JPH09249403A - Generation of high concentration ozone - Google Patents

Generation of high concentration ozone

Info

Publication number
JPH09249403A
JPH09249403A JP9460196A JP9460196A JPH09249403A JP H09249403 A JPH09249403 A JP H09249403A JP 9460196 A JP9460196 A JP 9460196A JP 9460196 A JP9460196 A JP 9460196A JP H09249403 A JPH09249403 A JP H09249403A
Authority
JP
Japan
Prior art keywords
electrode
hollow cylindrical
gas
ozone
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9460196A
Other languages
Japanese (ja)
Inventor
Ichiro Maezono
一郎 前園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9460196A priority Critical patent/JPH09249403A/en
Publication of JPH09249403A publication Critical patent/JPH09249403A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably generate high concentration ozone by diffusing heat generated by an electric discharge from both electrodes by constituting both of hollow cylindrical electrodes and a plate-like electrode to be exposed in the air and suppressing a temperature rising in a discharged space. SOLUTION: A dielectric substance 4 is stuck on a plate-like electrode 6. Plural hollow cylindrical electrodes (e.g. 1a and 1b) vertically fitted to an insulated board 2 so as the hollow cylindrical electrodes to be vertical to the dielectric substance 4 are provided on a packing 5 put on the periphery of the dielectric substance 4. Ozone is generated by applying high voltage between the hollow cylindrical electrodes 1a and 1b and the plate-like electrode 6 while flowing a gas from a gas inlet 9a of the hollow cylindrical electrode 1a into a hole 10a and flowing out the gas from a gas outlet 9b through a hole 10b of the hollow cylindrical electrode 1b in a state providing a distance between a surface of the dielectric substance 4 and electric discharging ends 11a and 11b of the hollow cylindrical electrodes 1a and 1b to be <=10mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】オゾンは強い酸化力を有し,殺
菌,脱色,脱臭などの作用が大きく,工業,農業,漁
業,医療などの幅広い分野に亘って利用されている.こ
とに近年は水や大気の浄化など地球環境保全に重要な役
割をはたしているほか,ハイテク産業やバイオテクノロ
ジー,医薬品,化学薬品,動力用燃料,爆薬などへの用
途もある.
[Industrial application] Ozone has a strong oxidizing power and has a great effect on sterilization, decolorization, deodorization, etc., and is used in a wide range of fields such as industry, agriculture, fisheries, and medical care. In recent years, in particular, it has played an important role in global environmental protection such as purification of water and air, and also has applications in high-tech industries, biotechnology, pharmaceuticals, chemicals, power fuels, explosives, and the like.

【0002】[0002]

【発明の技術的背景】TECHNICAL BACKGROUND OF THE INVENTION

【従来の技術】オゾンの製造方法は数多くあるが,現
在,工業的に最も多く用いられているのは無声放電や沿
面放電を用いたものである.無声放電は電極間にガラス
やセラミックやマイカなどの誘電体を介在した電極間に
酸素を含有した気体を流しながら,高電圧を印加したと
きに生じる放電で,「柱状の放電」となる.オゾンの生
成反応は電子と酸素分子との衝突による解離反応に起因
しているので,柱状の放電よりも微細なグロー状放電の
ほうがより効率よくオゾンを生成することが出来る.沿
面放電によってもグロー状に放電を形成することは出来
るが,構造的に熱放散には不利な構成をしており,放電
によって発生した熱は間接的にしか除去できないので,
放電空間の温度が上昇しやすい欠点がある.このように
現在のオゾン発生装置にはグロー状放電を活用し,かつ
放電によって発生した熱を高電圧側と低電圧側から効率
よく除去できるものは得られていない.
2. Description of the Related Art There are many methods for producing ozone, but the most industrially used methods at present are those using silent discharge and creeping discharge. Silent discharge is a "columnar discharge" that occurs when a high voltage is applied while flowing a gas containing oxygen between electrodes with a dielectric such as glass, ceramic, or mica interposed between the electrodes. Since the ozone generation reaction is caused by the dissociation reaction caused by the collision between electrons and oxygen molecules, the fine glow-like discharge can generate ozone more efficiently than the columnar discharge. A glow-like discharge can be formed by a creeping discharge, but the structure is structurally disadvantageous to heat dissipation, and the heat generated by the discharge can only be removed indirectly.
There is a drawback that the temperature of the discharge space tends to rise. As described above, there is no current ozone generator that utilizes glow discharge and can efficiently remove heat generated by the discharge from the high voltage side and the low voltage side.

