to a second aspect of the present invention, a plurality of transmitters for generating ultrasonic waves and receivers for receiving ultrasonic waves are embedded inside the object, and the ultrasonic waves transmitted from these transmitters are transmitted to the object. The plurality of wave receivers propagate reflections from the surface of the object, internal cracks, and the like that propagate inside. By performing holographic processing or the like on this received signal, the internal structure of the object is displayed. This is measured at any time (continuously possible) to detect changes in the internal structure, thereby monitoring changes such as crack generation in the object.

【0010】請求項3は、被対象物の内部に超音波を受
信する受波器を埋め込み、この受波器で被対象物の超音
波信号を受信する。この受信信号をフィルタ処理、音圧
レベル分析及び周波数分析等の信号処理を行うことによ
り、被対象物での亀裂発生音を検出し、被対象物の亀裂
発生等の変化を監視する。
According to a third aspect of the present invention, a wave receiver for receiving ultrasonic waves is embedded inside the object, and the wave signal is received by the wave receiver. By performing signal processing such as filter processing, sound pressure level analysis, and frequency analysis on the received signal, crack generation sound in the object is detected, and changes such as crack generation in the object are monitored.

【0011】請求項4は、被対象物の内部に超音波を受
信する受波器を複数個埋め込み、この受波器で被対象物
の超音波信号を受信する。これら複数の受信信号をビー
ムフォーミング処理、フィルタ処理、音圧レベル分析及
び周波数分析等の信号処理を行うことにより、被対象物
での亀裂発生音の検出及び亀裂発生箇所の特定を行い、
被対象物の亀裂発生等の変化を監視する。
According to a fourth aspect of the present invention, a plurality of wave receivers for receiving ultrasonic waves are embedded inside the object, and the wave signals are received by the wave receivers. By performing signal processing such as beam forming processing, filter processing, sound pressure level analysis and frequency analysis on the plurality of received signals, the crack generation sound in the object is detected and the crack generation location is specified.
Monitor for changes such as cracks in the object.

【0012】請求項5は、請求項1から4の検出信号を
遠隔地にある監視所に伝送し、検出信号を監視所内でデ
ータベース化し、過去のデータと最新のデータをデータ
ベース及び信号処理により相関等を行い、経年変化を継
続的に監視する事により、被対象物の亀裂発生等の変化
を監視する。
According to a fifth aspect of the present invention, the detection signals of the first to fourth aspects are transmitted to a remote monitoring station, the detection signals are stored in a database within the monitoring station, and past data and latest data are correlated by a database and signal processing. Etc., and continuously monitor changes over time to monitor changes such as cracking of the object.

【0013】請求項6は、請求項1または2において、
被対象物の伝搬特性及び信号処理利得が最適となる周波
数を選定することにより、被対象物の亀裂発生等の変化
を高感度で監視する。
A sixth aspect is the same as the first or second aspect,
By selecting the frequency at which the propagation characteristics and signal processing gain of the object are optimal, changes in the object such as cracks are monitored with high sensitivity.

【0014】請求項7は、請求項3または4において、
被対象物の伝搬特性及び信号処理利得が最適となる周波
数を選定することにより、被対象物の亀裂発生等の変化
を高感度で監視する。
[0016] Claim 7 is the same as claim 3 or 4,
By selecting the frequency at which the propagation characteristics and signal processing gain of the object are optimal, changes in the object such as cracks are monitored with high sensitivity.

【0015】請求項8は、請求項1、2、5において、
過去の複数の信号を累加することにより、雑音成分を抑
圧し、精度の高い相関を得る。
An eighth aspect is the same as the first, second and fifth aspects.
By accumulating a plurality of past signals, noise components are suppressed and highly accurate correlation is obtained.

【0016】請求項9、10は、請求項1、2、3、4
のトランスデューサを音響的に被対象物と密着させるこ
とにより超音波信号を検出する。
Claims 9 and 10 are claims 1, 2, 3, and 4.
The ultrasonic signal is detected by acoustically adhering the transducer to the object.

【0017】請求項1、2の送波器は被対象物に開けた
穴の中に埋め込み被対象物との振動伝達の密着を保つよ
うに固定し、超音波振動を発生させる。
The wave transmitter according to the first and second aspects is embedded in a hole formed in the object so as to be fixed so as to maintain close contact with the object for vibration transmission, and to generate ultrasonic vibration.

【0018】請求項1、2の受波器は被対象物に開けた
穴の中に埋め込み被対象物との振動伝達の密着を保つよ
うに固定し、超音波振動を受信する。
According to the first and second aspects of the invention, the wave receiver is embedded in a hole formed in an object so as to be fixed so as to keep the vibration transmission in close contact with the object, and receives ultrasonic vibration.

【0019】請求項1の受信信号の変化検出は、過去の
受信信号と現在の受信信号を相関等により比較し、信号
の時間的変化を検出する。
In the change detection of the received signal according to the first aspect, the past received signal and the present received signal are compared by correlation or the like, and the time change of the signal is detected.

【0020】請求項2の像再生処理は、複数の送信信号
及び複数の受信信号を処理することにより、開口合成、
ビーム合成またはホログラフィ法等の公知構成により被
対象物の内部構造を表示する。この表示は立体的にする
ことも可能である。
In the image reproducing process of claim 2, the aperture synthesis is performed by processing a plurality of transmission signals and a plurality of reception signals.
The internal structure of the object is displayed by a known structure such as beam synthesis or holography. This display can be three-dimensional.

【0021】請求項3、4の受波器は被対象物に開けた
穴の中に埋め込み被対象物との振動伝達の密着を保つよ
うに固定し、超音波振動を受信する。
According to the third and fourth aspects of the invention, the wave receiver is embedded in a hole formed in the object so as to be fixed so as to maintain close contact with the object for vibration transmission, and receives ultrasonic vibration.

【0022】請求項3、4の亀裂音の検出は、被対象物
に亀裂が発生した時の瞬時音を検出する。ただし、付近
を電車通過した音等は異常として検出しないようなフィ
ルタリング処理を行うものとする。
The detection of the crack sound according to claims 3 and 4 detects the instantaneous sound when the crack is generated in the object. However, a filtering process is performed so that a sound passing a train in the vicinity is not detected as an abnormality.

