JPH09249449A - Refractory member for steel material sliding part of induction heating furnace - Google Patents

Refractory member for steel material sliding part of induction heating furnace

Info

Publication number
JPH09249449A
JPH09249449A JP8085825A JP8582596A JPH09249449A JP H09249449 A JPH09249449 A JP H09249449A JP 8085825 A JP8085825 A JP 8085825A JP 8582596 A JP8582596 A JP 8582596A JP H09249449 A JPH09249449 A JP H09249449A
Authority
JP
Japan
Prior art keywords
refractory
weight
tio
induction heating
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8085825A
Other languages
Japanese (ja)
Inventor
Toshimi Fukui
俊巳 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosaki Refractories Co Ltd
Original Assignee
Kurosaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd filed Critical Kurosaki Refractories Co Ltd
Priority to JP8085825A priority Critical patent/JPH09249449A/en
Publication of JPH09249449A publication Critical patent/JPH09249449A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a refractory member excellent in corrosion resistance, mechanical and chemical abrasion resistance and thermal impact resistance at a high temperature region, and capable or using at a high temperature sliding part for a long period of time. SOLUTION: This refractory member for a steel material sliding part of an induction heating furnace, contains 60-98wt.% Al2 O3 , 1-30wt.% TiO2 as chemical compositions, or 60-91wt.% Al2 O3 with 4-14wt.% TiO and besides these, 2.5-18wt.% ZrO2 and/or MgO, and is obtained by burning a formed material made from a prepared unshaped refractories at 1,300-1,500 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼材誘導加熱炉の
大きな熱衝撃が加わる加熱部で加熱された鋼材が高温状
態で通過する箇所の、摺動部用部材として使用される耐
摩耗性、耐熱衝撃性に優れた耐火物製部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear resistance used as a member for a sliding portion at a portion where a steel material heated in a heating portion of a steel material induction heating furnace to which a large thermal shock is applied passes at a high temperature, The present invention relates to a refractory member having excellent thermal shock resistance.

【0002】[0002]

【従来の技術】近年、鋼材誘導加熱炉においては、加工
処理される任意寸法に切断された鋼材を、高温加熱する
ために挿通させる貫通孔を設けた摺動部部材として、耐
摩耗性、耐熱衝撃性を求めて、種々耐火物の開発が検討
されてはいるが、このような耐摩耗性、耐熱衝撃性部材
用の耐火物として、アルミナ系に代わって、窒化物,酸
窒化物、とくに、低い熱膨張係数と高温での機械特性に
優れていることから、窒化珪素あるいはサイアロン系が
使用されるようになった。ところが、この窒化物,酸窒
化物系耐火物は、1200°Cを超えると母材の酸化が
進行し、本来有している機械的特性が失われる上に、高
価であることから、安価であり製造も簡単なアルミナ質
キャスタブルが使用されている。
2. Description of the Related Art In recent years, in a steel material induction heating furnace, as a sliding member provided with a through hole for inserting a steel material cut into an arbitrary size to be processed at a high temperature, wear resistance and heat resistance are provided. Although various refractory materials have been studied for impact resistance, as a refractory material for such wear resistant and heat shock resistant members, nitrides, oxynitrides, especially However, because of its low coefficient of thermal expansion and excellent mechanical properties at high temperatures, silicon nitride or sialon-based materials have come to be used. However, the nitride and oxynitride-based refractory materials are inexpensive because the oxidization of the base material progresses when the temperature exceeds 1200 ° C, and the mechanical properties originally possessed are lost and the cost is high. Yes Alumina castable is used because it is easy to manufacture.

【0003】しかしながら、このアルミナ質キャスタブ
ル、とくに、大きな熱衝撃が加わる鋼材誘導加熱炉摺動
部部材として用いられる場合の欠点は、高温での機械的
安定性に劣ることである。例えば、特公昭58−113
88号公報には、アルミナ質キャスタブルにシリカを添
加することで低水分化させ、高密度の硬化体を得ること
が示されている。このような不定形耐火物で得られたブ
ロックを焼成することで、シリカ含有化合物を生成させ
て、耐熱衝撃性を向上させることはできる。その反面、
このマトリックス部のシリカ成分がスケール成分(Fe
Ox)と反応して低融点化合物を生成し、化学的耐食性
を低下させ、マトリックス部から優先的に浸食、摩耗が
進行し、長時間使用することが困難となる。
However, a drawback of this castable alumina material, particularly when it is used as a member of a steel material induction heating furnace sliding portion to which a large thermal shock is applied, is that it is inferior in mechanical stability at high temperatures. For example, Japanese Patent Publication Sho 58-113
Japanese Patent Laid-Open No. 88 discloses that by adding silica to an alumina castable to reduce the water content, a high-density cured product can be obtained. The thermal shock resistance can be improved by forming a silica-containing compound by firing a block obtained from such an amorphous refractory. On the other hand,
The silica component of this matrix part is the scale component (Fe
It reacts with Ox) to form a low-melting point compound, lowers the chemical corrosion resistance, preferentially erodes and wears from the matrix portion, and becomes difficult to use for a long time.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、鋼材
誘導加熱炉における高温域での貫通孔内を鋼材が通過す
る箇所での、耐摩耗性、耐熱衝撃性に優れた摺動部用耐
火物製部材用として使用するハイアルミナ質耐火物のス
ケールなどに対する化学的安定性を、高温における熱衝
撃抵抗性を低下させることなく改善することにある。
An object of the present invention is to provide a sliding member having excellent wear resistance and thermal shock resistance at a place where a steel material passes through a through hole in a high temperature region of a steel material induction heating furnace. It is to improve the chemical stability of a high-alumina refractory used for a refractory-made member to a scale and the like without lowering thermal shock resistance at high temperatures.

【0005】[0005]

【課題を解決するための手段】本発明は、従来のハイア
ルミナ質耐火物にチタン成分を加えることによって、高
温での耐食性や機械的強度及び化学的な耐磨耗性、熱衝
撃抵抗性に優れ、スケールの付着が少なく摺動部材のよ
うな耐熱衝撃部材用耐火物が得られるという知見に基づ
いて完成した。
According to the present invention, by adding a titanium component to a conventional high alumina refractory, corrosion resistance at high temperature, mechanical strength, chemical abrasion resistance, and thermal shock resistance are improved. It was completed based on the finding that a refractory material for heat shock resistant members such as sliding members, which is excellent and has little scale adhesion, can be obtained.

