JPH09248876A - Prepreg for manufacturing metal foil plated laminate - Google Patents

Prepreg for manufacturing metal foil plated laminate

Info

Publication number
JPH09248876A
JPH09248876A JP5959396A JP5959396A JPH09248876A JP H09248876 A JPH09248876 A JP H09248876A JP 5959396 A JP5959396 A JP 5959396A JP 5959396 A JP5959396 A JP 5959396A JP H09248876 A JPH09248876 A JP H09248876A
Authority
JP
Japan
Prior art keywords
prepreg
epoxy resin
metal foil
reaction rate
rate constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5959396A
Other languages
Japanese (ja)
Other versions
JP3151402B2 (en
Inventor
Sadahisa Takaura
禎久 高浦
Masato Matsuo
正人 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP5959396A priority Critical patent/JP3151402B2/en
Publication of JPH09248876A publication Critical patent/JPH09248876A/en
Application granted granted Critical
Publication of JP3151402B2 publication Critical patent/JP3151402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the defective molding such as the uneven sheet thickness and the generation of thin spots on the ends of a product, measlings and voids by applying power to metal foils laminated on prepregs composed of epoxy resin of specified reaction rate constant impregnated with a glass cloth base. SOLUTION: Prepregs 1 having the reaction rate constant of 0.10-0.30 are formed by impregnating a glass cloth base with epoxy resin varnish and drying the base. Then two prepregs 1 are overlapped respectively on both sides of inner layer circuit plates 3 with copper foil inner layer circuits 3a on both side of an epoxy resin laminate, and the overlapped material is inserted into between two continuous metal foils 2 to manufacture an combined material of laminated structure, and the metal foils 2 are folded and the combined material 4 is laminated in multi-stages. The material thus formed is set between pressurizing plates 6, and a power source 7 is connected with the metal foils 2, and power is applied to the metal foils 2 while being pressurized by the pressurizing plates 6 in a vacuum chamber to generate heat, and heat and pressure molding is carried out to manufacture a multi-layer copper plated laminate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、金属箔張り積層板
の製造用に用いられるプリプレグに関するものである。
TECHNICAL FIELD The present invention relates to a prepreg used for manufacturing a metal foil-clad laminate.

【0002】[0002]

【従来の技術】プリント配線板に加工して使用される金
属箔張り積層板は、プリプレグを複数枚重ねると共にこ
の片側あるいは両側の外面に銅箔等の金属箔を重ね、こ
れを加熱加圧して積層成形することによって製造されて
いる。また多層プリント配線板の場合は、内層回路板の
片側あるいは両側にプリプレグを重ねると共にプリプレ
グの外側にさらに金属箔を重ね、これを加熱加圧して積
層成形することによって製造されている。そして上記の
ように積層成形を行なうにあたって、上記のプリプレグ
と金属箔を重ねた組み合わせ材や、内層回路板とプリプ
レグと金属箔を重ねた組み合わせ材を多段に積み重ね、
これを熱盤間にセットしてプレスする、いわゆる多段ホ
ットプレスで行なうのが一般的である。
2. Description of the Related Art A metal foil-clad laminate used as a printed wiring board is prepared by stacking a plurality of prepregs on one or both outer surfaces of which a metal foil such as a copper foil is heated and pressed. It is manufactured by laminating. In the case of a multilayer printed wiring board, a prepreg is laminated on one side or both sides of the inner layer circuit board, a metal foil is further laminated on the outside of the prepreg, and the foil is manufactured by heating and pressurizing and laminating. And in performing the lamination molding as described above, the combination material in which the above prepreg and the metal foil are stacked, or the combination material in which the inner layer circuit board, the prepreg and the metal foil are stacked, are stacked in multiple stages,
This is generally set by a so-called multi-stage hot press, which is set between hot plates and pressed.

【0003】しかしこのような熱盤を用いた多段ホット
プレスでは、熱盤に近い組み合わせ材と熱盤から遠い組
み合わせ材とでは加熱温度が異なったものとなり、加熱
温度の不均一のために得られた金属箔張り積層板の品質
がばらつくおそれがある。従って多段ホットプレスで
は、積み重ねることのできる組み合わせ材の段数は限ら
れたものになる。
However, in a multi-stage hot press using such a heating plate, the heating temperature differs between the combination material close to the heating plate and the combination material far from the heating plate, which is obtained because of uneven heating temperature. The quality of the metal foil clad laminate may vary. Therefore, in the multi-stage hot press, the number of stages of the combination material that can be stacked is limited.

【0004】そこで、金属箔に電源を接続し、金属箔に
通電して金属箔を発熱させることによって加熱を行なう
ようにした方法が特表平7−508940号公報等で提
供されている。図1及び図2はそれぞれその一例を示す
ものであり、金属箔2として長尺のものを2枚用い、こ
の2枚の金属箔2の間に複数枚のプリプレグ1、あるい
はプリプレグ1と内層回路板3を重ねたものを挟み込む
ことによって、プリプレグ1と上下の金属箔2からなる
組み合わせ材4、あるいはプリプレグ1と内層回路板3
と上下の金属箔2からなる組み合わせ材4を形成する。
この組み合わせ材4を金属箔2の長手方向で複数組み形
成しながら金属箔2を蛇行状に折り曲げ、絶縁性の鏡面
板5を介して複数の組み合わせ材4を多段に積み重ね
る。そしてこれを加圧プレート6の間にセットすると共
に金属箔2に電源7を接続し、加圧プレート6で冷間プ
レスしながら金属箔2に通電すると、金属箔2はジュー
ル熱によって発熱し、この発熱で各組み合わせ材4を加
熱して成形を行なうことができるものである。
Therefore, a method of heating the metal foil by connecting a power source to the metal foil and energizing the metal foil to heat the metal foil is provided in Japanese Patent Publication No. 7-508940. FIG. 1 and FIG. 2 each show an example thereof, in which two long metal foils 2 are used, and a plurality of prepregs 1 or prepregs 1 and an inner layer circuit are provided between the two metal foils 2. By sandwiching the stacked plates 3, a combination material 4 composed of the prepreg 1 and the upper and lower metal foils 2, or the prepreg 1 and the inner circuit board 3
A combination material 4 including the upper and lower metal foils 2 is formed.
The metal foils 2 are bent in a meandering shape while forming a plurality of sets of the combination materials 4 in the longitudinal direction of the metal foils 2, and the plurality of combination materials 4 are stacked in multiple stages via the insulating mirror surface plate 5. When this is set between the pressure plates 6 and the power source 7 is connected to the metal foil 2 and the metal foil 2 is energized while cold pressing with the pressure plate 6, the metal foil 2 generates heat due to Joule heat, With this heat generation, each combination material 4 can be heated to perform molding.

【0005】この方法によれば各組み合わせ材4のプリ
プレグ1を金属箔2を熱源として直接に加熱することが
できるために、多段に積み重ねた各組み合わせ材4のプ
リプレグ1を均一に加熱することができ、金属箔張り積
層板を品質のばらつきなく多段の成形で得ることができ
るのである。
According to this method, since the prepreg 1 of each combination material 4 can be directly heated by using the metal foil 2 as a heat source, the prepregs 1 of each combination material 4 stacked in multiple stages can be uniformly heated. Therefore, the metal foil-clad laminate can be obtained by multistage molding without variation in quality.