【0023】請求項5のデータの伝送は、検出した音を
無線、有線等の伝送路を経由して監視所に送ると共に、
監視所からの制御命令を請求項1〜4のシステムに送
る。
In the data transmission of claim 5, the detected sound is sent to the monitoring station via a wireless or wired transmission path, and
Control instructions from the monitoring station are sent to the system of claims 1-4.

【0024】請求項5のデータベースは、検出した信号
を時系列的に管理し、その経年変化を継続的に監視す
る。
The database of claim 5 manages the detected signals in time series and continuously monitors the secular change.

【0025】請求項6、7の超音波周波数は、被対象物
の伝搬特性及び信号処理利得が最適となる周波数を選定
することにより、総合的に高感度化となる。
With respect to the ultrasonic frequencies of claims 6 and 7, by selecting a frequency at which the propagation characteristics and the signal processing gain of the object are optimized, the sensitivity can be comprehensively improved.

【0026】請求項8の累加は、過去の複数の信号を利
用して累加することにより、雑音成分を抑圧する。
The cumulative addition of claim 8 suppresses the noise component by cumulatively using a plurality of past signals.

【0027】請求項9、10のトランスデューサ固定方
法は、トランスデューサを機械的及び音響的に被対象物
と密着させる。
According to the transducer fixing method of the ninth and tenth aspects, the transducer is mechanically and acoustically brought into close contact with the object.

【0028】[0028]

【発明の実施の形態】請求項1と請求項6を組み合わせ
た実施例を図1に示す。本実施例では、岩石に円筒状の
穴を開け、穴の奥に送受波器(送波器と受波器の両方の
機能を持つセンサ)を固定した岩石、防護壁、岩盤など
の異常監視システムを示す。なお、岩石に開けた穴は、
周囲の環境に応じて入り口を塞ぐか、補填物を流し込む
かの処置を行う。送信器101で、1kHz〜1MHz
の超音波送信信号102を発生させ、送信信号ケーブル
103をとおして送受波器104で送信信号を送信超音
波振動に変換し岩石内部を伝搬させる。伝搬した超音波
振動は、岩石の表面及び亀裂等により反響し、岩石固有
の受信超音波振動として送受波器104に戻ってくる。
送受波器104は受信超音波振動を受信信号105に変
換し、受信ケーブル106をとおして受信器107に受
信される。ここで、受信信号105は岩石内部又は外部
に亀裂等の変化が無い限りは固有の波形となるため、初
期設置時に相関波形として、相関器108に記憶させて
おく。また、温度湿度センサ111により岩石内部の温
度湿度を計測し、音速補正処理器112により、受信信
号105を補正する。相関器108は、最新の受信信号
105を音速補正処理器112で補正した後、相関波形
との相関を取り、その相関値が、岩石の大きさ、形状、
材質等により定められた判定基準と比較し、基準値を越
えた場合には岩石に亀裂発生等の非常事態が発生したこ
とを検知し、表示器109に表示すると共に、警報信号
110を発生する。これにより亀裂発生等を監視するこ
とができる。なお、相関器108は、相関処理に替わり
差分検出でも代用することができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which claims 1 and 6 are combined is shown in FIG. In the present embodiment, a cylindrical hole is formed in the rock, and the abnormal monitoring of the rock, the protective wall, the bedrock, etc., in which the wave transmitter / receiver (sensor having both functions of the wave transmitter and the wave receiver) is fixed in the back of the hole Shows the system. In addition, the hole drilled in the rock is
Depending on the surrounding environment, take measures to block the entrance or pour in the filling material. Transmitter 101, 1 kHz to 1 MHz
The ultrasonic transmission signal 102 is generated, and the transmission / reception device 104 converts the transmission signal into transmission ultrasonic vibration through the transmission signal cable 103 and propagates inside the rock. The propagated ultrasonic vibration reverberates due to the surface of the rock, cracks, etc., and returns to the transducer 104 as received ultrasonic vibration peculiar to the rock.
The transmitter / receiver 104 converts the received ultrasonic vibration into a received signal 105, and the received signal is received by the receiver 107 through the receiving cable 106. Here, the received signal 105 has a unique waveform as long as there is no change such as a crack inside or outside the rock, and thus is stored in the correlator 108 as a correlated waveform at the time of initial installation. The temperature and humidity sensor 111 measures the temperature and humidity inside the rock, and the sound velocity correction processor 112 corrects the received signal 105. The correlator 108 corrects the latest received signal 105 by the sound velocity correction processor 112 and then correlates it with the correlation waveform, and the correlation value indicates the size and shape of the rock,
By comparing with the judgment standard determined by the material, etc., when exceeding the standard value, it is detected that an emergency situation such as cracking has occurred in the rock, and it is displayed on the display 109 and an alarm signal 110 is generated. . This makes it possible to monitor the occurrence of cracks. Note that the correlator 108 can be substituted for the difference detection instead of the correlation processing.