【0006】すなわち、本発明の第1は、化学組成とし
てAl23を68〜98重量%、TiO2を1〜30重
量%含有することを特徴とする。また、第2の発明は、
化学組成としてAl23を60〜91重量%と、TiO
2が4〜14重量%を含有し、ほかに、ZrO2あるいは
MgOの中のいずれかあるいは両方を2.5〜18重量
%を含有することを特徴とする。
That is, the first aspect of the present invention is characterized by containing 68 to 98% by weight of Al 2 O 3 and 1 to 30% by weight of TiO 2 as a chemical composition. Also, the second invention is
The chemical composition is 60 to 91% by weight of Al 2 O 3 , and TiO 2
2 contains 4 to 14% by weight, and additionally contains 2.5 to 18% by weight of either or both of ZrO 2 and MgO.

【0007】この耐火物製部材は、不定形耐火物による
成形体とし、これを1300〜1500°Cで焼成して
得られる。
This refractory member is obtained by firing a molded body of an indeterminate refractory material at 1300 to 1500 ° C.

【0008】本発明の誘導加熱炉加熱部装置は、摺動部
耐火物の貫通孔周囲に加熱コイルを埋設あるいは、外周
に巻き付けた状態でその耐火物を高温加熱することで、
貫通孔内を通過する鋼材が加熱されるもので、加熱され
た耐火物製部材の温度と周囲の温度差が大きいため、耐
摩耗性と共に耐熱衝撃性も求められることになる。
In the induction heating furnace heating device of the present invention, by heating the refractory at a high temperature while embedding a heating coil around the through-hole of the refractory of the sliding part or winding it around the outer periphery,
Since the steel material passing through the through hole is heated, and the temperature difference between the heated refractory member and the surrounding temperature is large, wear resistance and thermal shock resistance are required.

【0009】通常この耐火物製部材を形成する耐火物の
磨耗は、耐火物の貫通孔内を通過する時に、その表面を
摺動する材料との摩擦やエッジ部との接触による摩耗、
またはその酸化物との反応による化学的磨耗と、耐火物
の機械的な破損、欠落による機械的磨耗とにより進行す
る。
Usually, the wear of the refractory forming the refractory member is caused by friction with the material sliding on the surface of the refractory when it passes through the through-hole, and contact with the edge portion.
Alternatively, it progresses due to chemical abrasion due to reaction with the oxide and mechanical abrasion due to mechanical damage or lack of refractory material.

【0010】本発明に使用する耐火物は、マトリックス
中のTiO2成分が、シリカに比べ浸透してくるスケー
ルやマトリックス中のアルミナ成分との間に生成する液
相の生成温度が高いために、耐火物自体の化学的侵食は
抑制される。また、TiO2を含む緻密な反応相を形成
するものと考えられ、これもスケールの一定深さ以上へ
の浸透防止に有効に働くと考えられる。いずれにしても
TiO2成分の添加によって、優れた化学的耐磨耗性が
発現する。優れたスケール付着防止効果については、通
常、Al23は、スケールとの反応により高融点の化合
物を形成し明確な反応相とスケール付着層が形成される
が、TiO2が混在すると、その反応形成物とスケール
との接着強度が弱まり、スケールの堆積が抑制されると
推察される。
In the refractory used in the present invention, the TiO 2 component in the matrix has a high liquid phase formation temperature between the infiltrating scale and the alumina component in the matrix, as compared with silica. Chemical erosion of the refractory itself is suppressed. Further, it is considered that a dense reaction phase containing TiO 2 is formed, and it is also considered that this also effectively works to prevent penetration of the scale to a certain depth or more. In any case, by adding the TiO 2 component, excellent chemical abrasion resistance is exhibited. For excellent scale deposition preventive effect, usually, Al 2 O 3 is the high melting point of the compound to form a clear reaction phase and scale adhesion layer by reaction with the scale is formed, the TiO 2 are mixed, the It is presumed that the adhesion strength between the reaction product and the scale is weakened, and the scale deposition is suppressed.

【0011】[0011]

【発明の実施の形態】本発明は、その耐火物の焼結性の
向上や熱安定性から、SiO2成分を多量に含む原料骨
材を使用しない耐火物であり、原料中の不純物としても
できるだけSiO2が微量に存在する原料の選定を行う
ことが望ましい。SiO2自体は0.4重量%以下であ
ることが好ましい。SiO2を生成する化学成分の共存
は避ける必要があり、そのため、不純物の総量も3重量
%以下に、とくに2重量%以下になることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is a refractory which does not use a raw material aggregate containing a large amount of SiO 2 component because of its improved sinterability and thermal stability, and also as an impurity in the raw material. It is desirable to select a raw material containing as little SiO 2 as possible. SiO 2 itself is preferably 0.4% by weight or less. It is necessary to avoid coexistence of chemical components that generate SiO 2, and therefore the total amount of impurities is preferably 3% by weight or less, and particularly preferably 2% by weight or less.

【0012】本発明の鋼材誘導加熱炉の摺動部の様な耐
摩耗性、耐熱衝撃性を持った部材に用いられる耐火物の
骨材としては、アルミナ、チタン等耐火物中に主成分の
Al23と、チタン成分をTiO2に換算で1〜30重
量%、もしくは4〜14重量%含有させる以外は、15
00°C以上の耐火度でシリカを構成成分として含有し
ない耐火原料であれば、ジルコニア、スピネル、マグネ
シア微粉及びこらの複合原料が1種または2種以上組み
合わせて使用できる。他にクロミア等の酸化物も使用で
きる。
The aggregate of the refractory used for the member having the wear resistance and the thermal shock resistance such as the sliding portion of the steel material induction heating furnace of the present invention includes alumina, titanium, etc. 15 except that Al 2 O 3 and a titanium component are contained in an amount of 1 to 30% by weight or 4 to 14% by weight in terms of TiO 2.
As long as the refractory raw material has a refractory degree of 00 ° C. or higher and does not contain silica as a constituent component, one or a combination of zirconia, spinel, fine powder of magnesia and these composite raw materials can be used. Besides, oxides such as chromia can also be used.