【0006】[0006]

【発明が解決しようとする課題】上記のように従来の多
段ホットプレスによる方法では各組み合わせ材のプリプ
レグに対する加熱温度が不均一になるために、加熱温度
の不均一に対して不良発生率が小さくなるように工夫し
たプリプレグが使用されている。しかし、金属箔に通電
して発熱させることによって加熱を行なう方法では各組
み合わせ材のプリプレグに対する加熱温度が均一になる
ために、従来から使用されているプリプレグをそのまま
用いたのでは、かえって十分な性能の金属箔張り積層板
を得ることができない。例えば、含浸された樹脂の反応
速度が遅いプリプレグを用いると樹脂の流れが大きくな
って、製品の中央と端部の間の板厚にバラツキが生じた
り、製品端部にカスレやミーズリングなどの成形不良が
発生したりするおそれがあり、またこのような樹脂の流
れを小さくするために、樹脂の溶融粘度を高くすると、
今度は逆に成形時の含浸不良や樹脂流れの不足によるカ
スレやボイドが発生し易くなり、いずれにおいてもプリ
ント配線板の積層板として十分な性能を得ることができ
ないものであった。
As described above, in the conventional method using multi-stage hot pressing, the heating temperature of the prepreg of each combined material becomes non-uniform, so that the defect occurrence rate is small with respect to the non-uniform heating temperature. A prepreg designed to be used is used. However, in the method of heating by energizing the metal foil to generate heat, the heating temperature for the prepreg of each combined material becomes uniform, so using the prepreg that has been conventionally used as it is does not provide sufficient performance. No metal foil-clad laminate can be obtained. For example, if a prepreg with a slow reaction speed of the impregnated resin is used, the flow of the resin becomes large and the thickness of the product between the center and the end of the product may vary, and the product end may have scrapes or measling. There is a possibility that molding defects may occur, and in order to reduce the flow of such resin, if the melt viscosity of the resin is increased,
Contrary to this, on the contrary, defects such as impregnation during molding and insufficient resin flow are likely to cause scrapes and voids, and in either case, sufficient performance as a laminate of a printed wiring board cannot be obtained.

【0007】本発明は上記の点に鑑みてなされたもので
あり、板厚のバラツキや製品端部のカスレ、ミーズリン
グ、ボイド等の成形不良の問題なく、金属箔に通電して
発熱させることによって加熱を行なう工法で金属箔張り
積層板を製造することができるプリプレグを提供するこ
とを目的とするものである。
The present invention has been made in view of the above points, and it is possible to generate heat by energizing a metal foil without causing problems such as variations in plate thickness and defective molding such as scraping, measling, and voids at the end of the product. It is an object of the present invention to provide a prepreg capable of producing a metal foil-clad laminate by a heating method.

【0008】[0008]

【課題を解決するための手段】請求項1の本発明に係る
金属箔張り積層板製造用プリプレグは、プリプレグに積
層される金属箔に通電して金属箔を発熱させることによ
って積層板を製造するために使用されるプリプレグにお
いて、ガラス布基材に含浸されたエポキシ樹脂の反応速
度定数が0.10〜0.30であることを特徴とするも
のである。
A prepreg for producing a metal foil-clad laminate according to the present invention according to claim 1 produces a laminate by energizing a metal foil laminated on the prepreg to generate heat in the metal foil. In the prepreg used for that purpose, the reaction rate constant of the epoxy resin with which the glass cloth base material is impregnated is 0.10 to 0.30.

【0009】上記請求項1の発明において、エポキシ樹
脂の反応速度定数が0.15〜0.25であることが好
ましい。また、請求項3の本発明に係る金属箔張り積層
板製造用プリプレグは、プリプレグに積層される金属箔
に通電して金属箔を発熱させることによって積層板を製
造するために使用されるプリプレグにおいて、ガラス布
基材に含浸されたエポキシ樹脂が、その反応速度定数が
0.10〜0.30であり、且つ130℃での溶融粘度
が1500〜50000ポイズであることを特徴とする
ものである。
In the first aspect of the invention, it is preferable that the reaction rate constant of the epoxy resin is 0.15 to 0.25. A prepreg for producing a metal foil-clad laminate according to the present invention of claim 3 is a prepreg used for producing a laminate by energizing a metal foil laminated on the prepreg to heat the metal foil. The epoxy resin impregnated in the glass cloth substrate has a reaction rate constant of 0.10 to 0.30 and a melt viscosity at 130 ° C. of 1500 to 50,000 poises. .

【0010】上記請求項3の発明において、ガラス布基
材に含浸されたエポキシ樹脂が、その反応速度定数が
0.10〜0.30であり、且つ130℃での溶融粘度
が4000〜10000ポイズであることが好ましい。
また上記請求項3の発明において、ガラス布基材に含浸
されたエポキシ樹脂が、その反応速度定数が0.15〜
0.25であり、且つ130℃での溶融粘度が1500
〜50000ポイズであることが好ましい。
In the invention of claim 3, the epoxy resin impregnated in the glass cloth substrate has a reaction rate constant of 0.10 to 0.30 and a melt viscosity at 130 ° C. of 4000 to 10,000 poise. Is preferred.
Further, in the invention of claim 3 above, the epoxy resin with which the glass cloth base material is impregnated has a reaction rate constant of 0.15 to 0.15.
0.25 and a melt viscosity at 130 ° C. of 1500
It is preferably -50000 poise.

【0011】また上記請求項3の発明において、ガラス
布基材に含浸されたエポキシ樹脂が、その反応速度定数
が0.15〜0.25であり、且つ130℃での溶融粘
度が4000〜10000ポイズであることが好まし
い。
In the invention of claim 3, the epoxy resin impregnated in the glass cloth substrate has a reaction rate constant of 0.15 to 0.25 and a melt viscosity at 130 ° C. of 4000 to 10000. Poise is preferred.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。本発明に係るプリプレグは、ガラス繊維の織布あ
るいは不織布からなるガラス布基材にエポキシ樹脂ワニ
スを含浸して乾燥することによって、ガラス布基材にB
ステージ状態に半硬化させたエポキシ樹脂を含有させた
ものとして調製されるものである。このプリプレグにお
いて樹脂含有率が40〜70重量%の範囲になるように
エポキシ樹脂を含浸させるのが好ましい。
Embodiments of the present invention will be described below. The prepreg according to the present invention is obtained by impregnating a glass cloth base material made of a woven or non-woven cloth of glass fibers with an epoxy resin varnish and drying the glass cloth base material to obtain B
It is prepared as containing a semi-cured epoxy resin in a stage state. The prepreg is preferably impregnated with an epoxy resin so that the resin content is in the range of 40 to 70% by weight.