【0003】[0003]

【発明が解決しようとする課題】オゾンを効率よく発生
させるにはグロー状放電を形成し,該グロー状放電の中
をガスが確実に通過する電極構成が必要である.また,
オゾンの生成にとって温度上昇を抑制することは重要な
課題である.したがって,放電によって発生した熱を高
電圧側と低電圧側の両電極から有効に放散させるための
電極構造を示すことが必要である.
In order to efficiently generate ozone, it is necessary to form an electrode that forms a glow discharge and allows the gas to pass through the glow discharge reliably. Also,
Suppressing temperature rise is an important issue for ozone generation. Therefore, it is necessary to show an electrode structure for effectively dissipating the heat generated by the discharge from both the high-voltage side and low-voltage side electrodes.

【0004】[0004]

【課題を解決するための手段】円柱電極の中心軸に沿っ
てガスを貫通して流すことができるように孔を設けた中
空円柱状電極によってグロー状放電を発生させることが
できる.中空円柱状電極の放電端は中心軸に対して垂直
に切断してあるので,該切断面と該中空円柱状電極の側
面とは直角になっている.この直角の角の部分は最も電
界が高くなるので,この部分にグロー状のコロナ放電が
発生する.該中空円柱状電極は絶縁板に取り付けて使用
するために,該絶縁板から抜け落ちないように放電端側
を段付きの構造にしたり,放熱端側にネジ部を設けて中
空円柱状電極を絶縁体に固定したり,放熱器を取り付け
たりするので,放電端以外の部分は必ずしも円柱状とな
る必要はないが,放電端は円柱状であることが必要であ
る.平板状電極上に密着して設けられた誘電体に対して
垂直に中空円柱状電極を配置し,該中空円柱状電極の放
電端と該誘電体の表面との距離は1ミリメートル以下と
し,中空円柱状電極の切断面と誘電体表面とは平行にな
るように配置する.この様な構成にして,該中空円柱状
電極の任意の中空円柱状電極からガスを供給し,該ガス
を他の中空円柱状電極から流出させながら,該中空円柱
状電極と該平板状電極間に高周波高電圧または高周波パ
ルス状高電圧を印加する.平板状電極の構造は,中空円
柱状電極と相対する側は平板状とし,反対側は放熱用並
びに接地用電極として用いるために必ずしも平板状でな
くともよく,一般には片面に放熱フィン付きのものを用
いる.誘電体としては,ガラス,セラミック,マイカ,
樹脂などを用いるが,セラミックは堅牢で小型化できる
ので望ましい.ガスは酸素または酸素を含有した乾燥気
体を用いる.オゾンの発生特性は印加電圧の波形によっ
ても変わるので,誘電体がガラスの時とセラミックの時
では印加電圧波形を適切に変える必要がある.このほ
か,オゾン発生装置の構成にあたっては,複数個の中空
円柱状電極を取付けた該絶縁板を,平板状電極上に設け
た誘電体上の周囲に配置したパッキング上に置き,該絶
縁板と該平板状電極の周囲を一定間隔でボルトとナット
で締め付けて固定する.このような構成にすることによ
り,密閉した放電空間が構成され,かつ中空円柱状電極
の放電端と該誘電体との間には1ミリメートル以下の空
隙が形成されるので,任意の該中空円柱状電極から供給
したガスは他の該中空円柱状電極からのみ流出させるこ
とが出来る.また,パッキングの厚さを変えることによ
り該中空円柱状電極の放電端と該誘電体との間の距離を
調整することが出来る.本オゾン発生装置に用いる中空
円柱状電極はステンレスやチタン等の耐オゾン性金属,
絶縁板はテフロン,塩化ビニール,ベークライトなど電
気絶縁性の高いプラスチック,パッキングとしてはシリ
コンゴムや軟質のプラスチック等のガスシールドが可能
でかつ電極間を一定に維持できる程度に弾力を有する材
料を用いる必要がある.平板状電極としてはアルミニウ
ムまたはステンレスが良好である.
[Means for Solving the Problems] A glow-like discharge can be generated by a hollow columnar electrode provided with a hole so that gas can be passed through along the central axis of the columnar electrode. Since the discharge end of the hollow cylindrical electrode is cut perpendicularly to the central axis, the cut surface and the side surface of the hollow cylindrical electrode are at right angles. Since the electric field is the highest at this right-angled corner, glow-like corona discharge occurs at this part. Since the hollow columnar electrode is used by attaching it to an insulating plate, the discharge end side has a stepped structure so as not to fall off from the insulating plate, or the hollow columnar electrode is insulated by providing a screw part on the heat radiating end side. Since it is fixed to the body or a radiator is attached, the parts other