【0013】アルミナ骨材として、電融アルミナ,焼結
アルミナ等を使用でき、その粒度は、製品の形状に左右
されるが、例えば10mm程度の厚みのチューブ形状で
あれば5mm以下が良く、6mm以下の厚みの場合3m
m以下が好ましい。それ以外のアルミナ微粉は電融アル
ミナ,焼結アルミナ,仮焼アルミナ等の他加熱すること
でアルミナとなる酸化物や合成された化合物が使用でき
る。また、これら骨材以外にハイアルミナセメントもA
23成分として含まれる。
As the alumina aggregate, fused alumina, sintered alumina, etc. can be used, and the particle size depends on the shape of the product. For example, in the case of a tube having a thickness of about 10 mm, 5 mm or less is preferable, and 6 mm is preferable. 3m for the following thickness
m or less is preferable. Other fine alumina powders may be fused alumina, sintered alumina, calcined alumina, or other oxides that can be heated to form alumina oxides or synthesized compounds. In addition to these aggregates, high-alumina cement
It is contained as an l 2 O 3 component.

【0014】Al23とTiO2成分の併存による効果
を得るには、Al23成分が60〜98重量%の範囲で
良く、Al23成分60重量%未満ではAl23成分そ
のものが働きはかわりなく、TiO2成分が多くなって
もそれ以上に効果は向上せず、98重量%以上であると
TiO2成分の耐熱衝撃性、耐食性、スケール付着防止
についての効果が失われる。
[0014] Al 2 O 3 and to obtain the effect of coexistence of TiO 2 component, Al 2 O 3 component can range from 60 to 98 wt%, Al 2 O 3 Al 2 O 3 is a component less than 60 wt% Even if the amount of TiO 2 component increases, the effect does not improve further. If it is more than 98% by weight, the effect of TiO 2 component on thermal shock resistance, corrosion resistance and scale adhesion prevention is lost. Be seen.

【0015】さらに、その他の配合物との組み合わせの
場合は、Al23成分は60〜91重量%以内の範囲と
してその他の成分を有効に生かすことが好ましい。
Further, in the case of combination with other compounds, it is preferable that the Al 2 O 3 component is within the range of 60 to 91% by weight, and the other components are effectively utilized.

【0016】Al23成分とTiO2成分以外の成分を
含むものとして、ジルコニア質やマグネシア質の骨材が
使用され、ZrO2あるいはMgO又はその両方を2.
5〜18重量%含有することが好ましい。ZrO2は耐
食性と、スケール付着防止効果を向上させるが、2.5
重量%より少ないとその効果は小さく、18重量%より
多いと耐火物の熱膨張率を増加させるため好ましくな
い。
As a material containing components other than the Al 2 O 3 component and the TiO 2 component, zirconia-based or magnesia-based aggregate is used, and ZrO 2 or MgO or both of them are used.
It is preferable to contain 5 to 18% by weight. ZrO 2 improves corrosion resistance and scale adhesion prevention effect, but
If it is less than 18% by weight, the effect is small, and if it is more than 18% by weight, the thermal expansion coefficient of the refractory increases, which is not preferable.

【0017】また、MgOはスピネルとして存在するこ
とが好ましく、低い熱膨張率により耐熱衝撃性が向上す
るが2.5重量%より少ないとスピネル生成量が少なく
なり耐熱衝撃性に効果がなくなり、18重量%より多い
とスケールとの反応によりTiO2成分によるスケール
付着防止効果を阻害する。MgOはAl23とスピネル
(MgAl24)成分として、熱膨張率が小さくなるの
で耐火物組成の熱衝撃抵抗性を向上させ、ZrO2成分
は、耐食性を向上させるために、2.5〜18重量%共
存させることでTiO2成分の働きを助ける。
Further, MgO is preferably present as spinel, and the thermal shock resistance is improved due to the low coefficient of thermal expansion, but if it is less than 2.5% by weight, the amount of spinel produced is small and the thermal shock resistance is ineffective. If it exceeds 5% by weight, the reaction with scale impairs the scale adhesion preventing effect of the TiO 2 component. MgO as an Al 2 O 3 and spinel (MgAl 2 O 4 ) component has a small coefficient of thermal expansion, and therefore improves the thermal shock resistance of the refractory composition, and the ZrO 2 component, in order to improve the corrosion resistance, 2. Coexistence of 5 to 18% by weight helps the function of the TiO 2 component.

【0018】その他クロミア等の酸化物を使用した場合
もZrO2同様に耐食性向上にスケール付着防止に貢献
する範囲で存在させることができる。
In addition, when an oxide such as chromia is used, it can be present in the range that contributes to the improvement of corrosion resistance and the prevention of scale adhesion like ZrO 2 .

【0019】TiO2成分は、ルチル,アナターゼ,一
酸化チタン,三二酸化チタン等の酸化物、或いはチタン
酸アルミニウム,チタン酸カルシウム,チタン酸マグネ
シウム,チタン酸鉄等がチタンを含む複合酸化物として
使用される。また、チタンアルコキシドや塩化チタン等
のチタン塩、或いは金属チタン、チタン合金も使用でき
る。しかし、一般的にはルチル,アナターゼ等の酸化物
としての使用が好ましい。粒径は入手可能な範囲であれ
ば特に問題はない。
The TiO 2 component is used as an oxide of rutile, anatase, titanium monoxide, titanium trioxide or the like, or as a composite oxide containing titanium such as aluminum titanate, calcium titanate, magnesium titanate or iron titanate. To be done. Further, titanium salts such as titanium alkoxide and titanium chloride, or metallic titanium and titanium alloy can be used. However, it is generally preferable to use it as an oxide of rutile, anatase or the like. There is no particular problem as long as the particle size is within the range available.