【0029】また、請求項1の応用例を図7に示す。本
実施例では、岩石に円筒状の穴を開け、穴の奥に送波器
を固定し、岩石の周辺に受波器を固定した岩石、防護
壁、岩盤などの異常監視システムを示す。なお、岩石に
開けた穴は、周囲の環境に応じて入り口を塞ぐか、補填
物を流し込むかの処置を行う。送信器701で、1kH
z〜1MHzの超音波送信信号702を発生させ、送信
信号ケーブル703をとおして送波器704で送信信号
を送信超音波振動に変換し岩石内部を伝搬させる。伝搬
した超音波振動は、岩石の内部を伝達し、岩石固有の受
信超音波振動として受波器705、706、707に到
達する。受波器705、706、707は受信超音波振
動を受信信号708、709、710に変換し、受信ケ
ーブル711、712、713とおして受信器714に
受信される。ここで、受信信号708、709、710
岩石内部又は外部に亀裂等の変化が無い限りは固有の波
形となるため、初期設置時に相関波形として、相関器7
15に記憶させておく。また、温度湿度センサ718に
より岩石内部の温度湿度を計測し、音速補正処理器71
9により、受信信号708、709、710を補正す
る。相関器715は、最新の受信信号708、709、
710を音速補正処理器719で補正した後、相関波形
との相関を取り、その相関値が、岩石の大きさ、形状、
材質等により定められた判定基準と比較し、基準値を越
えた場合には岩石に亀裂発生等の非常事態が発生したこ
とを検知し、表示器716に表示すると共に、警報信号
717を発生する。これにより亀裂発生等を監視するこ
とができる。なお、相関器715は、相関処理に替わり
差分検出でも代用することができる。
FIG. 7 shows an application example of claim 1. In the present embodiment, an abnormality monitoring system for a rock, a protective wall, a bedrock, etc., in which a cylindrical hole is formed in rock, a wave transmitter is fixed inside the hole, and a wave receiver is fixed around the rock, is shown. In addition, depending on the surrounding environment, the hole formed in the rock should be closed or the filling material should be poured. 1kHz for transmitter 701
An ultrasonic transmission signal 702 of z to 1 MHz is generated, and the transmission signal is converted through a transmission signal cable 703 into a transmission ultrasonic vibration by a wave transmitter 704 and propagated inside the rock. The propagated ultrasonic vibration propagates inside the rock and reaches the wave receivers 705, 706, 707 as received ultrasonic vibration peculiar to the rock. The wave receivers 705, 706, 707 convert the received ultrasonic vibrations into reception signals 708, 709, 710, and the reception signals 711, 712, 713 are received by the receiver 714. Here, the received signals 708, 709, 710
As long as there is no change such as cracks inside or outside the rock, the waveform will be unique, so the correlator 7
It is stored in 15. Further, the temperature and humidity sensor 718 measures the temperature and humidity inside the rock, and the sound velocity correction processor 71
9, the received signals 708, 709, 710 are corrected. The correlator 715 receives the latest received signals 708, 709,
After 710 is corrected by the sound velocity correction processor 719, the correlation with the correlation waveform is obtained, and the correlation value indicates the size and shape of the rock,
Compared with the judgment standard determined by the material, etc., when exceeding the standard value, it detects that an emergency situation such as cracking has occurred in the rock, displays it on the display 716, and issues an alarm signal 717. . This makes it possible to monitor the occurrence of cracks. Note that the correlator 715 can also be used in place of the correlation process for difference detection.

【0030】請求項2と請求項6を組み合わせた実施例
を図2に示す。本実施例では、岩石に円筒状の穴を3個
開け、それぞれの穴の奥に送受波器(送波器と受波器の
両方の機能を持つセンサ)を固定した岩石、防護壁、岩
盤などの異常監視システムを示す。なお、岩石に開けた
穴は、周囲の環境に応じて入り口を塞ぐか、補填物を流
し込むかの処置を行う。送信器201で、1kHz〜1
MHzの超音波送信信号202、203、204を発生
させ、送信信号ケーブル205、206、207をとお
して送受波器208、209、210(直線的に並ばな
いように配置する)で送信信号を送信超音波振動に変換
し岩石内部を伝搬させる。伝搬した超音波振動は、岩石
の表面及び亀裂等により反響し、岩石固有の受信超音波
振動として送受波器208、209、210に戻ってく
る。送受波器208、209、210は受信超音波振動
を受信信号211、212、213に変換し、受信ケー
ブル214、215、216をとおして受信器217に
受信される。また、温度湿度センサ222により岩石内
部の温度湿度を計測し、音速補正処理器223により、
受信信号211、212、213を補正する。ここで、
補正した受信信号211、212、213は送信信号2
02、203、204の波形及び送受波器208、20
9、210の位置関係により像再生処理器218で岩石
の形状及び内部構造を画像データ化する。画像データは
表示器219で物体内部画像として表示し、オペレータ
により亀裂発生等を監視することができる。ここで、物
体内部画像は岩石内部又は外部に亀裂等の変化が無い限
りは固有のデータとなるため、初期設置時に相関データ
として、相関器220に記憶させておく。相関器220
は、相関データと最新の画像データの相関を取り、その
相関値が、岩石の大きさ、形状、材質等により定めた判
定基準と比較し、基準値を越えた場合には岩石に亀裂発
生等の非常事態が発生したことを検知し、警報信号22
1を発生する。これにより亀裂発生等を監視することが
できる。なお、相関器220は、相関処理に替わり差分
検出でも代用することができる。
An embodiment in which claims 2 and 6 are combined is shown in FIG. In the present embodiment, three cylindrical holes are formed in the rock, and a rock, a protective wall, and a rock bed each having a transducer (a sensor having both functions of the wave transmitter and the wave receiver) fixed in the back of each hole. An abnormality monitoring system is shown. In addition, depending on the surrounding environment, the hole formed in the rock should be closed or the filling material should be poured. 1 kHz to 1 at the transmitter 201
The ultrasonic transmission signals 202, 203, 204 of MHz are generated, and the transmission signals are transmitted through the transmission signal cables 205, 206, 207 by the transducers 208, 209, 210 (arranged so as not to be aligned in a straight line). It is converted into ultrasonic vibration and propagated inside the rock. The propagated ultrasonic vibration reverberates due to the rock surface, cracks, and the like, and returns to the transducers 208, 209, and 210 as received ultrasonic vibration peculiar to the rock. The transducers 208, 209, 210 convert the received ultrasonic vibrations into reception signals 211, 212, 213, which are received by the receiver 217 through the reception cables 214, 215, 216. Further, the temperature and humidity sensor 222 measures the temperature and humidity inside the rock, and the sound velocity correction processor 223 measures
The received signals 211, 212, 213 are corrected. here,
The corrected reception signals 211, 212 and 213 are the transmission signals 2
02, 203, 204 waveforms and transceivers 208, 20
The image reproduction processor 218 converts the shape and internal structure of the rock into image data according to the positional relationship of 9 and 210. The image data is displayed as an internal image of the object on the display device 219, and the operator can monitor the occurrence of cracks. Here, since the internal image of the object is unique data as long as there is no change such as cracks inside or outside the rock, it is stored in the correlator 220 as correlation data at the time of initial installation. Correlator 220
Is the correlation between the correlation data and the latest image data, and the correlation value is compared with the judgment criteria defined by the size, shape, material, etc. of the rock, and if the reference value is exceeded, cracks occur in the rock, etc. The alarm signal 22
Generates 1. This makes it possible to monitor the occurrence of cracks. Note that the correlator 220 may be replaced with a difference detection instead of the correlation processing.