than the discharge end do not necessarily have to be cylindrical, but the discharge end must be cylindrical. A hollow columnar electrode is arranged perpendicularly to the dielectric provided in close contact with the plate electrode, and the distance between the discharge end of the hollow columnar electrode and the surface of the dielectric is 1 mm or less. The cut surface of the cylindrical electrode and the surface of the dielectric are placed parallel to each other. With such a configuration, gas is supplied from any hollow columnar electrode of the hollow columnar electrodes, and the gas is allowed to flow out from another hollow columnar electrode while the gas is discharged from the other hollow columnar electrode to the flat plate electrode. High frequency high voltage or high frequency pulsed high voltage is applied to. The structure of the flat plate electrode is such that the side opposite to the hollow columnar electrode is a flat plate, and the opposite side is not necessarily a flat plate for use as a heat dissipation and grounding electrode, and generally has a heat dissipation fin on one side. Using. Dielectric materials include glass, ceramics, mica,
Resin is used, but ceramic is desirable because it is robust and can be miniaturized. As the gas, oxygen or a dry gas containing oxygen is used. Since the ozone generation characteristics change depending on the waveform of the applied voltage, it is necessary to change the applied voltage waveform appropriately when the dielectric is glass or ceramic. In addition, in the construction of the ozone generator, the insulating plate having a plurality of hollow cylindrical electrodes attached is placed on a packing arranged around the dielectric provided on the flat plate electrode, Tighten and fix the periphery of the flat plate electrode with bolts and nuts at regular intervals. With such a structure, a closed discharge space is formed, and a gap of 1 mm or less is formed between the discharge end of the hollow cylindrical electrode and the dielectric. The gas supplied from the columnar electrode can flow out only from the other hollow cylindrical electrode. Also, the distance between the discharge end of the hollow cylindrical electrode and the dielectric can be adjusted by changing the packing thickness. The hollow cylindrical electrode used in this ozone generator is an ozone resistant metal such as stainless steel or titanium,
It is necessary to use a material with high electrical insulation such as Teflon, vinyl chloride, bakelite, etc. for the insulating plate, and silicone rubber or soft plastic for the packing as a material that is gas-shieldable and elastic enough to maintain a constant gap between the electrodes. There is. Aluminum or stainless steel is preferable for the plate electrode.