【0020】TiO2としての使用は、耐火物の組成の
特性を向上させる利点のみでなく、焼結性を向上させ、
通常のハイアルミナキャスタブルと比べ低温での焼成が
可能となる。TiO2成分が1重量%より少ないと、高
温での摺動部用耐火物製部材としての耐熱衝撃性やスケ
ールの付着防止特性やマトリックス部の焼結性に十分な
効果が得られない。30重量%より多くなっても著しい
効果の向上は認められないため、30重量%以下でよ
い。また、焼結性の向上には10μm以下の粉末を使用
することが好ましい。
The use as TiO 2 not only has the advantage of improving the properties of the refractory composition, but also improves the sinterability,
It enables firing at a lower temperature than ordinary high alumina castables. If the content of TiO 2 is less than 1% by weight, sufficient effects cannot be obtained for the thermal shock resistance as a refractory member for sliding parts at high temperature, the scale adhesion preventing property, and the sinterability of the matrix part. Even if the amount is more than 30% by weight, no significant improvement in the effect is recognized, so the amount may be 30% by weight or less. Further, it is preferable to use a powder having a particle size of 10 μm or less for improving the sinterability.

【0021】ZrO2あるいはMgO成分が含有される
場合のTiO2成分は4〜14重量%の範囲が良く、4
重量%より少ないとその効果は得られず、14重量%よ
り多いと未反応TiO2残存量が増加し熱膨張率が増加
し、耐熱衝撃性を低下させる。
When the ZrO 2 or MgO component is contained, the TiO 2 component is preferably in the range of 4 to 14% by weight.
If it is less than 14% by weight, the effect cannot be obtained, and if it is more than 14% by weight, the amount of unreacted TiO 2 remaining increases, the coefficient of thermal expansion increases, and the thermal shock resistance decreases.

【0022】本発明の耐火物製部材は通常知られている
キャスタブル耐火物の施工法によって得ることができ
る。例えば、湿式法であれば、目的とする組成の配合物
を予め混合した後、適量の水を加えスリップを作成し、
このスリップを目的とする形状の型枠に流し込み成形す
る。この際の成形用結合剤が用いられるが、出来る限り
SiO2を含まない化合物が良く、水硬性ハイアルミナ
セメント、リン酸塩等の無機結合剤を5〜15重量%使
用するか、押し出し成形等に用いられるPED,PE
G,PVAの他、レゾール型フェノール樹脂やセルロー
ス系の熱硬化性の有機高分子結合剤等も添加することが
できる。その他、粉体の分散性を向上させるため適当な
分散剤や解膠剤等も添加できる。
The refractory member of the present invention can be obtained by a generally known casting method for castable refractories. For example, in the case of the wet method, after premixing the formulation having the desired composition, an appropriate amount of water is added to form a slip,
The slip is cast into a mold having a desired shape. In this case, a molding binder is used, but as far as possible, a compound containing no SiO 2 is preferable, and 5 to 15% by weight of an inorganic binder such as hydraulic high-alumina cement or phosphate is used, or extrusion molding, etc. PED, PE used for
In addition to G and PVA, a resol-type phenol resin, a cellulose-based thermosetting organic polymer binder, and the like can be added. In addition, in order to improve the dispersibility of the powder, an appropriate dispersant or peptizer can be added.

【0023】スリップの鋳込みは、通常の鋳込み成形で
も良いが本件は振動鋳込みで実施した。これは低水分量
のスリップに流動性を与えるのに効果的であり、減圧振
動鋳込みが気泡の除去に有効である。鋳込まれた成形体
は、硬化後脱型し乾燥、焼成する。乾燥時間は使用、添
加した結合剤の種類、水分添加量により随時設定され
る。
The slip casting may be performed by ordinary casting, but in the present case, vibration casting was performed. This is effective for imparting fluidity to slips having a low water content, and vacuum vibration casting is effective for removing bubbles. The molded body that has been cast is demolded after curing, dried and fired. The drying time is set at any time depending on the use, the type of binder added, and the amount of water added.

【0024】また、乾式法であれば、通常の定形耐火物
の成形方法に準じて実施できる。即ち、目的となる配合
物を結合剤と予め混合し、造粒粉体を作成する。造粒粉
体は形状に合わせた型を用い、一軸成形、または冷間静
圧成形される。得られた成形体を焼成、或いは乾燥、焼
成し、場合によっては目的の形状に加工して製品を得
る。
In addition, the dry method can be carried out according to the usual method for forming a regular refractory material. That is, the target formulation is premixed with the binder to form a granulated powder. The granulated powder is uniaxially molded or cold static pressure molded using a mold suitable for the shape. The obtained molded body is fired, or dried and fired, and in some cases processed into a desired shape to obtain a product.

【0025】本発明の化学組成にかかわる不定形耐火物
の焼成温度の条件設定は、強度発現効果を考えると少な
くとも1300〜1500°Cが好ましい。つまり、加
熱された摺動物が通過する時点で、焼成されていない不
定形耐火物成形体においても焼結して強度は発現する
が、一般耐火物が使用されるような溶湯との接触による
焼結ではないために有効な焼結状態になるとは限らな
い。よって、予め焼成することが好ましく、1300°
C以下では強度不足により耐磨耗性が低く、1500°
C以上で焼成を行っても特性の改善が期待できないので
必要ない。
The firing temperature of the amorphous refractory material relating to the chemical composition of the present invention is preferably set to at least 1300 to 1500 ° C. in consideration of the strength development effect. In other words, when a heated sliding object passes through, it will sinter and develop strength even in an unfired amorphous refractory molded body, but it will be burned by contact with a molten metal such as a general refractory. Since it is not a bond, it does not always result in an effective sintered state. Therefore, it is preferable to bake in advance, and the temperature is 1300 °.
If it is less than C, the abrasion resistance is low due to insufficient strength and 1500 °
It is not necessary even if firing is performed at a temperature of C or higher because improvement in characteristics cannot be expected.

【0026】[0026]

【実施例】本発明の耐火物を鋼材誘導加熱炉摺動部部材
に適用した例について説明する。
EXAMPLE An example in which the refractory material of the present invention is applied to a steel material induction heating furnace sliding member will be described.