【0013】そして請求項1の発明では、ガラス布基材
に含有されているこのBステージ状態のエポキシ樹脂
が、反応速度定数が0.10〜0.30の範囲になるよ
うに反応速度を調整したプリプレグを用いるものであ
る。反応速度はこの範囲の中でも特に0.15〜0.2
5の範囲が好ましい。プリプレグ中のエポキシ樹脂の反
応速度定数が0.10(0.15)未満では、成形時の
樹脂の流れが大きくなり過ぎ、板厚のバラツキや製品端
部のカスレやミーズリングなどの成形不良が発生するお
それがある。逆にプリプレグ中のエポキシ樹脂の反応速
度定数が0.30(0.25)を超えると、成形時の樹
脂の流れが悪く、内層回路板の表面とプリプレグによる
絶縁層との間にボイドが発生するおそれがある。反応速
度定数の調整は従来から知られている任意の方法で行な
うことができるが、例えばエポキシ樹脂に配合する硬化
剤や硬化促進剤の配合量を調節することによって行なう
ことができる。
In the invention of claim 1, the reaction rate is adjusted so that the epoxy resin in the B-stage state contained in the glass cloth substrate has a reaction rate constant in the range of 0.10 to 0.30. It uses the prepreg. The reaction rate is particularly 0.15 to 0.2 within this range.
A range of 5 is preferred. If the reaction rate constant of the epoxy resin in the prepreg is less than 0.10 (0.15), the flow of the resin during molding becomes too large, and there are molding defects such as variations in plate thickness, scrapes at the end of the product, and measling. It may occur. Conversely, when the reaction rate constant of the epoxy resin in the prepreg exceeds 0.30 (0.25), the resin flow during molding is poor and voids occur between the surface of the inner circuit board and the insulating layer of the prepreg. May occur. The reaction rate constant can be adjusted by any conventionally known method. For example, the reaction rate constant can be adjusted by adjusting the amount of the curing agent or curing accelerator compounded in the epoxy resin.

【0014】尚、本発明において反応速度定数は次のよ
うにして測定した。まずプリプレグを揉みほぐすことに
よってガラス布基材から分離される樹脂粉約2gを加圧
して円柱状のピペットにし、島津製作所社製高化式フロ
ーテスター「CFT−100」によって、温度130
℃、0.5mmφ×1.0mmのノズル、圧力3〜40
kg/cm2 の条件でピペットにした樹脂の溶融粘度を
10分間測定した。そして測定開始から3分後、3.5
分後、4分後の各溶融粘度を求めて算術平均値を計算す
る(これをη3 と表記する)と共に、また測定開始から
6分後、6.5分後、7分後の各溶融粘度を求めて算術
平均値を計算し(これをη6 と表記する)、次の計算式
によって反応速度定数を算出した。
In the present invention, the reaction rate constant was measured as follows. First, about 2 g of resin powder separated from the glass cloth base material is pressed by rubbing and crushing the prepreg to form a cylindrical pipette, and the temperature is set to 130 by using a high-performance flow tester “CFT-100” manufactured by Shimadzu Corporation.
C, 0.5 mmφ × 1.0 mm nozzle, pressure 3-40
The melt viscosity of the resin pipetted under the condition of kg / cm 2 was measured for 10 minutes. And 3 minutes after the start of measurement, 3.5
Minutes and 4 minutes later, the respective melt viscosities were calculated to calculate the arithmetic mean value (denoted as η 3 ), and 6 minutes, 6.5 minutes, and 7 minutes after the start of measurement The viscosity was calculated and the arithmetic mean value was calculated (this is referred to as η 6 ), and the reaction rate constant was calculated by the following calculation formula.

【0015】 反応速度定数=(logη6 −logη3 )/3 また請求項3の発明では、ガラス布基材に含有されてい
るこのBステージ状態のエポキシ樹脂が、その反応速度
定数が0.10〜0.30の範囲になり、且つ130℃
での溶融粘度が1500〜50000ポイズの範囲にな
るように調整したプリプレグを用いるものである。請求
項1の発明のように反応速度の規制だけでも板厚のバラ
ツキや成形不良の問題を解決することは可能であるが、
上記のような反応速度の規制と同時に、溶融粘度を規制
することによって、板厚のバラツキや成形不良の問題を
一層確実に解決することができるものである。反応速度
は上記の範囲の中でも特に0.15〜0.25の範囲が
好ましく、また溶融粘度は上記の範囲の中でも特に40
00〜10000ポイズの範囲が好ましい。すなわち、
反応速度定数が0.10〜0.30であり、且つ130
℃での溶融粘度が4000〜10000ポイズの場合、
あるいは反応速度定数が0.15〜0.25であり、且
つ130℃での溶融粘度が1500〜50000ポイズ
の場合が好ましいのは勿論、反応速度定数が0.15〜
0.25であり、且つ130℃での溶融粘度が4000
〜10000ポイズの場合が最も好ましい。
Reaction rate constant = (log η 6 −log η 3 ) / 3 In the invention of claim 3, the epoxy resin in the B-stage state contained in the glass cloth substrate has a reaction rate constant of 0.10. ~ 0.30 range, and 130 ℃
The prepreg is adjusted to have a melt viscosity in the range of 1500 to 50000 poise. Although it is possible to solve the problems of variation in plate thickness and defective molding only by limiting the reaction rate as in the invention of claim 1,
By controlling the melt viscosity at the same time as the above-mentioned regulation of the reaction rate, it is possible to more reliably solve the problems of variation in plate thickness and defective molding. The reaction rate is particularly preferably in the range of 0.15 to 0.25, and the melt viscosity is particularly 40 in the above range.
The range of 00 to 10,000 poise is preferable. That is,
The reaction rate constant is 0.10 to 0.30, and 130
When the melt viscosity at ℃ is 4000-10000 poise,
Alternatively, it is preferable that the reaction rate constant is 0.15 to 0.25 and the melt viscosity at 130 ° C. is 1500 to 50,000 poise.
0.25 and a melt viscosity at 130 ° C. of 4000
Most preferred is from 1 to 10,000 poise.

【0016】プリプレグ中のエポキシ樹脂の反応速度定
数が0.10(0.15)未満で且つ130℃での溶融
粘度が1500(4000)ポイズ未満であると、成形
時の樹脂の流れが大きくなり過ぎ、板厚のバラツキや製
品端部のカスレやミーズリングなどの成形不良が発生す
るおそれがある。逆にプリプレグ中のエポキシ樹脂の反
応速度定数が0.30(0.25)を超え且つ130℃
での溶融粘度が50000(10000)ポイズを超え
ると、成形時の樹脂の流れが悪く、内層回路板の表面と
プリプレグによる絶縁層との間にボイドが発生するおそ
れがある。溶融粘度の調整は従来から知られている任意
の方法で行なうことができるが、例えばガラス布基材に
エポキシ樹脂ワニスを含浸させた後の加熱乾燥条件を調
整することによって行なうことができる。
When the reaction rate constant of the epoxy resin in the prepreg is less than 0.10 (0.15) and the melt viscosity at 130 ° C. is less than 1500 (4000) poise, the resin flow during molding becomes large. Excessively, there is a risk of variations in plate thickness, defective molding such as scraping at the end of the product, and measling. Conversely, the reaction rate constant of the epoxy resin in the prepreg exceeds 0.30 (0.25) and 130 ℃
If the melt viscosity in (1) exceeds 50,000 (10000) poise, the resin flow during molding is poor, and voids may occur between the surface of the inner layer circuit board and the insulating layer formed by the prepreg. The melt viscosity can be adjusted by any conventionally known method, for example, by adjusting the heating and drying conditions after impregnating the glass cloth substrate with the epoxy resin varnish.