【0005】[0005]

【作用】上記の構成において,中空円柱状電極と平板状
電極間に高電圧を印加すると,誘電体と相対した側の中
空円柱状電極の先端,すなわち放電端の直角の角の部分
が最も電界が高くなるので,該中空円柱状電極の放電端
の円周上に円環状に特有のコロナ放電が発生する.該コ
ロナ放電は低気圧におけるグロー放電と外観が類似して
微細な放電となることから,これをグロー状放電と記述
している.該中空円柱状電極と該誘電体との間の空隙に
形成される放電は無声放電である.上述の電極構成にお
いて,任意の中空円柱状電極からガスを流入すると,該
ガスは他の中空円柱状電極から確実に流出させるとが出
来るので,該ガスはグロー状放電と無声放電の発生領域
を必ず通過することになる.このことにより,グロー状
放電や無声放電など放電プラズマのガス解離作用を確実
にオゾン生成に利用することができる.オゾンの大半は
グロー状放電の部分で生成されている.また,中空円柱
状電極の放電端でない側の電極端,すなわち放熱端は大
気中に露出しているので,放電端や放電空間で発生した
熱は該中空円柱状電極を通って伝達され,放熱端で放散
される.放熱端はガスの供給口やガスの取り出し口とし
て用いるほか,放熱器としてはたらき,放電によって生
じた熱を直接大気中へ放散することが出来るので,放熱
効果がよく安定なオゾン発生に役立っている.一方,平
板状電極は誘電体を設置する場所としての役目と接地電
極としての役割と放熱器としての役割を持っている.こ
のように,熱放散が中空円柱状電極と平板状電極の両方
から可能な構造のために,高い冷却効果が得られ,安定
なオゾン発生特性と高濃度オゾンの発生を可能にしてい
る.
In the above structure, when a high voltage is applied between the hollow cylindrical electrode and the flat plate electrode, the electric field is generated at the tip of the hollow cylindrical electrode on the side opposite to the dielectric, that is, the corner at the right angle of the discharge end. As a result, the circular corona discharge peculiar to the annular shape occurs on the circumference of the discharge end of the hollow cylindrical electrode. The corona discharge has a similar appearance to a glow discharge at low pressure and is a fine discharge, so it is described as a glow discharge. The discharge formed in the space between the hollow cylindrical electrode and the dielectric is a silent discharge. In the above electrode configuration, when a gas flows in from any hollow columnar electrode, the gas can be surely flown out from the other hollow columnar electrodes, so that the gas causes the glow discharge and the silent discharge generation region to occur. It will definitely pass. As a result, the gas dissociation action of discharge plasma such as glow discharge and silent discharge can be reliably used for ozone generation. Most of ozone is generated in the glow discharge part. Further, since the electrode end of the hollow columnar electrode that is not the discharge end, that is, the heat radiation end is exposed to the atmosphere, the heat generated at the discharge end and the discharge space is transferred through the hollow columnar electrode and radiated. Dissipated at the edge. The heat dissipation end is used as a gas supply port and a gas extraction port, and also functions as a radiator and can dissipate the heat generated by the discharge directly into the atmosphere, which contributes to good heat dissipation and stable ozone generation. . On the other hand, the flat plate-shaped electrode has a role as a place to install a dielectric, a role as a ground electrode, and a role as a radiator. In this way, because of the structure in which heat can be dissipated from both the hollow cylindrical electrode and the flat plate electrode, a high cooling effect is obtained, and stable ozone generation characteristics and high concentration ozone generation are possible.

【0006】[0006]