【0027】表1に本発明の耐火物の実施例1〜12
を、表2に実施例13〜20及び比較例1〜4を、ま
た、表3に実施例21〜24と比較例5、6として従来
のアルミナ質耐火物とサイアロン製品について、出発原
料と焼成温度、化学組成、物性値、評価結果とともに示
す。
Table 1 shows examples 1 to 12 of the refractory material of the present invention.
Table 2 shows Examples 13 to 20 and Comparative Examples 1 to 4, and Table 3 shows Examples 21 to 24 and Comparative Examples 5 and 6 as conventional starting materials and calcining materials for alumina refractory and sialon products. It is shown together with temperature, chemical composition, physical property values, and evaluation results.

【0028】物性評価方法については、全ての組成でチ
ューブ製品とは別に約φ50×50mmの物性評価用の
試料を振動鋳込み法で作成した。この試料を用いたアル
キメデス法による比重気孔率、圧縮強度をJIS測定法
に準じて測定した。
With respect to the physical property evaluation method, a sample for physical property evaluation of about φ50 × 50 mm was prepared by the vibration casting method in addition to the tube product in all compositions. The specific gravity porosity and compressive strength of this sample by the Archimedes method were measured according to the JIS measurement method.

【0029】化学組成の分析は、ガラスビート法による
蛍光X線分析で決定した。なお、実施例における本発明
品の成分でSiO2含有量は0.2重量%以下であっ
た。また、1.5〜1.7重量%存在するCaO成分は
ハイアルミナセメントに起因する。
The chemical composition analysis was determined by X-ray fluorescence analysis by the glass beet method. The SiO 2 content of the components of the present invention in the examples was 0.2% by weight or less. Further, the CaO component present at 1.5 to 1.7% by weight is due to the high alumina cement.

【0030】高温摺動特性は、内径φ50mm、外径φ
70mm、長さ100mmのチューブ状の焼成体を13
00°Cに加熱された電気炉中に固定し、φ40×10
0mmの鋼材(S45C)を約10cm/秒の速さで左
右に移動させた時の減寸量で評価した。試験時間は10
0時間で、10時間毎に新しい鋼材に交換し耐磨耗性試
験を行った。
The high temperature sliding characteristics are as follows: inner diameter φ50 mm, outer diameter φ
70 mm, 100 mm long tube-shaped fired body 13
Fixed in an electric furnace heated to 00 ° C, φ40 × 10
The 0 mm steel material (S45C) was moved to the left and right at a speed of about 10 cm / sec and evaluated by the reduction amount. Test time is 10
A wear resistance test was conducted by changing to a new steel material every 0 hours at 0 hours.

【0031】スケールの付着性は高温摺動試験後の試料
の状態を目視により評価した。
The scale adhesion was evaluated by visually observing the condition of the sample after the high temperature sliding test.

【0032】耐熱衝撃性は、前述円筒試料を1300°
Cに加熱した電気炉中に挿入、空気中に取り出し強制空
冷を10回繰り返す空冷スポール試験により評価した。
The thermal shock resistance of the above-mentioned cylindrical sample was 1300 °.
It was evaluated by an air cooling spall test in which it was inserted into an electric furnace heated to C, taken out into air, and forced air cooling was repeated 10 times.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例1〜12は、原料粉末をV型混合ミ
キサーを使用し混合、混合粉体を卓上ミキサー中で水を
加えてスリップとし、チューブ型へ振動テーブル上で鋳
込んで製造した。室温で一晩放置した後、脱型し、更に
100°Cの乾燥機中で乾燥した。結合剤としてハイア
ルミナセメント(通常5〜15重量%使用されるが、今
回の試料では10重量%使用)を用いた。成形体を13
00〜1500°Cの温度域で2時間焼成し、外径70
mm、内径50mm,長さ800mmの形状である耐火
物部材を得た。
Examples 1 to 12 were produced by mixing raw material powders using a V-type mixing mixer, adding water to a slip in a tabletop mixer to make a slip, and casting the mixture into a tube type on a vibration table. After leaving it at room temperature overnight, it was demolded and further dried in a dryer at 100 ° C. High-alumina cement (usually used at 5 to 15% by weight, but used at 10% by weight in this sample) was used as a binder. Molded body 13
Baking for 2 hours in a temperature range of 00 to 1500 ° C, an outer diameter of 70
A refractory member having a shape of mm, inner diameter of 50 mm and length of 800 mm was obtained.

【0035】耐火物部材の化学組成は、実施例1〜6及
び9,10がAl23にTiO2成分が加わった例、実
施例7,8は更にMgO成分を含む例で、MgO成分は
スピネルから得たものである。実施例11,12は、A
23、TiO2及びZrO2成分による例でZrO2
分はバデライトから得た。また、実施例6は焼成温度を
1500°Cで行った。評価試験の結果において、いず
れも耐摩耗性、耐熱衝撃性に問題はなく、スケールの付
着は認められなかった。
Regarding the chemical composition of the refractory member, Examples 1 to 6 and 9 and 10 are examples in which a TiO 2 component is added to Al 2 O 3, and Examples 7 and 8 are examples in which a MgO component is further included. Is obtained from spinel. Examples 11 and 12 are A
The ZrO 2 component was obtained from Baderite, in the example with l 2 O 3 , TiO 2 and ZrO 2 components. In Example 6, the firing temperature was 1500 ° C. As a result of the evaluation test, there was no problem in wear resistance and thermal shock resistance, and no scale adhesion was observed.