【0031】請求項3と請求項7を組み合わせた実施例
を図3に示す。本実施例では、岩石に円筒状の穴を明
け、穴の奥に受波器を固定した岩石、防護壁、岩盤など
の異常監視システムを示す。なお、岩石に開けた穴は、
周囲の環境に応じて入り口を塞ぐか、補填物を流し込む
かの処置を行う。岩石に亀裂等が発生した時に発生する
亀裂音は超音波振動となり、岩石内部を伝搬する。これ
を、受波器301で受信し、受信信号302に変換し、
受信ケーブル303をとおして受信器304に受信され
る。これをフィルタ305で1kHz以下の低周波成分
を強調し、亀裂音以外の音を除去し、亀裂音検出器30
6で亀裂音を検出する。その亀裂音が、岩石の大きさ、
形状、材質等により定めた判定基準と比較し、基準値を
越えた場合には亀裂発生等の非常事態が発生したことを
検知し、警報信号307を発生する。これにより亀裂発
生等を監視することができる。また、フィルタ305の
特性を電車通過音を強調する構成とすることにより、電
車通過の監視等への応用が可能となる。
An embodiment in which claims 3 and 7 are combined is shown in FIG. In the present embodiment, an abnormality monitoring system for a rock, a protection wall, a bedrock, etc., in which a cylindrical hole is formed in rock and a wave receiver is fixed at the back of the hole, is shown. In addition, the hole drilled in the rock is
Depending on the surrounding environment, take measures to block the entrance or pour in the filling material. The crack sound generated when a crack or the like occurs in the rock becomes ultrasonic vibration and propagates inside the rock. This is received by the receiver 301 and converted into a reception signal 302,
It is received by the receiver 304 through the reception cable 303. The filter 305 emphasizes the low frequency component of 1 kHz or less, removes sounds other than crack sound, and detects the crack sound detector 30.
A crack sound is detected at 6. The crack sound is the size of the rock,
It compares with the judgment standard defined by the shape, material, etc., and when exceeding the standard value, it detects that an emergency situation such as a crack has occurred, and issues an alarm signal 307. This makes it possible to monitor the occurrence of cracks. Further, by configuring the characteristics of the filter 305 to emphasize the sound of passing trains, it is possible to apply to monitoring of passing trains and the like.

【0032】上記の応用として、離れた2箇所以上の場
所に図3(フィルタ305の特性を電車通過音を強調す
る構成)を設置し、電車通過音を分析することにより、
電車通過の監視、電車移動速度の測定等への応用が可能
となる。さらに、2箇所以上の電車通過音を比較分析す
ることにより、岩石特性の解析及び周辺岩盤等の解析が
可能となる。
As an application of the above, by installing FIG. 3 (a configuration in which the characteristics of the filter 305 emphasize the train passing sound) at two or more distant places and analyzing the train passing sound,
It can be applied to monitoring train passage and measuring train moving speed. Further, by comparatively analyzing train passing sounds at two or more places, it becomes possible to analyze rock characteristics and surrounding rock mass.

【0033】また、請求項3の応用例を図8に示す。本
実施例では、岩石に円筒状の穴を開け、穴の奥に受波器
を固定し、岩石の周辺に送波器を固定した岩石、防護
壁、岩盤などの異常監視システムを示す。なお、岩石に
開けた穴は、周囲の環境に応じて入り口を塞ぐか、補填
物を流し込むかの処置を行う。送信器801で、1kH
z〜1MHzの超音波送信信号802、803、804
を発生させ、送信信号ケーブル805、806、807
をとおして送波器808、809、810で送信信号を
送信超音波振動に変換し岩石内部を伝搬させる。伝搬し
た超音波振動は、岩石の内部を伝達し、岩石固有の受信
超音波振動として受波器811に到達する。受波器81
1は受信超音波振動を受信信号812に変換し、受信ケ
ーブル813とおして受信器814に受信される。ここ
で、受信信号812は岩石内部又は外部に亀裂等の変化
が無い限りは固有の波形となるため、初期設置時に相関
波形として、相関器815に記憶させておく。相関器8
15は、最新の受信信号812と相関波形との相関を取
り、その相関値を、岩石の大きさ、形状、材質等により
定めた判定基準と比較し、基準値を越えた場合には岩石
に亀裂発生等の非常事態が発生したことを検知し、表示
器816に表示すると共に、警報信号817を発生す
る。これにより亀裂発生等を監視することができる。な
お、相関器815は、相関処理に替わり差分検出でも代
用することができる。
An application example of claim 3 is shown in FIG. In the present embodiment, an abnormality monitoring system for a rock, a protective wall, a bedrock, etc., in which a cylindrical hole is formed in rock, a wave receiver is fixed inside the hole, and a wave transmitter is fixed around the rock, is shown. In addition, depending on the surrounding environment, the hole formed in the rock should be closed or the filling material should be poured. 1kH at transmitter 801
Ultrasonic transmission signals 802, 803, 804 of z to 1 MHz
And transmit signal cables 805, 806, 807
Through the wave transmitters 808, 809, and 810, the transmission signals are converted into transmission ultrasonic vibrations and propagated inside the rock. The propagated ultrasonic vibration propagates inside the rock and reaches the wave receiver 811 as received ultrasonic vibration peculiar to the rock. Receiver 81
1 converts the received ultrasonic vibration into a received signal 812, which is received by the receiver 814 through the receiving cable 813. Here, the received signal 812 has a unique waveform as long as there is no change such as a crack inside or outside the rock, so it is stored in the correlator 815 as a correlated waveform at the time of initial installation. Correlator 8
Reference numeral 15 shows the correlation between the latest received signal 812 and the correlation waveform, compares the correlation value with the determination criteria determined by the size, shape, material, etc. of the rock, and if the reference value is exceeded, the rock is detected. It detects that an emergency such as a crack has occurred, displays it on the display 816, and issues an alarm signal 817. This makes it possible to monitor the occurrence of cracks. Note that the correlator 815 can be used instead of the correlation process for difference detection.