【実施例】図1は本発明の基本原理を説明するための概
念図である(一部断面図).すなわち,一対の中空円柱
状電極1a,1bを絶縁板2に締め付けナット兼放熱端
3a,3bで取り付け,該絶縁板2を誘電体4上の周囲
に設けたパッキング5上に置いて,該絶縁板2と平板状
電極6の周囲を一定間隔でボルト7a,7bとナット8
a,8bで締め付ける.このことにより,気密が保た
れ,中空円柱状電極1aのガス入口9aから流入したガ
スは孔10aから,孔10bを通ってガス出口9bより
出ていく.パッキング5の厚みによって,誘電体4と放
電端11a,11bとの距離を調整することが出来る
(この様に一対の中空円柱状電極を基本単位として構成
した部分を以後「セル」と記述する) 図2は高濃度のオゾンを発生させるために,セルを2個
直列に接続した場合の概念図である(一部断面図).す
なわち,中空円柱状電極21aのガス入口29aから流
入したガスは孔210a,210bを通り,ガス出口2
9bから出て,さらに次のセルに入り中空円柱状電極2
1cのガス入口29cから入り,孔210c,210d
を経てガス出口29dから出る.この様に,セルを複数
個直列に接続することによって,オゾン濃度を次々と高
濃度化していくことが出来る.図3は中空円柱状電極を
8個一体構造で構成した場合で,ガス入口39aから流
入したガスは4個の中空円柱状電極31a,31b,3
1c,31dの孔(310a〜310d)から同時に流
出し,そのガスは中空円柱状電極31e,31f,31
g,31hの孔(310e〜310h)へ同時に流入し
て,ガス出口39bから出るようにした一体型中空円柱
状電極の概念図である(一部断面図).本図ではガスの
出入口を側面に設けているが表面の放熱端側に設けるこ
とができる.また,中空円柱状電極の数は任意の数だけ
増やすことができる.図4は図3の一体型中空円柱状電
極を用いてオゾン発生装置を構成した場合の概念図であ
る.このように中空円柱状電極を複数個一体化すること
により,ガスの供給や電圧印加のための接続が容易にな
り構造が簡素化する.ガスの供給方法は図3の場合と同
様にガス入口49aから流入したガスは4個の中空円柱
状電極41a,41b,41c,41dを通って他の4
個の中空円柱状電極41e,41f,41g,41hへ
入りガス出口49bからでる.中空円柱状電極の数は任
意の数だけ設けることができるので,中空円柱状電極の
数を増すことによってオゾンを高濃度化したり,オゾン
発生量を増大することができる.ただし,一体型中空円
柱状電極の放電端の部分は互いに離隔して設けなければ
ならないが,他の部分は一体構造とすることが出来る.
1 is a conceptual diagram for explaining the basic principle of the present invention (partial sectional view). That is, a pair of hollow columnar electrodes 1a and 1b are attached to an insulating plate 2 with tightening nuts and heat radiating ends 3a and 3b, and the insulating plate 2 is placed on a packing 5 provided around a dielectric 4 to insulate the insulation. Bolts 7a and 7b and a nut 8 are provided around the plate 2 and the plate electrode 6 at regular intervals.
Tighten with a and 8b. As a result, the airtightness is maintained, and the gas introduced from the gas inlet 9a of the hollow cylindrical electrode 1a exits from the gas outlet 9b through the hole 10a, the hole 10b. The distance between the dielectric 4 and the discharge ends 11a and 11b can be adjusted by the thickness of the packing 5 (the portion constituted by a pair of hollow cylindrical electrodes as a basic unit in this manner is hereinafter referred to as "cell"). Fig. 2 is a conceptual diagram when two cells are connected in series in order to generate high-concentration ozone (partial cross-sectional view). That is, the gas flowing in from the gas inlet 29a of the hollow cylindrical electrode 21a passes through the holes 210a and 210b and passes through the gas outlet 2a.
9b, then into the next cell, hollow cylindrical electrode 2
Entered from the gas inlet 29c of 1c, holes 210c, 210d
Exit through the gas outlet 29d. In this way, by connecting multiple cells in series, it is possible to increase the ozone concentration one after another. FIG. 3 shows a case where eight hollow columnar electrodes are integrally formed, and the gas flowing in from the gas inlet 39a is four hollow columnar electrodes 31a, 31b, 3
The gas simultaneously flows out from the holes (310a to 310d) of 1c and 31d, and the gas thereof is hollow cylindrical electrodes 31e, 31f, and 31.
FIG. 3 is a conceptual diagram of an integral hollow columnar electrode in which the gas flows into the holes (310e to 310h) of g and 31h at the same time and exits from the gas outlet 39b (partial sectional view). In this figure, the gas inlet / outlet is provided on the side surface, but it can be provided on the heat dissipation end side of the surface. Also, the number of hollow cylindrical electrodes can be increased by any number. FIG. 4 is a conceptual diagram when an ozone generator is constructed using the integral hollow cylindrical electrode of FIG. By integrating multiple hollow cylindrical electrodes in this way, the connection for gas supply and voltage application becomes easy and the structure is simplified. The gas supply method is the same as in the case of FIG. 3, and the gas flowing in from the gas inlet 49a passes through the four hollow cylindrical electrodes 41a, 41b, 41c, 41d and the other four
The hollow cylindrical electrodes 41e, 41f, 41g, and 41h enter into the hollow cylindrical electrodes 41 and exit from the gas outlet 49b. Since any number of hollow columnar electrodes can be provided, it is possible to increase the concentration of ozone and increase the amount of ozone generation by increasing the number of hollow columnar electrodes. However, the discharge end part of the integrated hollow cylindrical electrode must be separated from each other, but the other parts can be made into an integrated structure.