【0036】[0036]

【表2】 [Table 2]

【0037】実施例14〜18は表1の耐火物部材と同
様の製造方法で、実施例19〜20は、原料粉末をV型
混合ミキサーを使用し混合、混合粉体を卓上ミキサー中
で水と熱硬化性樹脂を加えてスリップとし、チューブ型
へ振動テーブル上で鋳込み成形を行った。100°Cま
で徐々に昇温後乾燥機中で結合剤を硬化させ、脱型し
た。その成形体を1300〜1500°Cの温度域で2
時間焼成し、外径70mm、内径50mm,長さ800
mmの形状である耐火物部材を得た。
Examples 14 to 18 are the same manufacturing method as the refractory member of Table 1, and Examples 19 to 20 are the raw material powders mixed by using a V-type mixing mixer, and the mixed powders are mixed with water in a tabletop mixer. Then, thermosetting resin was added to make a slip, and cast molding was performed on a vibration table into a tube type. After gradually raising the temperature to 100 ° C., the binder was cured in a drier and released from the mold. 2 the molded body in a temperature range of 1300 to 1500 ° C.
Fired for an hour, outer diameter 70 mm, inner diameter 50 mm, length 800
A refractory member having a shape of mm was obtained.

【0038】耐火物部材の化学組成として、実施例1
3,14及び17〜20はAl23、TiO2である
が、実施例13,14はTiO2の出発原料をルチル以
外のものから得た例であり、実施例17はアルミナ原料
の粒度を、実施例18は焼成温度を変えた例である。ま
た、実施例19,20はハイアルミナセメント以外の結
合剤を外掛け(+表示)で使用した例であり、そのため
化学組成にCaOが見あたらない。その結果評価試験に
おいて、いずれも耐摩耗性、耐熱衝撃性に問題はなく、
スケールの付着は認められなかった。
As the chemical composition of the refractory member, Example 1 was used.
3, 14 and 17 to 20 are Al 2 O 3 and TiO 2 , but Examples 13 and 14 are examples in which the starting material of TiO 2 is obtained from a material other than rutile, and Example 17 is the particle size of the alumina material. Example 18 is an example in which the firing temperature was changed. In addition, Examples 19 and 20 are examples in which a binder other than high-alumina cement was externally applied (+), and therefore CaO was not found in the chemical composition. As a result, in the evaluation test, there was no problem in wear resistance and thermal shock resistance,
No scale adhesion was observed.

【0039】比較例1,2は、実施例1と同じ方法でチ
タンを含まないチューブ形状の成形体を作成、1300
°Cと1600°Cで2時間焼成し、外径70mm,内
径50mm、長さ800mmの形状の耐火物部材を得
た。
In Comparative Examples 1 and 2, a tube-shaped molded body containing no titanium was prepared by the same method as in Example 1300.
Firing was performed at ° C and 1600 ° C for 2 hours to obtain a refractory member having an outer diameter of 70 mm, an inner diameter of 50 mm and a length of 800 mm.

【0040】比較例1は、強度不足による明確な磨耗が
進行していた。一方比較例2は大きな減寸は見られない
がスケールの付着が激しかった。
In Comparative Example 1, clear wear progressed due to insufficient strength. On the other hand, in Comparative Example 2, no large reduction was observed, but the scale was heavily attached.

【0041】比較例3,4は、実施例1と同じ方法でチ
タンの代わりにシリカ原料を5重量%使用し、チューブ
形状の成形体を作成、1300°Cと1500°Cで2
時間焼成した。1300°C焼成では、外径70mm、
内径50mm,長さ800mmの耐火物部材が得られた
が、1500°C焼成ではチューブの軟化変形や収縮割
れにより目的とする形状の耐火物部材は得られなかっ
た。
In Comparative Examples 3 and 4, 5% by weight of silica raw material was used in place of titanium in the same manner as in Example 1 to prepare tube-shaped molded bodies, which were heated at 1300 ° C and 1500 ° C.
Fired for hours. When fired at 1300 ° C, the outer diameter is 70 mm,
Although a refractory member having an inner diameter of 50 mm and a length of 800 mm was obtained, the fireproof member having the intended shape could not be obtained by the softening deformation and shrinkage cracking of the tube by firing at 1500 ° C.

【0042】これら比較例3,4の耐磨耗性については
シリカが使用されているため、数mm程度の減寸が見ら
れ、スケールについては稼働面に半溶融状態で付着して
いた。
Regarding the abrasion resistance of Comparative Examples 3 and 4, since silica was used, a reduction of about several mm was observed, and the scale adhered to the working surface in a semi-molten state.

【0043】[0043]

【表3】 [Table 3]

【0044】実施例21〜24は、表1の耐火性部材と
同様の方法で製造した例を示す。これらは、出発原料を
組み合わせ化学組成が規定のAl23、TiO2とMg
O,ZrO2の成分となる様に含有させた例を示す。評
価試験の結果においては、いずれも耐摩耗性、耐熱衝撃
性に問題はなく、スケールの付着は認められなかった。
Examples 21 to 24 show examples manufactured by the same method as the refractory member in Table 1. These are Al 2 O 3 , TiO 2 and Mg having a specified chemical composition by combining starting materials.
An example in which it is contained so as to be a component of O and ZrO 2 will be shown. In the evaluation test results, there was no problem in wear resistance and thermal shock resistance, and no scale adhesion was observed.

【0045】従来品における評価試験の結果をみると、
比較例5は最も一般的なアルミナセラミックスを用いた
が、比較例2と同様の傾向を示し、減寸は見られないが
スケールの付着は激しく、一度の空冷スポール試験の使
用直後に熱衝撃によりバラバラとなり試験続行不能とな
った。また、耐熱衝撃性に優れた比較例6のサイアロン
セラミックスの場合、熱衝撃による割れは見られない
が、数時間の稼働で残寸が無くなったため、試験を中止
した。
Looking at the results of the evaluation test of the conventional product,
Comparative Example 5 used the most common alumina ceramics, but showed the same tendency as Comparative Example 2 and no reduction in size was observed, but the scale was heavily adhered, and was subjected to thermal shock immediately after use in one air-cooled spall test. It fell apart and the test could not be continued. Further, in the case of the sialon ceramics of Comparative Example 6 having excellent thermal shock resistance, cracking due to thermal shock was not observed, but the residual dimension disappeared after a few hours of operation, so the test was stopped.