【0034】請求項4と請求項7を組み合わせた実施例
を図4に示す。本実施例では、岩石に円筒状の穴を3個
開け、それぞれの穴の奥に受波器を固定した岩石、防護
壁、岩盤などの異常監視システムを示す。なお、岩石に
開けた穴は、周囲の環境に応じて入り口を塞ぐか、補填
物を流し込むかの処置を行う。岩石に亀裂等が発生した
時に発する亀裂音は超音波振動となり、岩石内部を伝搬
する。これを、受波器401、402、403で受信
し、受信信号404、405、406に変換し、受信ケ
ーブル407、408、409をとおして受信器410
に受信される。これをフィルタ411で1kHz以下の
低周波成分を強調し、亀裂音以外の音を除去し、亀裂音
検出器412で亀裂音を検出する。亀裂音が検出された
場合には受信信号相互の時間関係から、位置判定器41
3で亀裂発生箇所を計算し、その亀裂音が、岩石の大き
さ、形状、材質等により定めた判定基準と比較し、基準
値を越えた場合には警報信号414を発生すると共に、
表示器415に亀裂発生箇所を表示する。これにより亀
裂発生等を監視することができる。また、フィルタ41
1の特性を電車通過音を強調する構成とすることによ
り、電車通過の監視、電車移動速度の測定等への応用が
可能となる。
An embodiment in which claims 4 and 7 are combined is shown in FIG. In this embodiment, an abnormality monitoring system is shown in which three cylindrical holes are formed in rock and a wave receiver is fixed in the back of each hole, rock, protective wall, bedrock and the like. In addition, depending on the surrounding environment, the hole formed in the rock should be closed or the filling material should be poured. The crack sound generated when a crack or the like occurs in the rock becomes ultrasonic vibration and propagates inside the rock. This is received by the wave receivers 401, 402, 403, converted into received signals 404, 405, 406, and received by the receiver 410 through the receiving cables 407, 408, 409.
Is received. A low-frequency component of 1 kHz or less is emphasized by a filter 411, sounds other than crack sounds are removed, and a crack sound detector 412 detects crack sounds. When a crack sound is detected, the position determiner 41 determines from the time relationship between the received signals.
The crack generation point is calculated in 3, and the crack sound is compared with the judgment standard defined by the size, shape, material, etc. of the rock, and when exceeding the standard value, an alarm signal 414 is generated,
The crack occurrence location is displayed on the display 415. This makes it possible to monitor the occurrence of cracks. In addition, the filter 41
By adopting a configuration in which the characteristic of No. 1 emphasizes train passing sounds, it becomes possible to apply to monitoring train passing, measuring train moving speed, and the like.

【0035】請求項1と請求項5と請求項6と請求項8
を組み合わせた実施例を図5に示す。本実施例は、請求
項1の実施例に加え遠隔地にある監視所と無線によるデ
ータリンクを取り、監視所でのデータベースによる経年
変化を継続的に監視する岩石、防護壁、岩盤などの異常
監視システムを示すが、これは、請求項2〜4の実施例
でも同様に行える。受信器107で受信した信号はデー
タリンク無線機(1)501により監視所にあるデータ
リンク無線機(2)502に送られる。このデータはデ
ータベース503に経年変化データとして保存する。こ
のデータベースから過去のデータ部を累加してノイズ除
去を行った結果を相関器504に転送する。相関器50
4は最新の受信データとデータベース503の累加結果
との相関を取る。その相関値が、岩石の大きさ、形状、
材質等により定めた判定基準と比較し、基準値を越えた
場合には岩石に亀裂発生等の非常事態が発生したことを
検知し、表示器505に表示すると共に、警報信号50
6を発生する。これにより亀裂発生等を時系列で監視す
ると共に複数の岩石を1ヶ所で集中監視することができ
る。なお、相関器504は、相関処理に替わり差分検出
でも代用することができる。
Claim 1, claim 5, claim 6, and claim 8
An example in which the above is combined is shown in FIG. In addition to the embodiment of claim 1, this embodiment takes a data link by radio with a remote monitoring station, and continuously monitors the secular change by a database at the monitoring station. Anomalies such as rocks, protective walls, and bedrock. A monitoring system is shown, which can likewise be carried out in the embodiments of claims 2-4. The signal received by the receiver 107 is sent by the data link radio (1) 501 to the data link radio (2) 502 at the monitoring station. This data is stored in the database 503 as secular change data. The result of noise removal by cumulatively adding the past data part from this database is transferred to the correlator 504. Correlator 50
Reference numeral 4 correlates the latest received data with the cumulative result of the database 503. The correlation value is the size, shape, and
Compared with the judgment criteria determined by the material, etc., if exceeding the reference value, it is detected that an emergency situation such as the occurrence of cracks in the rock has occurred, and it is displayed on the display 505 and the alarm signal 50
6 is generated. This makes it possible to monitor the occurrence of cracks in a time series and centrally monitor a plurality of rocks at one place. Note that the correlator 504 can be substituted for the difference detection instead of the correlation processing.

【0036】請求項9の実施例を図6に示す。本実施例
は、岩石に開けた円筒状の穴に送受波器を密着させる方
法であり、縦波を検出するための設置方法である。図6
では、フレーム601に取り付けた密着調整部602を
移動させ、センサ部(送受波器または受波器)603、
604が岩石面605、606に密着するように支持部
607、608、609、610を調整する。これらを
調整することにより、センサ部603とセンサ部604
の距離を変えることができるので、穴の口径が変化して
もセンサ部603、604を岩石面605、606に密
着させることが可能である。また、軟質材料615、6
16により、送受波器と壁面との密着度を高め、超音波
信号が効率的にセンサ部603、604に伝達される。
センサ部603、604への送信信号及びこれらからの
受信信号は、信号線611、612により増幅器613
を介してケーブル614へと伝えられる。
An embodiment of claim 9 is shown in FIG. The present embodiment is a method of bringing a transducer into close contact with a cylindrical hole formed in rock and is an installation method for detecting a longitudinal wave. FIG.
Then, by moving the close contact adjusting unit 602 attached to the frame 601, the sensor unit (transceiver or receiver) 603,
The support portions 607, 608, 609, 610 are adjusted so that 604 closely contacts the rock surfaces 605, 606. By adjusting these, the sensor unit 603 and the sensor unit 604 are
Since the distance can be changed, the sensor portions 603 and 604 can be brought into close contact with the rock surfaces 605 and 606 even if the diameter of the hole changes. In addition, soft materials 615, 6
16, the degree of adhesion between the transducer and the wall surface is enhanced, and the ultrasonic signal is efficiently transmitted to the sensor units 603 and 604.
Transmitted signals to and from the sensor units 603 and 604 are received by signal lines 611 and 612, respectively, and amplified by an amplifier 613.
Via the cable to the cable 614.