【0017】尚、本発明において溶融粘度の測定は、プ
リプレグを揉みほぐすことによってガラス布基材から分
離される樹脂粉約2gを加圧して円柱状のピペットに
し、島津製作所社製高化式フローテスター「CFT−1
00」によって、0.5mmφ×1.0mmのノズルを
用いて圧力3〜40kg/cm2 の条件で、温度を13
0℃としてピペットの樹脂の溶融粘度を計測することに
よって行なった。
In the present invention, the melt viscosity is measured by rubbing and unraveling a prepreg to press about 2 g of resin powder separated from the glass cloth base material into a cylindrical pipette, which is manufactured by Shimadzu Corporation. "CFT-1
00 ”using a nozzle of 0.5 mmφ × 1.0 mm and a pressure of 3 to 40 kg / cm 2 at a temperature of 13
This was done by measuring the melt viscosity of the resin in the pipette at 0 ° C.

【0018】しかして、上記のような反応速度定数や溶
融粘度に調整したプリプレグを用い、図1や図2に示す
方法で金属箔張り積層板を製造することができる。すな
わち、銅箔など金属箔2として長尺のものを2枚用い、
この2枚の金属箔2の間に複数枚のプリプレグ1を重ね
たものを挟み込むことによって、プリプレグ1と上下の
金属箔2からなる組み合わせ材4を形成し、この組み合
わせ材4を金属箔2の長手方向で複数組み形成しながら
金属箔2を蛇行状に折り曲げ、絶縁性の鏡面板5を介し
て複数の組み合わせ材4を多段に積み重ねる(図1)。
あるいは2枚の金属箔2の間にプリプレグ1と内層回路
板3を重ねたものを挟み込むことによって、プリプレグ
1と内層回路板3と上下の金属箔2からなる組み合わせ
材4を形成し、この組み合わせ材4を金属箔2の長手方
向で複数組み形成しながら金属箔2を蛇行状に折り曲
げ、絶縁性の鏡面板5を介して複数の組み合わせ材4を
多段に積み重ねる(図2)。そしてこれを加圧プレート
6の間にセットすると共に2枚の各金属箔2に電源7を
接続し、加圧プレート6で冷間プレスしながら金属箔2
に通電する。このように金属箔2に通電すると金属箔2
はジュール熱によって発熱するために、この発熱で各組
み合わせ材4を加熱して成形を行なうことができるもの
である。
Thus, a metal foil-clad laminate can be manufactured by the method shown in FIGS. 1 and 2 using the prepreg adjusted to the above reaction rate constant and melt viscosity. That is, two long metal foils 2 such as copper foil are used,
By sandwiching a plurality of prepregs 1 superposed between the two metal foils 2, a combined material 4 composed of the prepreg 1 and the upper and lower metal foils 2 is formed. The metal foils 2 are bent in a meandering shape while forming a plurality of sets in the longitudinal direction, and a plurality of combination materials 4 are stacked in multiple stages with an insulating mirror surface plate 5 interposed therebetween (FIG. 1).
Alternatively, by sandwiching a stack of the prepreg 1 and the inner layer circuit board 3 between two metal foils 2, a combination material 4 composed of the prepreg 1, the inner layer circuit board 3 and the upper and lower metal foils 2 is formed, and this combination is formed. The metal foils 2 are bent in a meandering shape while forming a plurality of sets of the materials 4 in the longitudinal direction of the metal foils 2, and the plurality of combination materials 4 are stacked in multiple stages via the insulating mirror surface plate 5 (FIG. 2). Then, this is set between the pressure plates 6 and the power source 7 is connected to each of the two metal foils 2, and the metal foils 2 are cold pressed by the pressure plates 6.
Turn on electricity. When the metal foil 2 is energized in this way, the metal foil 2
Since the heat is generated by Joule heat, the heat generation can heat each combination material 4 to perform molding.

【0019】ここで成形時の金属箔2への通電は、加熱
の昇温速度が3〜8℃/min、最高加熱温度が170
〜185℃になるように制御して行なうのが好ましい。
また加圧プレート6による加圧は3〜10kg/cm2
の範囲に設定するのが好ましい。尚、上記の成形を、真
空チャンバー内で減圧条件下で行なうことによって、ボ
イドレスの成形を行なうことが一層容易になるものであ
る。
Here, when the metal foil 2 is energized at the time of forming, the heating rate is 3 to 8 ° C./min, and the maximum heating temperature is 170.
It is preferable to control the temperature to 185 ° C.
The pressure applied by the pressure plate 6 is 3 to 10 kg / cm 2.
Is preferably set in the range. By performing the above-mentioned molding under a reduced pressure condition in a vacuum chamber, molding of voidless is further facilitated.

【0020】上記のように成形に際して、金属箔2に通
電して発熱させることによって加熱を行なうために、金
属箔2を熱源として各組み合わせ材4のプリプレグ1を
直接加熱することができ、多段に積み重ねた各組み合わ
せ材4のプリプレグ1を均一に加熱することができるも
のであり、金属箔張り積層板を品質のばらつきなく成形
することができるものである。また、プリプレグ1は含
浸したエポキシ樹脂の反応速度定数が0.10〜0.3
0の範囲であり、あるいはエポキシ樹脂の反応速度定数
が0.10〜0.30の範囲で且つ130℃での溶融粘
度が1500〜50000ポイズの範囲であるために、
成形時の樹脂の流れが最適になり、板厚のバラツキや製
品端部のカスレ、ミーズリング、ボイド等の成形不良の
問題なく金属箔張り積層板を成形することができるもの
である。
As described above, since the metal foil 2 is heated by energizing the metal foil 2 to generate heat at the time of molding as described above, the prepreg 1 of each combination material 4 can be directly heated by using the metal foil 2 as a heat source. The prepreg 1 of each of the stacked combination materials 4 can be uniformly heated, and the metal foil-clad laminate can be molded without variations in quality. The reaction rate constant of the impregnated epoxy resin for prepreg 1 is 0.10 to 0.3.
0, or because the reaction rate constant of the epoxy resin is in the range of 0.10 to 0.30 and the melt viscosity at 130 ° C. is in the range of 1500 to 50,000 poises,
The flow of the resin at the time of molding is optimized, and the metal foil-clad laminate can be molded without problems such as variations in plate thickness, defective edges of products, measling, voids, and other molding defects.

【0021】[0021]

【実施例】次に、本発明を実施例によって具体的に説明
する。 (エポキシ樹脂ワニスの調製)表1のA〜Fの配合量で
各成分を混合し、これをメチルエチルケトンに溶解させ
ることによって、60重量%濃度のエポキシ樹脂ワニス
を調整した。
EXAMPLES Next, the present invention will be specifically described with reference to examples. (Preparation of Epoxy Resin Varnish) The respective components were mixed in the compounding amounts of A to F in Table 1 and dissolved in methyl ethyl ketone to prepare an epoxy resin varnish having a concentration of 60% by weight.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例1)日東紡績社製WEA116E
タイプのガラス布基材に「A」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で260秒間乾燥することに
よって、反応速度定数が0.10、130℃での溶融粘
度が1500ポイズの、厚み0.10mmのプリプレグ
1を得た。
(Example 1) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth base material of the type is impregnated with an epoxy resin varnish having a composition of "A" so that the resin content is 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C. for 260 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity at 0.10 and 130 ° C. of 1500 poise and a thickness of 0.10 mm was obtained.