【0046】1500°Cで焼成された実施例6,18
及び1300°C焼成で得られた他の実施例の本発明品
による耐火物部材は、圧縮強度が138〜181MPa
と高く、1600°Cで焼成されたTiO2成分未使用
の比較例2(129MPa)やシリカ使用の比較例3
(120MPa)より高強度化している。この様に本発
明品は低温焼成で高強度の耐火物部材を得ることができ
た。
Examples 6, 18 calcined at 1500 ° C
And the refractory members according to the present invention products of other examples obtained by firing at 1300 ° C. have compressive strengths of 138 to 181 MPa.
Comparative Example 2 (129 MPa) in which no TiO 2 component was fired at 1600 ° C. and Comparative Example 3 in which silica was used.
The strength is higher than (120 MPa). As described above, the product of the present invention was able to obtain a high-strength refractory member by low temperature firing.

【0047】本願発明品の実機評価による誘導加熱炉で
の摺動試験では、実施例で作成したチューブの高温摺動
試験を直接摺動型の誘導加熱炉で行った。製造したチュ
ーブは長さ720mmに切断し、2本1セットとして用
いた。チューブ内部を通過する鋼材は、約400mm移
動する間に最高1320°C程度となる。30日稼働後
のチューブの外観、スケールの付着量、チューブの磨耗
量により物性評価を行った。比較として、比較例2と3
のものを使用した。
In the sliding test in the induction heating furnace by the evaluation of the actual product of the present invention, the high temperature sliding test of the tube prepared in the example was conducted in the direct sliding induction heating furnace. The produced tube was cut into a length of 720 mm and used as a set of two tubes. The steel material passing through the inside of the tube reaches a maximum of about 1320 ° C while moving about 400 mm. The physical properties were evaluated by the appearance of the tube after 30 days of operation, the amount of adhered scale, and the amount of abrasion of the tube. For comparison, Comparative Examples 2 and 3
Was used.

【0048】本発明の実施例の場合、30日稼働後に大
きな割れが見られるが形状を保持しており、使用に全く
支障がない状態であった。TiO2量が少ない程減寸量
が多くなる傾向にあったが、減寸量は全て1mm以下で
あり、明確なスケールの堆積は認められなかった。これ
に対し、チタンを使用していない比較例2は、母材の減
寸は見られないが稼働部より割れが進行し、部分的に小
さな破片になっていた。また、明確なスケールの堆積が
見られた。シリカを使用した比較例3は稼働部に2〜3
mmの減寸が見られた。
In the case of the examples of the present invention, large cracks were observed after 30 days of operation, but the shape was maintained, and there was no problem in use. The smaller the amount of TiO 2 was, the larger the reduction amount tended to be, but the reduction amount was all 1 mm or less, and no clear scale deposition was observed. On the other hand, in Comparative Example 2 in which titanium was not used, the reduction in size of the base material was not observed, but cracking proceeded from the operating part, and it was partially small fragments. Also, clear scale deposition was observed. Comparative Example 3 using silica has 2-3 in the moving part.
A reduction of mm was observed.

【0049】本発明の優位性は、使用後の試料の微細組
織を顕微鏡写真で見ることにより明らかにできる。図1
の光学顕微鏡写真は実施例3の組織構造を示す。図1で
見ると、稼働部に数百μmのやや緻密化した反応層がみ
られ、スケールの付着は殆どなかった。その他の試料も
ほぼ同様であった。
The superiority of the present invention can be clarified by observing the microstructure of the sample after use in a micrograph. FIG.
The optical micrograph of shows the texture of Example 3. As seen in FIG. 1, a slightly densified reaction layer of several hundred μm was seen in the operating part, and almost no scale adhesion. The other samples were almost the same.

【0050】図2は比較例2の高温摺動試験後の光学顕
微鏡写真である。この図2を見ると、明確なアルミナと
スケールの反応層とスケールの付着層が観察される。ま
た、図3は、比較例3の高温摺動試験後の光学顕微鏡写
真を示す。この図3を見ると、スケールの含浸、反応に
よりガラス的組織となった反応層とスケールの付着層が
見られる。
FIG. 2 is an optical microscope photograph of Comparative Example 2 after the high temperature sliding test. Looking at this FIG. 2, a clear reaction layer of alumina and scale and an adhesion layer of scale are observed. Further, FIG. 3 shows an optical microscope photograph of Comparative Example 3 after the high temperature sliding test. As shown in FIG. 3, a reaction layer having a glass-like structure due to scale impregnation and reaction and a scale adhesion layer can be seen.

【0051】このように本発明の場合、従来材にない特
徴的な微細組織の変化により耐食性とスケールの付着防
止効果を発現していることがわかる。
As described above, in the case of the present invention, it is understood that the corrosion resistance and the effect of preventing scale from adhering are exhibited due to the characteristic change in the microstructure which is not present in conventional materials.

【0052】[0052]

【発明の効果】【The invention's effect】

(1) 高温域での耐食性や機械的及び化学的な耐磨耗
性及び熱衝撃抵抗性に優れ、スケールの付着が少なく、
鋼材の誘導加熱炉における熱衝撃の大きな部位で、長時
間使用することができる摺動部用の耐火物製部材を得る
ことができる。
(1) Excellent corrosion resistance in high temperature range, mechanical and chemical abrasion resistance and thermal shock resistance, less scale adhesion,
It is possible to obtain a refractory member for a sliding portion that can be used for a long time at a site where a steel material has a large thermal shock in an induction heating furnace.

【0053】(2) スケールのように高温での反応性
の高い化合物が共存し、大きな熱衝撃が加わる用途での
使用も可能である。
(2) A compound having a high reactivity at a high temperature, such as a scale, coexists, and can be used in applications where a large thermal shock is applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例3の高温摺動試験後の耐火物組織の光
学顕微鏡写真である。
FIG. 1 is an optical micrograph of a refractory structure after a high temperature sliding test in Example 3.

【図2】 比較例2の高温摺動試験後の耐火物組織の光
学顕微鏡写真である。
2 is an optical micrograph of a refractory structure after a high temperature sliding test of Comparative Example 2. FIG.