【0037】請求項10の実施例を図9に示す。本実施
例は、岩石に開けた円筒状の穴に送受波器を設置し、横
波を検出するための設置方法である。図9では、フレー
ム901、902の先端を穴と垂直に密着させ、超音波
振動をフレーム901、902をとおして送受波器90
3に伝達する。横波は、フレーム901、902を上下
方向に振動させるため、その振動は送受波器903には
垂直に入り超音波振動を電気信号に変換できる。
An embodiment of claim 10 is shown in FIG. The present embodiment is an installation method for detecting a transverse wave by installing a wave transmitter / receiver in a cylindrical hole formed in rock. In FIG. 9, the tips of the frames 901 and 902 are brought into close contact with the holes perpendicularly, and ultrasonic vibration is transmitted through the frames 901 and 902 to the ultrasonic transducer 90.
3 Since the transverse wave vibrates the frames 901 and 902 in the vertical direction, the vibration vertically enters the transducer 903 and ultrasonic vibration can be converted into an electric signal.

【0038】[0038]

【発明の効果】本発明にて提供する技術によって、岩石
の亀裂発生等の異常を常時監視することができ、この亀
裂発生等を早期検出することにより、落石、崖崩れ等の
災害防止システムを実現することが出来る。また、気
温、湿度、気圧、風力、霧、雨等の気象条件に依存せず
常時監視することが可能である。
By the technique provided by the present invention, it is possible to constantly monitor for abnormalities such as the occurrence of cracks in rocks, and to detect disasters such as rockfalls and landslides by early detection of the occurrence of such cracks. Can be realized. Further, it is possible to constantly monitor without depending on weather conditions such as temperature, humidity, atmospheric pressure, wind force, fog, and rain.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1と請求項6を組み合わせた一実施例で
ある。
FIG. 1 is an embodiment in which claims 1 and 6 are combined.

【図2】請求項2と請求項6を組み合わせた一実施例で
ある。
FIG. 2 is an embodiment in which claims 2 and 6 are combined.

【図3】請求項3と請求項7を組み合わせた一実施例で
ある。
FIG. 3 is an embodiment in which claims 3 and 7 are combined.

【図4】請求項4と請求項7を組み合わせた一実施例で
ある。
FIG. 4 is an embodiment in which claims 4 and 7 are combined.

【図5】請求項1と請求項5と請求項6と請求項8を組
み合わせた一実施例である。
FIG. 5 is an embodiment in which claim 1, claim 5, claim 6, and claim 8 are combined.

【図6】請求項9の一実施例である。FIG. 6 is an embodiment of claim 9;

【図7】請求項1を応用した一実施例である。FIG. 7 is an embodiment to which claim 1 is applied.

【図8】請求項3を応用した一実施例である。FIG. 8 is an embodiment to which claim 3 is applied.

【図9】請求項10の一実施例である。FIG. 9 is an embodiment of claim 10.

【符号の説明】[Explanation of symbols]

101…送信器、102…送信信号、103…送信信号
ケーブル、104…送受波器、105…受信信号、10
6…受信ケーブル107…受信器、108…相関器、1
09…表示器、110…警報信号、111…温度湿度セ
ンサ、112…音速補正器 201…送信器、202、203、204…送信信号、
205、206、207…送信信号ケーブル、208、
209、210…送受波器、211、212、213…
受信信号、214、215、216…受信ケーブル、2
17…受信器、218…像再生処理器、219…表示
器、220…相関器、221…警報信号、222…温度
湿度センサ、223…音速補正器 301…受波器、302…受信信号、303…受信ケー
ブル、304…受信器、305…フィルタ、306…亀
裂音検出器、307…警報信号 401、402、403…受波器、404、405、4
06…受信信号、407、408、409…受信ケーブ
ル、410…受信器、411…フィルタ、412…亀裂
音検出器、413…位置判定器、414…警報信号、4
15…表示器 501…データリンク無線機(1)、502…データリ
ンク無線機(2)、503…データベース、504…相
関器、505…表示器、506…警報信号 601…フレーム、602…密着調整部、603、60
4…センサ部、605、606…岩石面、607、60
8、609、610…支持部、611、612…信号
線、613…増幅器、614…ケーブル、615、61
6…軟質材料 701…送信器、702…送信信号、703…送信信号
ケーブル、704…送波器、705、706、707…
受波器、708、709、710…受信信号、711、
712、713…受信ケーブル、714…受信器、71
5…相関器、716…表示器、717…警報信号、71
8…温度湿度センサ、719…音速補正器 801…送信器、802、803、804…送信信号、
805、806、807…送信信号ケーブル、808、
809、810…送波器、811受波器、812…受信
信号、813…受信信号ケーブル、814…受信器、8
15…相関器、816…表示器、817…警報信号 901、902…メッセージ、903…送受波器
101 ... Transmitter, 102 ... Transmission signal, 103 ... Transmission signal cable, 104 ... Transceiver, 105 ... Reception signal, 10
6 ... Receiving cable 107 ... Receiver, 108 ... Correlator, 1
09 ... Display device, 110 ... Warning signal, 111 ... Temperature / humidity sensor, 112 ... Sound velocity corrector 201 ... Transmitter, 202, 203, 204 ... Transmission signal,
205, 206, 207 ... Transmission signal cable, 208,
209, 210 ... Transducers, 211, 212, 213 ...
Reception signal, 214, 215, 216 ... Reception cable, 2
Reference numeral 17 ... Receiver, 218 ... Image reproduction processor, 219 ... Display, 220 ... Correlator, 221 ... Warning signal, 222 ... Temperature / humidity sensor, 223 ... Sonic velocity corrector 301 ... Wave receiver, 302 ... Received signal, 303 ... reception cable, 304 ... receiver, 305 ... filter, 306 ... crack sound detector, 307 ... alarm signal 401, 402, 403 ... wave receiver, 404, 405, 4
06 ... reception signal, 407, 408, 409 ... reception cable, 410 ... receiver, 411 ... filter, 412 ... crack sound detector, 413 ... position determination device, 414 ... alarm signal, 4
15 ... Indicator 501 ... Data link radio (1), 502 ... Data link radio (2), 503 ... Database, 504 ... Correlator, 505 ... Indicator, 506 ... Warning signal 601, ... Frame, 602 ... Adhesion adjustment Part, 603, 60
4 ... Sensor part, 605, 606 ... Rock surface, 607, 60
8, 609, 610 ... Supporting portion, 611, 612 ... Signal line, 613 ... Amplifier, 614 ... Cable, 615, 61
6 ... Soft material 701 ... Transmitter, 702 ... Transmission signal, 703 ... Transmission signal cable, 704 ... Wave transmitter, 705, 706, 707 ...
Receiver, 708, 709, 710 ... Received signal, 711,
712, 713 ... Receiving cable, 714 ... Receiver, 71
5 ... Correlator, 716 ... Indicator, 717 ... Warning signal, 71
8 ... Temperature / humidity sensor, 719 ... Sound velocity corrector 801, Transmitter, 802, 803, 804 ... Transmission signal,
805, 806, 807 ... Transmission signal cable, 808,
809, 810 ... Wave transmitter, 811 Wave receiver, 812 ... Received signal, 813 ... Received signal cable, 814 ... Receiver, 8
15 ... Correlator, 816 ... Indicator, 817 ... Warning signal 901, 902 ... Message, 903 ... Transceiver