【0024】次に、厚み1.10mmのエポキシ樹脂積
層板の両面にそれぞれ厚み70μmの銅箔で内層回路3
aを設けて作製した内層回路板3の両側に、このプリプ
レグ1をそれぞれ2枚ずつ重ね、これを厚み18μmの
銅箔で形成した2枚の長尺金属箔2の間に挟み込み、図
3(a)のような積層構成の組み合わせ材4を作るよう
にした。そして金属箔2を折曲して組み合わせ材4を鏡
面板5を介して多段に積載し、これを図2のように加圧
プレート6の間にセットすると共に金属箔2に電源7を
接続した。
Next, the inner layer circuit 3 was formed with copper foil having a thickness of 70 μm on both surfaces of the epoxy resin laminate having a thickness of 1.10 mm.
Two prepregs 1 are stacked on each side of the inner-layer circuit board 3 prepared by providing a and sandwiched between two long metal foils 2 formed of a copper foil having a thickness of 18 μm. The combination material 4 having a laminated structure as in a) is prepared. Then, the metal foil 2 is bent and the combination material 4 is stacked in multiple stages via the mirror plate 5, and the combination material 4 is set between the pressure plates 6 as shown in FIG. 2 and the power supply 7 is connected to the metal foil 2. .

【0025】この後、100torr以下に減圧したチ
ャンバー内で、加圧プレート6によって10kg/cm
2 の一定圧力条件で加圧しながら、金属箔2に通電して
発熱させることによって、60分間、加熱加圧成形し、
厚み1.6mm、サイズ340mm×510mmの多層
銅張り積層板を製造した。ここで金属箔2への通電は、
金属箔2の発熱温度が、20〜80℃の範囲が5℃/m
inの昇温速度になり、80℃〜180℃の範囲が6℃
/minの昇温速度になり、180℃を約25分間保持
するように制御して行なった。またチャンバー内の減圧
と加圧プレート6による加圧は、金属箔2への通電によ
る加熱開始と同時に開始させ、加熱終了と同時に終了さ
せた。
After that, in the chamber evacuated to 100 torr or less, 10 kg / cm is applied by the pressure plate 6.
While pressurizing at a second constant pressure conditions, by heating by energizing the metal foil 2, 60 minutes, and heated pressure molding,
A multilayer copper clad laminate having a thickness of 1.6 mm and a size of 340 mm × 510 mm was manufactured. Here, the electric current to the metal foil 2 is
The heat generation temperature of the metal foil 2 is 5 ° C / m in the range of 20 to 80 ° C.
The temperature rise rate is in, and the range from 80 ° C to 180 ° C is 6 ° C.
The temperature was increased to / min and the temperature was kept at 180 ° C for about 25 minutes. The depressurization in the chamber and the pressurization by the pressure plate 6 were started at the same time when the heating by the energization of the metal foil 2 was started and ended at the same time when the heating was completed.

【0026】(実施例2)日東紡績社製WEA116E
タイプのガラス布基材に「A」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で300秒間乾燥することに
よって、反応速度定数が0.10、130℃での溶融粘
度が4000ポイズの、厚み0.10mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例1と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの多層銅張り積層板を製造した。
(Example 2) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth base material of the type is impregnated with an epoxy resin varnish having a composition of “A” so that the resin content is 50 to 52% by weight, and dried for 300 seconds in a dryer at a temperature of 170 ° C. to obtain a reaction rate constant. A prepreg 1 having a thickness of 0.10 mm and a melt viscosity of 4000 poises at 0.10 and 130 ° C. was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm multilayer copper clad laminate was produced.

【0027】(実施例3)日東紡績社製WEA116E
タイプのガラス布基材に「A」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で350秒間乾燥することに
よって、反応速度定数が0.10、130℃での溶融粘
度が10000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Example 3) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth base material of the type is impregnated with an epoxy resin varnish having a composition of "A" so that the resin content is 50 to 52% by weight, and dried for 350 seconds in a dryer at a temperature of 170 ° C. to obtain a reaction rate constant. A prepreg 1 having a melt viscosity at 0.10 and 130 ° C. of 10,000 poise and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0028】(実施例4)日東紡績社製WEA116E
タイプのガラス布基材に「A」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で360秒間乾燥することに
よって、反応速度定数が0.10、130℃での溶融粘
度が50000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Example 4) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth base material of the type is impregnated with an epoxy resin varnish having a composition of "A" so that the resin content is 50 to 52% by weight, and dried by a dryer at a temperature of 170 ° C for 360 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity of 50,000 poises at 0.10 and 130 ° C. and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0029】(実施例5)日東紡績社製WEA116E
タイプのガラス布基材に「B」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で240秒間乾燥することに
よって、反応速度定数が0.15、130℃での溶融粘
度が1500ポイズの、厚み0.10mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例1と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの多層銅張り積層板を製造した。
(Example 5) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth substrate of the type is impregnated with an epoxy resin varnish of the composition of "B" so that the resin content is 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C for 240 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity at 0.15 and 130 ° C. of 1500 poise and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm multilayer copper clad laminate was produced.

【0030】(実施例6)日東紡績社製WEA116E
タイプのガラス布基材に「B」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で260秒間乾燥することに
よって、反応速度定数が0.15、130℃での溶融粘
度が4000ポイズの、厚み0.10mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例1と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの多層銅張り積層板を製造した。
Example 6 WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth substrate of the type is impregnated with an epoxy resin varnish of “B” so as to have a resin content of 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C. for 260 seconds to obtain a reaction rate constant. A prepreg 1 having a thickness of 0.10 mm and a melt viscosity of 4000 poise at 0.15 and 130 ° C. was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm multilayer copper clad laminate was produced.

【0031】(実施例7)日東紡績社製WEA116E
タイプのガラス布基材に「B」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で280秒間乾燥することに
よって、反応速度定数が0.15、130℃での溶融粘
度が10000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Example 7) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth substrate of the type is impregnated with an epoxy resin varnish of “B” so as to have a resin content of 50 to 52% by weight and dried in a dryer at a temperature of 170 ° C. for 280 seconds to obtain a reaction rate constant. A prepreg 1 having a thickness of 0.10 mm and a melt viscosity at 0.15 and 130 ° C. of 10,000 poise was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0032】(実施例8)日東紡績社製WEA116E
タイプのガラス布基材に「B」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で300秒間乾燥することに
よって、反応速度定数が0.15、130℃での溶融粘
度が50000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Example 8) WEA116E manufactured by Nitto Boseki Co., Ltd.
Type glass cloth substrate is impregnated with the epoxy resin varnish of “B” so that the resin content is 50 to 52 wt%, and is dried in a dryer at a temperature of 170 ° C. for 300 seconds to obtain a reaction rate constant. A prepreg 1 having a thickness of 0.10 mm and a melt viscosity of 50,000 poises at 0.15 and 130 ° C. was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0033】(実施例9)日東紡績社製WEA116E
タイプのガラス布基材に「C」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で120秒間乾燥することに
よって、反応速度定数が0.25、130℃での溶融粘
度が1500ポイズの、厚み0.10mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例1と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの多層銅張り積層板を製造した。
(Example 9) WEA116E manufactured by Nitto Boseki Co., Ltd.
Type glass cloth substrate was impregnated with epoxy resin varnish of “C” so that the resin content was 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C. for 120 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity at 0.25 and 130 ° C. of 1500 poise and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm multilayer copper clad laminate was produced.