【図3】 比較例3の高温摺動試験後の耐火物組織の光
学顕微鏡写真である。
FIG. 3 is an optical micrograph of a refractory structure after a high temperature sliding test of Comparative Example 3.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学組成としてAl23を68〜98重
量%、TiO2を1〜30重量%含有する耐火物からな
り、この耐火物に鋼材を挿通する貫通孔を設けた誘導加
熱炉鋼材摺動部用耐火物性部材。
1. An induction heating furnace comprising a refractory material containing 68 to 98% by weight of Al 2 O 3 and 1 to 30% by weight of TiO 2 as a chemical composition, wherein the refractory material is provided with a through hole for inserting a steel material. Refractory material for steel sliding parts.
【請求項2】 化学組成としてAl23を60〜91重
量%と、TiO24〜15重量%と、その他にZrO2
よびMgOの中のいずれかあるいはその両方を2.5〜
18重量%含有する耐火物からなり、この耐火物に鋼材
を挿通する貫通孔を設けた誘導加熱炉鋼材摺動部用耐火
物製部材。
2. The chemical composition of Al 2 O 3 is 60 to 91% by weight, TiO 2 is 4 to 15% by weight, and one or both of ZrO 2 and MgO is 2.5 to 5% by weight.
A refractory member for an induction heating furnace steel sliding part, comprising a refractory material containing 18% by weight, and having a through hole for inserting a steel material into the refractory material.
【請求項3】 請求項1または請求項2に記載の耐火物
が不定形耐火物であって、その不定形耐火物の成形体を
1300〜1500°Cで焼成して得た誘導加熱炉鋼材
摺動部用耐火物製部材。
3. The induction heating steel material obtained by firing the shaped product of the irregular refractory at 1300 to 1500 ° C., wherein the refractory according to claim 1 or 2 is an irregular refractory. Refractory material for sliding parts.
JP8085825A 1996-03-13 1996-03-13 Refractory member for steel material sliding part of induction heating furnace Pending JPH09249449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8085825A JPH09249449A (en) 1996-03-13 1996-03-13 Refractory member for steel material sliding part of induction heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8085825A JPH09249449A (en) 1996-03-13 1996-03-13 Refractory member for steel material sliding part of induction heating furnace

Publications (1)

Publication Number Publication Date
JPH09249449A true JPH09249449A (en) 1997-09-22

Family

ID=13869638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8085825A Pending JPH09249449A (en) 1996-03-13 1996-03-13 Refractory member for steel material sliding part of induction heating furnace

Country Status (1)

Country Link
JP (1) JPH09249449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072652A1 (en) * 2007-12-07 2009-06-11 Krosakiharima Corporation Aluminum compound-bonded brick for furnace hearth
JP2012504087A (en) * 2008-09-29 2012-02-16 シーメンス アクチエンゲゼルシヤフト Method for producing fireproof molded body
WO2016051093A1 (en) * 2014-10-01 2016-04-07 Saint-Gobain Centre De Recherches Et D'etudes Europeen Refractive material and molten alumina grains

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072652A1 (en) * 2007-12-07 2009-06-11 Krosakiharima Corporation Aluminum compound-bonded brick for furnace hearth
JP5249948B2 (en) * 2007-12-07 2013-07-31 黒崎播磨株式会社 Blast furnace hearth
JP2012504087A (en) * 2008-09-29 2012-02-16 シーメンス アクチエンゲゼルシヤフト Method for producing fireproof molded body
US20120175826A1 (en) * 2008-09-29 2012-07-12 Christos Aneziris Material composition for producing a fireproof material and the use thereof, and fireproof moulding body and method for the production thereof
US8609019B2 (en) * 2008-09-29 2013-12-17 Siemens Aktiengesellschaft Material composition for producing a fireproof material and the use thereof, and fireproof molded body and method for the production thereof
US9108886B2 (en) 2008-09-29 2015-08-18 Siemens Aktiengesellschaft Material composition for producing a fireproof material and the use thereof, and fireproof molded body and method for the production thereof
WO2016051093A1 (en) * 2014-10-01 2016-04-07 Saint-Gobain Centre De Recherches Et D'etudes Europeen Refractive material and molten alumina grains
FR3026737A1 (en) * 2014-10-01 2016-04-08 Saint-Gobain Centre De Rech Et D'Etudes Europeen REFRACTORY MATERIAL AND FUSED ALUMINUM GRAIN

Similar Documents

Publication Publication Date Title
US8633291B2 (en) Reactive liquid ceramic binder resin
US4735923A (en) Erosion-resistant silicon carbide composite sintered materials
JP6259643B2 (en) High chromia castable refractory, precast block using the same, and waste melting furnace lined with one or both of them
JP5361795B2 (en) Lined casting material
JP4094353B2 (en) Rare earth metal-containing amorphous refractory and construction body and kiln furnace lined with these
WO2015151599A1 (en) Castable refractory and casting nozzle and sliding nozzle plate using same
WO2008089530A1 (en) Basic refractories composition containing magnesium orthotitanate and calcium titanate, process for its production and uses thereof
KR101321944B1 (en) Cement-free High Strength Unshaped Refractories
JPH09249449A (en) Refractory member for steel material sliding part of induction heating furnace
JP2003238250A (en) Yttria refractory
US8986598B2 (en) Alumina-coated spinel-silicon carbide refractory composition with high corrosion resistance to coal slag and method for manufacturing the same
KR20210016589A (en) Refractory products, batches for manufacturing products, methods of manufacturing products and uses of products
JP2002220290A (en) Castable refractory
JP4577639B2 (en) Silicon ceramic composite and method for producing silicon ceramic composite
WO2011115353A1 (en) Alumina bonded unshaped refractory and manufacturing method thereof
JP4960541B2 (en) Magnesia-alumina-titania brick
JPH09249451A (en) Member for steel material sliding part of induction heating furnace
JP3157310B2 (en) Refractory
JP2000072528A (en) Magnesia-spinel refractory for cement rotary kiln
JP3177200B2 (en) Method for producing low-permeability magnesia-chromium refractory
JPH06172044A (en) Castable refractory of alumina spinel
JPH09142946A (en) Prepared unshaped flowed-in refractories and their molding
WO2024041935A1 (en) Method for producing silicon carbide coated refractory grains and silicon carbide coated refractory grains
JP2004307293A (en) Monolithic refractory composition
JP3209842B2 (en) Irregular refractories