【0007】 請求項1を特徴としたオゾン発生装置に
おいて,誘電体の表面と中空円柱状電極の放電端との距
離を1ミリメートル以内に設置したものはグロー状放電
が特によく形成されてオゾンの発生効率が大きくなる.
また,中空円柱状電極の放電端の円柱部分の直径を10
〜30ミリメートルの間の大きさにしたものはオゾン発
生効率が大きい.誘電体の厚さは0.6〜0.8ミリメ
ートルのセラミックスまたはガラス,マイカなどを用
い,印加電圧の周波数は10kHz〜20kHzの高い
周波数を用いることができる.
In the ozone generator characterized in that the glow discharge is particularly well formed in the ozone generator in which the distance between the surface of the dielectric and the discharge end of the hollow cylindrical electrode is set within 1 mm, ozone The generation efficiency increases.
In addition, the diameter of the cylindrical portion at the discharge end of the hollow cylindrical electrode is set to 10
The ozone generation efficiency is high when the size is between ~ 30 mm. The thickness of the dielectric is 0.6 to 0.8 mm, ceramics or glass, mica, etc. are used, and the frequency of the applied voltage can be as high as 10 kHz to 20 kHz.

【0008】 請求項1を特徴としたオゾン発生装置に
おいて,中空円柱状電極の放電端の側面と誘電体と相対
している中空円柱状電極の切断面を互いに直角になるよ
うに形成したものは,直角に形成されたエッジによって
グロー状放電を効果的に発生させることができる.
In the ozone generator according to the first aspect of the present invention, the side surface of the discharge end of the hollow cylindrical electrode and the cut surface of the hollow cylindrical electrode facing the dielectric are formed so as to be at right angles to each other. , A glow discharge can be effectively generated by the edges formed at right angles.

【0009】 請求項1を特徴としたオゾン発生装置に
おいて,中空円柱状電極の放熱端の直径を放電端の直径
とできるだけ接近させるために,放電端と放熱端の直径
の大きさの差を10ミリメートル以内にしたものは熱放
散の効果が大きくなる.また,放熱端の表面に凸凹を設
けて熱放散をよくしたものはオゾンの発生特性が安定化
する.
In the ozone generator according to claim 1, in order to make the diameter of the heat radiation end of the hollow columnar electrode as close as possible to the diameter of the discharge end, the difference in diameter between the discharge end and the heat radiation end is set to 10 mm. The effect of heat dissipation becomes large if the distance is within a millimeter. In addition, the ozone generation characteristics are stabilized when the heat dissipation edge is made uneven to improve heat dissipation.

【0010】 請求項1を特徴とするオゾン発生装置を
複数個直列に接続するか並列に接続するか直列と並列を
組み合わせて接続することによってオゾンを高濃度にし
たり,大量のオゾンを生成することができる.
A plurality of ozone generators according to claim 1 are connected in series, in parallel, or in combination with series and parallel to increase the concentration of ozone or generate a large amount of ozone. Can be done.

【0011】 請求項1を特徴としたオゾン発生装置に
おいて,中空円柱状電極の片端を放熱端として大気中に
露出した構造にすることにより,熱放散が効率よく行わ
れオゾン発生特性が向上する.
In the ozone generator according to the first aspect of the present invention, the hollow cylindrical electrode has a structure in which one end of the hollow cylindrical electrode is exposed to the atmosphere as a heat dissipation end, so that heat is efficiently dissipated and the ozone generation characteristic is improved.

【0012】 請求項1を基本原理としたオゾン発生装
置において,図3のように複数の中空円柱状電極の放電
端の部分は互いに離隔して構成するが,他の部分は一体
構造とした一体型中空円柱状電極を用いて,任意の中空
円柱状電極群から流出したガスを他の中空円柱状電極群
に流入することによりオゾンを生成する方法はガスの供
給や電圧印加が容易になり,オゾン発生装置の構造が簡
素化され,特性や信頼性の向上とともに保守や点検が容
易になる.
In the ozone generator based on the basic principle of claim 1, as shown in FIG. 3, the discharge end portions of the plurality of hollow columnar electrodes are configured to be separated from each other, but the other portions are integrally structured. A method of generating ozone by using a body-shaped hollow columnar electrode and flowing gas out of an arbitrary hollow columnar electrode group into another hollow columnar electrode group facilitates gas supply and voltage application. The structure of the ozone generator is simplified, the characteristics and reliability are improved, and maintenance and inspection are easy.