【0034】(実施例10)日東紡績社製WEA116
Eタイプのガラス布基材に「C」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で150秒間乾燥することに
よって、反応速度定数が0.25、130℃での溶融粘
度が3000ポイズの、厚み0.10mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例1と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの多層銅張り積層板を製造した。
(Example 10) WEA116 manufactured by Nitto Boseki Co., Ltd.
E type glass cloth base material was impregnated with epoxy resin varnish of “C” so that the resin content was 50 to 52% by weight, and dried by a dryer at a temperature of 170 ° C. for 150 seconds to obtain a reaction rate constant. Was obtained, and a prepreg 1 having a melt viscosity at 130 ° C. of 0.25 and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm multilayer copper clad laminate was produced.

【0035】(実施例11)日東紡績社製WEA116
Eタイプのガラス布基材に「C」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で155秒間乾燥することに
よって、反応速度定数が0.25、130℃での溶融粘
度が4000ポイズの、厚み0.10mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例1と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの多層銅張り積層板を製造した。
(Embodiment 11) WEA116 manufactured by Nitto Boseki Co., Ltd.
E type glass cloth base material was impregnated with epoxy resin varnish of “C” so that the resin content was 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C. for 155 seconds to give a reaction rate constant. Was obtained, and a prepreg 1 having a melt viscosity of 4000 poise at 130 ° C. of 0.25 and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm multilayer copper clad laminate was produced.

【0036】(実施例12)日東紡績社製WEA116
Eタイプのガラス布基材に「C」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で170秒間乾燥することに
よって、反応速度定数が0.25、130℃での溶融粘
度が10000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Example 12) WEA116 manufactured by Nitto Boseki Co., Ltd.
E type glass cloth base material was impregnated with an epoxy resin varnish of “C” so that the resin content was 50 to 52% by weight, and dried for 170 seconds in a dryer at a temperature of 170 ° C. to obtain a reaction rate constant. Of 0.25 and a melt viscosity at 130 ° C. of 10,000 poise, and a prepreg 1 having a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0037】(実施例13)日東紡績社製WEA116
Eタイプのガラス布基材に「C」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で180秒間乾燥することに
よって、反応速度定数が0.25、130℃での溶融粘
度が50000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Example 13) WEA116 manufactured by Nitto Boseki Co., Ltd.
E type glass cloth substrate was impregnated with epoxy resin varnish of “C” so that the resin content became 50 to 52% by weight, and dried by a dryer at a temperature of 170 ° C. for 180 seconds to obtain a reaction rate constant. Of 0.25 and a melt viscosity at 130 ° C. of 50,000 poise, and a prepreg 1 having a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0038】(実施例14)日東紡績社製WEA762
8タイプのガラス布基材に「C」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で120秒間乾燥することに
よって、反応速度定数が0.25、130℃での溶融粘
度が1500ポイズの、厚み0.20mmのプリプレグ
1を得た。
(Example 14) WEA762 manufactured by Nitto Boseki Co., Ltd.
Eight types of glass cloth base materials were impregnated with an epoxy resin varnish of “C” so that the resin content was 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C. for 120 seconds to obtain a reaction rate constant. Of 0.25 and a melt viscosity at 130 ° C. of 1500 poise, and a prepreg 1 having a thickness of 0.20 mm was obtained.

【0039】そしてこのプリプレグ1を内層回路板3の
両面にそれぞれ1枚ずつ重ねて図3(b)のような積層
構成の組み合わせ材4を作るようにした他は、実施例1
と同様に積載・成形して、厚み1.6mm、サイズ34
0mm×510mmの多層銅張り積層板を製造した。 (実施例15)日東紡績社製WEA116Eタイプのガ
ラス布基材に「D」の配合のエポキシ樹脂ワニスを樹脂
含量が50〜52重量%になるように含浸し、温度17
0℃の乾燥機で100秒間乾燥することによって、反応
速度定数が0.30、130℃での溶融粘度が1500
ポイズの、厚み0.10mmのプリプレグ1を得た。こ
のプリプレグ1を用い、後は実施例1と同様に積載・成
形して、厚み1.6mm、サイズ340mm×510m
mの多層銅張り積層板を製造した。
Example 1 was repeated except that the prepreg 1 was laminated on both sides of the inner layer circuit board 3 one by one to form a laminated material 4 having a laminated constitution as shown in FIG. 3B.
Stacked and molded in the same way as the, thickness 1.6mm, size 34
A 0 mm × 510 mm multilayer copper clad laminate was produced. (Example 15) A WEA116E type glass cloth base material manufactured by Nitto Boseki Co., Ltd. was impregnated with an epoxy resin varnish containing "D" so that the resin content was 50 to 52% by weight, and the temperature was 17
By drying in a dryer at 0 ° C for 100 seconds, the reaction rate constant was 0.30 and the melt viscosity at 130 ° C was 1500.
A prepreg 1 having a poise thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 mm × 510 m.
m multi-layer copper clad laminate was produced.

【0040】(実施例16)日東紡績社製WEA116
Eタイプのガラス布基材に「D」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で110秒間乾燥することに
よって、反応速度定数が0.30、130℃での溶融粘
度が4000ポイズの、厚み0.10mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例1と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの多層銅張り積層板を製造した。
(Example 16) WEA116 manufactured by Nitto Boseki Co., Ltd.
E type glass cloth substrate was impregnated with epoxy resin varnish of “D” so as to have a resin content of 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C. for 110 seconds to obtain a reaction rate constant. Of 0.30, the melt viscosity at 130 ° C. was 4000 poise, and a prepreg 1 having a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm multilayer copper clad laminate was produced.

【0041】(実施例17)日東紡績社製WEA116
Eタイプのガラス布基材に「D」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で120秒間乾燥することに
よって、反応速度定数が0.30、130℃での溶融粘
度が10000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Example 17) WEA116 manufactured by Nitto Boseki Co., Ltd.
E type glass cloth substrate was impregnated with epoxy resin varnish of “D” so as to have a resin content of 50 to 52% by weight and dried in a dryer at a temperature of 170 ° C. for 120 seconds to obtain a reaction rate constant. Of 0.30 and a melt viscosity at 130 ° C. of 10000 poise and a thickness of 0.10 mm were obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0042】(実施例18)日東紡績社製WEA116
Eタイプのガラス布基材に「D」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で130秒間乾燥することに
よって、反応速度定数が0.30、130℃での溶融粘
度が50000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Example 18) WEA116 manufactured by Nitto Boseki Co., Ltd.
E type glass cloth base material was impregnated with the epoxy resin varnish of “D” so as to have a resin content of 50 to 52% by weight, and dried by a dryer at a temperature of 170 ° C. for 130 seconds to obtain a reaction rate constant. Of 0.30 and a melt viscosity at 130 ° C. of 50,000 poises, and a prepreg 1 having a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0043】(比較例1)日東紡績社製WEA116E
タイプのガラス布基材に「E」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で300秒間乾燥することに
よって、反応速度定数が0.06、130℃での溶融粘
度が500ポイズの、厚み0.10mmのプリプレグ1
を得た。このプリプレグ1を用い、後は実施例1と同様
に積載・成形して、厚み1.6mm、サイズ340mm
×510mmの多層銅張り積層板を製造した。
(Comparative Example 1) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth base material of the type is impregnated with an epoxy resin varnish of “E” so that the resin content is 50 to 52% by weight, and is dried in a dryer at a temperature of 170 ° C. for 300 seconds to obtain a reaction rate constant. Prepreg 1 with a melt viscosity of 500 poise at 0.06 and 130 ° C and a thickness of 0.10 mm
I got Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 mm.
A multilayer copper clad laminate having a size of 510 mm was manufactured.