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日比 進 神奈川県横浜市戸塚区戸塚町216番地株式 会社日立製作所情報通信事業部内 (72)発明者 深見 明久 神奈川県横浜市戸塚区戸塚町216番地株式 会社日立製作所情報通信事業部内 (72)発明者 新穂 寿浩 神奈川県横浜市戸塚区戸塚町216番地株式 会社日立製作所情報通信事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Hibi 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi Information Technology Division (72) Inventor Akihisa Fukami 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd. Information & Communication Division (72) Inventor Toshihiro Shinho 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Hitachi, Ltd. Information & Communication Division

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】監視を要する被対象物(岩石、防護壁、岩
盤など)の異常を監視するシステムにおいて、被対象物
の表面下に超音波を発生する超音波送信器及びそれを受
信する受信器を埋め込み、被対象物内で反射した当該超
音波を受信する構成と、当該受信信号を記憶する構成を
有し、当該受信信号の変化を検出することにより被対象
物の亀裂等を監視することを特徴とする岩石、防護壁、
岩盤などの異常監視システム。
1. A system for monitoring an abnormality of an object to be monitored (rock, protective wall, bedrock, etc.), and an ultrasonic transmitter for generating an ultrasonic wave below the surface of the object and a reception for receiving the ultrasonic wave. Has a configuration for receiving the ultrasonic wave reflected in the object and a configuration for storing the received signal, and monitors the crack of the object by detecting a change in the received signal. Rocks, protective walls, characterized by
Anomaly monitoring system for bedrock.
【請求項2】監視を要する被対象物(岩石、防護壁、岩
盤など)の亀裂を監視するシステムにおいて、被対象物
の表面下に超音波を発生する超音波送信器及びそれを受
信する受信器を直線に並ばないような配置で複数埋め込
み、像再生処理を行う構成を有し、当該像再生処理によ
り当該被対象物の形状及び内部構造を表示することによ
り、当該被対象物の亀裂等を監視することを特徴とする
岩石、防護壁、岩盤などの異常監視システム。
2. A system for monitoring cracks in an object to be monitored (rocks, protective walls, bedrock, etc.), and an ultrasonic transmitter for generating ultrasonic waves below the surface of the object and a receiver for receiving the ultrasonic wave. By embedding multiple containers in a layout that does not line up in a straight line and performing image reproduction processing, by displaying the shape and internal structure of the object by the image reproduction processing, cracks etc. of the object Anomaly monitoring system for rocks, protective walls, bedrock, etc.
【請求項3】監視を要する被対象物(岩石、防護壁、岩
盤など)の亀裂を監視するシステムにおいて、被対象物
の表面下に当該被対象物の発生する超音波を受信する受
信器を埋め込み、当該発生超音波を検出することにより
当該被対象物の亀裂等の発生を監視することを特徴とす
る岩石、防護壁、岩盤などの異常監視システム。
3. A system for monitoring cracks in an object to be monitored (rock, protective wall, bedrock, etc.), which comprises a receiver below the surface of the object for receiving ultrasonic waves generated by the object. An abnormality monitoring system for rocks, protective walls, bedrock, etc., which is characterized by embedding and detecting the generated ultrasonic waves to monitor the occurrence of cracks in the target object.
【請求項4】監視を要する被対象物(岩石、防護壁、岩
盤など、)の亀裂を監視するシステムにおいて、被対象
物の表面下に対象物の発生する超音波を受信する受信器
を複数埋め込み、当該発生超音波を複数の受信器にて検
出することにより当該被対象物の亀裂等の発生及びその
位置を監視することを特徴とする岩石、防護壁、岩盤な
どの異常監視システム。
4. A system for monitoring cracks in an object to be monitored (rocks, protective walls, bedrock, etc.), wherein a plurality of receivers for receiving ultrasonic waves generated by the object are provided below the surface of the object. An abnormality monitoring system for rocks, protective walls, bedrock, etc., which is characterized by embedding and detecting the generated ultrasonic waves with a plurality of receivers to monitor the occurrence and position of cracks and the like in the object.
【請求項5】請求項1、2、3、4のいずれかで検出し
た信号を遠隔地にある監視所に伝送し、亀裂を監視する
システムにおいて、当該検出信号をデータベース化し、
過去のデータと最新のデータの経年変化を継続的に監視
することを特徴とする岩石、防護壁、岩盤などの異常監
視システム。
5. A system for transmitting a signal detected by any one of claims 1, 2, 3 and 4 to a remote monitoring station to monitor cracks, and converting the detected signal into a database.
Anomaly monitoring system for rocks, protective walls, bedrock, etc., which is characterized by continuously monitoring the secular change of past data and latest data.
【請求項6】請求項1または2における超音波の周波数
が1kHz〜1MHzであることを特徴とする岩石、防
護壁、岩盤などの異常監視システム。
6. An abnormality monitoring system for rocks, protective walls, bedrock, etc., characterized in that the frequency of ultrasonic waves according to claim 1 or 2 is 1 kHz to 1 MHz.
【請求項7】請求項3または4における超音波の周波数
が1kHz以下であることを特徴とする岩石、防護壁、
岩盤などの異常監視システム。
7. A rock, a protective wall, wherein the frequency of ultrasonic waves according to claim 3 or 4 is 1 kHz or less.
Anomaly monitoring system for bedrock.
【請求項8】請求項1、2、5のいずれかにおいて、比
較対象とする信号は、過去の複数の信号を累加した信号
であることを特徴とする岩石、防護壁、岩盤などの異常
監視システム。
8. The abnormality monitoring of rock, protective wall, bedrock, etc. according to claim 1, 2 or 5, wherein the signal to be compared is a signal obtained by adding up a plurality of past signals. system.
【請求項9】被対象物(岩石、防護壁、岩盤など)の表
面下に超音波を発生する超音波送信器またはそれを受信
する受信器を埋め込むトランスデューサにおいて、被対
象物に開けた穴の壁面にトランスデューサを密着させる
ための機械的構造と、トランスデューサと壁面との間に
軟質材料を挟み音響的に密着させる構造を持つことを特
徴とする縦波検出用挿入型トランスデューサ。
9. A transducer for embedding an ultrasonic wave transmitter for generating ultrasonic waves or a receiver for receiving the ultrasonic wave under the surface of an object (rock, protective wall, bedrock, etc.), which has a hole formed in the object. An insertion type transducer for longitudinal wave detection, which has a mechanical structure for tightly adhering a transducer to a wall surface and a structure for acoustically adhering a soft material between the transducer and the wall surface.
【請求項10】被対象物(岩石、防護壁、岩盤など)の
表面下に超音波を発生する超音波送信器またはそれを受
信する受信器を埋め込むトランスデューサにおいて、被
対象物の超音波振動を、被対象物に開けた穴の壁面に接
触または固定したアームを介してトランスデューサに伝
達する構造を持つことを特徴とする横波検出用挿入型ト
ランスデューサ。
10. An ultrasonic transmitter for generating an ultrasonic wave or a transducer for receiving the ultrasonic wave, which generates an ultrasonic wave under the surface of an object (rock, protective wall, bedrock, etc.), is provided with ultrasonic vibration of the object. , A transversal wave detection insertion type transducer having a structure for transmitting to a transducer through an arm that is in contact with or fixed to a wall surface of a hole formed in an object.
JP8057821A 1996-03-14 1996-03-14 Abnormality monitoring system for rock, protecting wall, rock bed and so on and inserting type transducer Pending JPH09251005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8057821A JPH09251005A (en) 1996-03-14 1996-03-14 Abnormality monitoring system for rock, protecting wall, rock bed and so on and inserting type transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8057821A JPH09251005A (en) 1996-03-14 1996-03-14 Abnormality monitoring system for rock, protecting wall, rock bed and so on and inserting type transducer