【0013】[0013]

【発明の効果】本発明は,中空円柱状電極と平板状電極
の両方ともに大気中に露出した構成であることから,放
電によって発生した熱を両電極から放散させるために,
放電空間の温度上昇を抑制して高濃度オゾンを安定して
発生させることができる.また,セルを直列または並列
に接続することによりオゾンの濃度をほぼ比例的に次々
と高濃度化することができた.これらの総合効果により
得られたオゾン発生特性は,酸素原料においてオゾン濃
度は約200g/m(約100,000ppm),エ
ネルギ効率にして200g/kWhに達した.これは現
在の工業用オゾン発生装置で得られる特性のおよそ2倍
にあたる.本発明により,オゾン生成において最も重要
な課題を解決したことによって,オゾン発生効率の向上
と高濃度オゾンの生成を可能にした.また,本発明によ
る装置は,オゾン生成に活用できるばかりでなく,放電
プラズマを応用した水や大気の浄化装置,各種ガスの化
学反応炉,化学合成炉,NO,SO,フロンガス,
有機溶剤など公害性物質の分解除去装置など各種装置の
一部に組み込んで用いることが出来る.
EFFECT OF THE INVENTION Since the present invention has a structure in which both the hollow cylindrical electrode and the flat plate electrode are exposed to the atmosphere, in order to dissipate the heat generated by the discharge from both electrodes,
Highly concentrated ozone can be generated stably by suppressing the temperature rise in the discharge space. Moreover, by connecting the cells in series or in parallel, it was possible to increase the ozone concentration almost proportionally one after another. The ozone generation characteristics obtained by these comprehensive effects reached an ozone concentration of about 200 g / m 3 (about 100,000 ppm) and an energy efficiency of 200 g / kWh in the oxygen source. This is about twice the characteristics obtained with the current industrial ozone generators. According to the present invention, the most important problem in ozone generation is solved, which enables improvement of ozone generation efficiency and generation of high-concentration ozone. The device according to the invention, not only can be utilized in an ozone generator, purifier of applying the discharge plasma water and air, the chemical reactor of various gases, chemical synthesis furnace, NO x, SO x, freon,
It can be used by incorporating it in a part of various devices such as a device for decomposing and removing pollutants such as organic solvents.

【0014】[0014]

【図面の簡単な説明】[Brief description of drawings]

【図1】は本発明の原理を示す概念図である(一部断面
図).
FIG. 1 is a conceptual diagram showing the principle of the present invention (partial sectional view).

【図2】は本発明の原理を応用した一実施例の概念図で
ある(一部断面図).
FIG. 2 is a conceptual diagram of an embodiment to which the principle of the present invention is applied (partial sectional view).

【図3】は一体型中空円柱状電極の概念図である.FIG. 3 is a conceptual diagram of an integrated hollow cylindrical electrode.

【図4】は一体型中空円柱状電極を用いたオゾン発生装
置(一部断面図).
FIG. 4 is an ozone generator using an integrated hollow cylindrical electrode (partially sectional view).

【0015】[0015]

【符号の説明】[Explanation of symbols]

1a,1b,21a,21b,21c,21dはそれぞ
れ中空円柱状電極. 11a,11b,211a,211b,211c,21
1dはそれぞれ放電端 2,22,42はそれぞれ絶縁板. 3a,3b,23a,23b,23c,23dはそれぞ
れ締め付けナット兼放熱端. 31a,31b,31c,31d,31e,31f,3
1g,31h,41a,41b,41c,41d,41
e,41f,41g,41hはそれぞれ一体型中空円柱
状電極 4,24,44はそれぞれ誘電体. 5,25,45はそれぞれパッキング. 6,26,46はそれぞれ平板状電極. 7a,7b,27a,27bはそれそれボルト 8a,8b,28a,28bはそれそれナット 9a,9b,29a,29b,29c,29d,39
a,39b,49a,49bはそれぞれガス出入口 10a,10b,210a,210b,210c,21
0d,310a,310b,310c,310d,31
0e,310f,310g,310hはそれぞれ孔
1a, 1b, 21a, 21b, 21c and 21d are hollow cylindrical electrodes. 11a, 11b, 211a, 211b, 211c, 21
1d is a discharge end 2, 22 and 42 are insulating plates. 3a, 3b, 23a, 23b, 23c and 23d are tightening nuts and heat radiating ends, respectively. 31a, 31b, 31c, 31d, 31e, 31f, 3
1g, 31h, 41a, 41b, 41c, 41d, 41
e, 41f, 41g and 41h are integral hollow cylindrical electrodes 4, 24 and 44 are dielectrics, respectively. 5, 25 and 45 are packing respectively. 6, 26 and 46 are flat plate electrodes. 7a, 7b, 27a, 27b are bolts 8a, 8b, 28a, 28b are nuts 9a, 9b, 29a, 29b, 29c, 29d, 39
a, 39b, 49a, 49b are gas inlets / outlets 10a, 10b, 210a, 210b, 210c, 21 respectively.
0d, 310a, 310b, 310c, 310d, 31
0e, 310f, 310g and 310h are holes