【0044】(比較例2)日東紡績社製WEA116E
タイプのガラス布基材に「E」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で320秒間乾燥することに
よって、反応速度定数が0.06、130℃での溶融粘
度が1500ポイズの、厚み0.10mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例1と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの多層銅張り積層板を製造した。
(Comparative Example 2) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth substrate of the type is impregnated with an epoxy resin varnish having a composition of "E" so that the resin content is 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C for 320 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity of 1,500 poises at 0.06 and 130 ° C. and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm multilayer copper clad laminate was produced.

【0045】(比較例3)日東紡績社製WEA116E
タイプのガラス布基材に「E」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で440秒間乾燥することに
よって、反応速度定数が0.06、130℃での溶融粘
度が60000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
(Comparative Example 3) WEA116E manufactured by Nitto Boseki Co., Ltd.
A glass cloth substrate of the type is impregnated with an epoxy resin varnish having a composition of “E” so that the resin content is 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C. for 440 seconds to obtain a reaction rate constant. A prepreg 1 having a thickness of 0.10 mm and a melt viscosity at 0.06 and 130 ° C. of 60,000 poise was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0046】(比較例4)日東紡績社製WEA116E
タイプのガラス布基材に「F」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で50秒間乾燥することによ
って、反応速度定数が0.35、130℃での溶融粘度
が500ポイズの、厚み0.10mmのプリプレグ1を
得た。このプリプレグ1を用い、後は実施例1と同様に
積載・成形して、厚み1.6mm、サイズ340mm×
510mmの多層銅張り積層板を製造した。
Comparative Example 4 WEA116E manufactured by Nitto Boseki Co., Ltd.
Type glass cloth base material is impregnated with epoxy resin varnish of “F” so as to have a resin content of 50 to 52% by weight, and dried by a dryer at a temperature of 170 ° C. for 50 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity of 500 poises at 0.35 and 130 ° C. and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 mm ×
A 510 mm multilayer copper clad laminate was produced.

【0047】(比較例5)日東紡績社製WEA116E
タイプのガラス布基材に「F」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で60秒間乾燥することによ
って、反応速度定数が0.35、130℃での溶融粘度
が1500ポイズの、厚み0.10mmのプリプレグ1
を得た。このプリプレグ1を用い、後は実施例1と同様
に積載・成形して、厚み1.6mm、サイズ340mm
×510mmの多層銅張り積層板を製造した。
(Comparative Example 5) WEA116E manufactured by Nitto Boseki Co., Ltd.
Type glass cloth base material is impregnated with epoxy resin varnish of “F” so that the resin content is 50 to 52% by weight, and dried by a dryer at a temperature of 170 ° C. for 60 seconds to obtain a reaction rate constant. Prepreg 1 with a melt viscosity of 1500 poise at 0.35 and 130 ° C and a thickness of 0.10 mm 1.
I got Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1, and the thickness is 1.6 mm and the size is 340 mm.
A multilayer copper clad laminate having a size of 510 mm was manufactured.

【0048】(比較例6)日東紡績社製WEA116E
タイプのガラス布基材に「F」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で100秒間乾燥することに
よって、反応速度定数が0.35、130℃での溶融粘
度が60000ポイズの、厚み0.10mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例1と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの多層銅張り積層板を製造した。
Comparative Example 6 WEA116E manufactured by Nitto Boseki Co., Ltd.
Type glass cloth base material is impregnated with epoxy resin varnish of “F” so that the resin content is 50 to 52 wt%, and is dried in a dryer at a temperature of 170 ° C. for 100 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity at 0.35 and 130 ° C. of 60,000 poise and a thickness of 0.10 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 1 to obtain a thickness of 1.6 mm and a size of 340 mm.
A multilayer copper clad laminate having a size of mm × 510 mm was manufactured.

【0049】上記の実施例1〜18及び比較例1〜6で
製造した銅張り積層板について、板厚の標準偏差を測定
し、エッチング後の外観を検査した。板厚の標準偏差の
測定は、銅張り積層板の両面の銅箔をエッチングしたサ
ンプル10枚について、縦横3箇所ずつ、計9箇所の板
厚をマイクロメーターで計測し、この計測結果に基づい
て標準偏差(σ)を求めることによって行なった。
With respect to the copper-clad laminates produced in the above Examples 1 to 18 and Comparative Examples 1 to 6, the standard deviation of the plate thickness was measured and the appearance after etching was inspected. The standard deviation of the plate thickness was measured by measuring the plate thickness at a total of 9 places, using a micrometer, for each of 10 samples obtained by etching the copper foil on both sides of the copper-clad laminate, based on this measurement result. This was done by determining the standard deviation (σ).

【0050】またエッチング後の外観の検査は、サイズ
340mm×510mmの銅張り積層板の両面の銅箔を
エッチングした後、周囲の幅20cmの範囲の端部と、
この端部以外の中央部とについて、カスレ、ミーズリン
グの有無を確認することによって行ない、さらに内層回
路板3の内層回路3aの部分とプリプレグ1による絶縁
層との間のボイドの有無を確認することによって行なっ
た。
In addition, the appearance after etching was examined by etching the copper foil on both sides of a copper-clad laminate having a size of 340 mm × 510 mm, and then measuring the edges of the peripheral width of 20 cm.
This is performed by checking the presence or absence of scraping and measling with respect to the central portion other than this end portion, and further confirming the presence or absence of a void between the portion of the inner layer circuit 3a of the inner layer circuit board 3 and the insulating layer of the prepreg 1. Done by.

【0051】これらの結果を表2〜表6に示す。The results are shown in Tables 2 to 6.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【表5】 [Table 5]

【0056】[0056]

【表6】 [Table 6]

【0057】(実施例19)日東紡績社製WEA762
8タイプのガラス布基材に「A」の配合のエポキシ樹脂
ワニスを樹脂含量が40〜42重量%になるように含浸
し、温度170℃の乾燥機で260秒間乾燥することに
よって、反応速度定数が0.10、130℃での溶融粘
度が1500ポイズの、厚み0.20mmのプリプレグ
1を得た。
(Example 19) WEA762 manufactured by Nitto Boseki Co., Ltd.
Eight types of glass cloth base materials were impregnated with the epoxy resin varnish of "A" so that the resin content was 40 to 42% by weight, and dried in a dryer at a temperature of 170 ° C for 260 seconds to obtain a reaction rate constant. Of 0.10 and a melt viscosity at 130 ° C. of 1500 poise, and a prepreg 1 having a thickness of 0.20 mm was obtained.

【0058】次に、このプリプレグ1を8枚重ね、これ
を厚み18μmの銅箔で形成した2枚の長尺金属箔2の
間に挟み込み、図3(c)のような積層構成の組み合わ
せ材4を作るようにした。そして金属箔2を折曲して組
み合わせ材4を鏡面板5を介して多段に積載し、これを
図1のように加圧プレート6の間にセットすると共に金
属箔2に電源7を接続した。
Next, eight pieces of this prepreg 1 were stacked and sandwiched between two long metal foils 2 formed of a copper foil having a thickness of 18 μm, and a combination material having a laminated structure as shown in FIG. I tried to make 4. Then, the metal foil 2 is bent and the combination material 4 is stacked in multiple stages via the mirror surface plate 5, and is set between the pressure plates 6 as shown in FIG. 1, and the power source 7 is connected to the metal foil 2. .