Publications (1)

Publication Number Publication Date
JPH09251005A true JPH09251005A (en) 1997-09-22

Family

ID=13066593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8057821A Pending JPH09251005A (en) 1996-03-14 1996-03-14 Abnormality monitoring system for rock, protecting wall, rock bed and so on and inserting type transducer

Country Status (1)

Country Link
JP (1) JPH09251005A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033139A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing system and soundness diagnosing method
JP2011526971A (en) * 2008-07-02 2011-10-20 シェブロン ユー.エス.エー.インコーポレイテッド Apparatus and method for generating an acoustic energy beam in a borehole and their applications
WO2012018118A1 (en) * 2010-08-05 2012-02-09 曙ブレーキ工業株式会社 False ore, and analysis system using same
CN112557419A (en) * 2020-11-19 2021-03-26 浙江邦尼建筑检测有限公司 Concrete crack detection device
JP2022049540A (en) * 2020-09-16 2022-03-29 株式会社東芝 Structure evaluation method and structure evaluation system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007033139A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing system and soundness diagnosing method
JP2011526971A (en) * 2008-07-02 2011-10-20 シェブロン ユー.エス.エー.インコーポレイテッド Apparatus and method for generating an acoustic energy beam in a borehole and their applications
WO2012018118A1 (en) * 2010-08-05 2012-02-09 曙ブレーキ工業株式会社 False ore, and analysis system using same
AU2011286639B2 (en) * 2010-08-05 2014-02-20 Akebono Brake Industry Co., Ltd. False ore, and analysis system using same
US8991260B2 (en) 2010-08-05 2015-03-31 Akebono Brake Industry Co., Ltd. Pseudo rock and analysis system using the same
JP2022049540A (en) * 2020-09-16 2022-03-29 株式会社東芝 Structure evaluation method and structure evaluation system
CN112557419A (en) * 2020-11-19 2021-03-26 浙江邦尼建筑检测有限公司 Concrete crack detection device

Similar Documents

Publication Publication Date Title
RU2743390C2 (en) Railway monitoring system for detecting partial or complete failure of railway roads
US7508304B2 (en) Networked multiband waveguide intrusion detection and localization sensor
US7564540B2 (en) Fibre optic sensor method and apparatus
KR101697453B1 (en) Tunnel information broadcasting system using speaker for improved information transfer tunnel
AU2018303340A1 (en) Method and system for distributed acoustic sensing in a marine environment
RU2019126552A (en) Damage detection system and method
GB2372569A (en) Active rail health monitoring system
US20020148931A1 (en) Method and apparatus for detecting misaligned railroad tracks
GB2558294A (en) Calibrating a distributed fibre optic sensing system
CN102901969A (en) Method and apparatus for detecting objects in ambient environment of vehicle
JPH10162283A (en) Road condition monitoring device
JPH09251005A (en) Abnormality monitoring system for rock, protecting wall, rock bed and so on and inserting type transducer
JPH11342845A (en) Train detecting device, train position detecting system, and train approach alarm generating device
JPH11125688A (en) Reactor vibration monitor
WO1999004287B1 (en) Method and apparatus for acoustic detection of mines and other buried man-made objects
KR101654791B1 (en) acoustics and vibration complex sensing unit for defect of plant and defect diagnostics system for high pressure pipe
RU46579U1 (en) PIPELINE DAMAGE DETECTION SYSTEM
JPH09282581A (en) Method and device for detecting vehicle accident inside tunnel
JPH09274023A (en) Prediction system for landslide
JPH09243412A (en) Object-monitoring system
US20040143397A1 (en) Acoustic monitoring of a structure
CN115265759A (en) Engineering on-line monitoring system and method based on optical fiber sound wave detection
JP3473299B2 (en) Road condition monitoring device
JP3448593B2 (en) Civil structure flaw detection method
JPH11160447A (en) Earthquake alarm system