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中心軸に沿ってガスを貫通して流すための
孔を有する中空円柱状電極と誘電体と平板状電極とこれ
らを構成するための絶縁体やパッキング等の部品からな
り,該平板状電極上に該誘電体を密着して設け,該誘電
体に対して該中空円柱状電極が垂直になるように,該絶
縁板に垂直に該中空円柱状電極を複数個取り付けたもの
を該誘電体上の周辺に置かれたパッキング上に設置し,
かつ該誘電体表面と該中空円柱状電極の放電端との距離
を10ミリメートル以下に設置した状態で,該中空円柱
状電極の任意の中空円柱状電極からガスを流入し,該ガ
スを他の該中空円柱状電極から流出させながら,該中空
円柱状電極と該平板状電極間高電圧を印加してオゾンを
発生させるオゾンの発生方法.
1. A hollow cylindrical electrode having a hole for passing a gas therethrough along a central axis, a dielectric, a plate-like electrode, and an insulator or packing for forming these, A structure in which a plurality of hollow columnar electrodes are attached vertically to the insulating plate so that the hollow columnar electrodes are perpendicular to the dielectric, and the dielectric is closely attached to the plate electrode. Installed on the packing placed around the dielectric,
In addition, with the distance between the dielectric surface and the discharge end of the hollow columnar electrode being set to 10 mm or less, gas is introduced from any hollow columnar electrode of the hollow columnar electrode, and the gas is replaced with other gas. A method of generating ozone, in which a high voltage is applied between the hollow columnar electrode and the flat plate-like electrode while flowing out from the hollow columnar electrode to generate ozone.
JP9460196A 1996-03-12 1996-03-12 Generation of high concentration ozone Pending JPH09249403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9460196A JPH09249403A (en) 1996-03-12 1996-03-12 Generation of high concentration ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9460196A JPH09249403A (en) 1996-03-12 1996-03-12 Generation of high concentration ozone

Publications (1)

Publication Number Publication Date
JPH09249403A true JPH09249403A (en) 1997-09-22

Family

ID=14114785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9460196A Pending JPH09249403A (en) 1996-03-12 1996-03-12 Generation of high concentration ozone

Country Status (1)

Country Link
JP (1) JPH09249403A (en)

Similar Documents

Publication Publication Date Title
CA2924996C (en) Modular microplasma microchannel reactor devices, miniature reactor modules and ozone generation devices
US6811757B2 (en) Dielectric barrier discharge fluid purification system
US6451252B1 (en) Odor removal system and method having ozone and non-thermal plasma treatment
US4770858A (en) Resilient dielectric electrode for corona discharge devices
WO2015037565A1 (en) Method for synthesizing organic matter and submerged plasma device
JP2000348848A (en) Low-temperature plasma generator
US5094822A (en) Ozone generator
JPH09249403A (en) Generation of high concentration ozone
US5306471A (en) Concentric ozonator tube assesmbly
CN215138471U (en) Discharge structure and sterilization device
KR100591343B1 (en) Sterilization module device
KR101582315B1 (en) Ozone Generator
KR20180055816A (en) Multi-Oxygen Generator
JPH0741303A (en) Ozone generator
CN113646260A (en) Ozone generating device and ozone generating device set
JP2601293B2 (en) Ozone generator
CN109980535B (en) High-voltage direct-current plasma generator and high-voltage direct-current air purifier
JPH05201703A (en) Ozonizer
CN218025450U (en) Miniature ozone generating device with double-edge dielectric barrier discharge
US20040256225A1 (en) Air purification system and device
JPH01103903A (en) Ozonizer
CN113350986A (en) Discharge structure and sterilization device
JPH05345601A (en) Ozonizer
RU2220093C2 (en) Method of synthesis of ozone and device for its realization
KR0135560B1 (en) Ozone generator