【0059】後は実施例1と同じ条件で加熱加圧成形し
て、厚み1.6mm、サイズ340mm×510mmの
両面銅張り積層板を製造した。 (実施例20)日東紡績社製WEA7628タイプのガ
ラス布基材に「A」の配合のエポキシ樹脂ワニスを樹脂
含量が40〜42重量%になるように含浸し、温度17
0℃の乾燥機で360秒間乾燥することによって、反応
速度定数が0.10、130℃での溶融粘度が5000
0ポイズの、厚み0.20mmのプリプレグ1を得た。
このプリプレグ1を用い、後は実施例19と同様に積載
・成形して、厚み1.6mm、サイズ340mm×51
0mmの両面銅張り積層板を製造した。
After that, heat and pressure molding was performed under the same conditions as in Example 1 to produce a double-sided copper-clad laminate having a thickness of 1.6 mm and a size of 340 mm × 510 mm. (Example 20) A WEA7628 type glass cloth substrate manufactured by Nitto Boseki Co., Ltd. was impregnated with an epoxy resin varnish containing "A" so that the resin content was 40 to 42% by weight, and the temperature was 17
By drying in a dryer at 0 ° C for 360 seconds, the reaction rate constant was 0.10 and the melt viscosity at 130 ° C was 5000.
A prepreg 1 having 0 poise and a thickness of 0.20 mm was obtained.
Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 19, and the thickness is 1.6 mm and the size is 340 mm × 51.
A 0 mm double sided copper clad laminate was produced.

【0060】(実施例21)日東紡績社製WEA762
8タイプのガラス布基材に「D」の配合のエポキシ樹脂
ワニスを樹脂含量が40〜42重量%になるように含浸
し、温度170℃の乾燥機で100秒間乾燥することに
よって、反応速度定数が0.30、130℃での溶融粘
度が1500ポイズの、厚み0.20mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例19と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの両面銅張り積層板を製造した。
(Example 21) WEA762 manufactured by Nitto Boseki Co., Ltd.
Eight types of glass cloth base materials were impregnated with the epoxy resin varnish of "D" so that the resin content was 40 to 42% by weight, and dried by a dryer at a temperature of 170 ° C for 100 seconds to obtain a reaction rate constant. Of 0.30, the melt viscosity at 130 ° C. was 1500 poise, and a prepreg 1 having a thickness of 0.20 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 19 to obtain a thickness of 1.6 mm and a size of 340 mm.
A double-sided copper-clad laminate having a size of mm × 510 mm was manufactured.

【0061】(実施例22)日東紡績社製WEA762
8タイプのガラス布基材に「D」の配合のエポキシ樹脂
ワニスを樹脂含量が40〜42重量%になるように含浸
し、温度170℃の乾燥機で130秒間乾燥することに
よって、反応速度定数が0.30、130℃での溶融粘
度が50000ポイズの、厚み0.20mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例19
と同様に積載・成形して、厚み1.6mm、サイズ34
0mm×510mmの両面銅張り積層板を製造した。
(Example 22) WEA762 manufactured by Nitto Boseki Co., Ltd.
Eight types of glass cloth base materials were impregnated with the epoxy resin varnish of “D” so that the resin content was 40 to 42% by weight, and dried by a dryer at a temperature of 170 ° C. for 130 seconds to obtain a reaction rate constant. Of 0.30 and a melt viscosity at 130 ° C. of 50,000 poises and a thickness of 0.20 mm were obtained. This prepreg 1 was used, and thereafter Example 19 was used.
Stacked and molded in the same way as the, thickness 1.6mm, size 34
A double-sided copper-clad laminate having a size of 0 mm × 510 mm was manufactured.

【0062】(比較例7)日東紡績社製WEA7628
タイプのガラス布基材に「E」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で300秒間乾燥することに
よって、反応速度定数が0.06、130℃での溶融粘
度が500ポイズの、厚み0.20mmのプリプレグ1
を得た。このプリプレグ1を用い、後は実施例19と同
様に積載・成形して、厚み1.6mm、サイズ340m
m×510mmの両面銅張り積層板を製造した。
(Comparative Example 7) WEA7628 manufactured by Nitto Boseki Co., Ltd.
A glass cloth base material of the type is impregnated with an epoxy resin varnish of “E” so that the resin content is 50 to 52% by weight, and is dried in a dryer at a temperature of 170 ° C. for 300 seconds to obtain a reaction rate constant. Prepreg 1 with a melt viscosity of 500 poises at 0.06 and 130 ° C and a thickness of 0.20 mm
I got Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 19, and the thickness is 1.6 mm and the size is 340 m.
An m × 510 mm double-sided copper-clad laminate was produced.

【0063】(比較例8)日東紡績社製WEA7628
タイプのガラス布基材に「E」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で320秒間乾燥することに
よって、反応速度定数が0.06、130℃での溶融粘
度が1500ポイズの、厚み0.20mmのプリプレグ
1を得た。このプリプレグ1を用い、後は実施例19と
同様に積載・成形して、厚み1.6mm、サイズ340
mm×510mmの両面銅張り積層板を製造した。
(Comparative Example 8) WEA7628 manufactured by Nitto Boseki Co., Ltd.
A glass cloth substrate of the type is impregnated with an epoxy resin varnish having a composition of "E" so that the resin content is 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C for 320 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity at 0.06 and 130 ° C. of 1500 poise and a thickness of 0.20 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 19 to obtain a thickness of 1.6 mm and a size of 340 mm.
A double-sided copper-clad laminate having a size of mm × 510 mm was manufactured.

【0064】(比較例9)日東紡績社製WEA7628
タイプのガラス布基材に「E」の配合のエポキシ樹脂ワ
ニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で440秒間乾燥することに
よって、反応速度定数が0.06、130℃での溶融粘
度が60000ポイズの、厚み0.20mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例19
と同様に積載・成形して、厚み1.6mm、サイズ34
0mm×510mmの両面銅張り積層板を製造した。
(Comparative Example 9) WEA7628 manufactured by Nitto Boseki Co., Ltd.
A glass cloth substrate of the type is impregnated with an epoxy resin varnish of “E” to a resin content of 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C. for 440 seconds to obtain a reaction rate constant. A prepreg 1 having a melt viscosity of 0.06 and 130 ° C. of 60,000 poise and a thickness of 0.20 mm was obtained. This prepreg 1 was used, and thereafter Example 19 was used.
Stacked and molded in the same way as the, thickness 1.6mm, size 34
A double-sided copper-clad laminate having a size of 0 mm × 510 mm was manufactured.

【0065】(比較例10)日東紡績社製WEA762
8タイプのガラス布基材に「F」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で50秒間乾燥することによ
って、反応速度定数が0.06、130℃での溶融粘度
が500ポイズの、厚み0.20mmのプリプレグ1を
得た。このプリプレグ1を用い、後は実施例19と同様
に積載・成形して、厚み1.6mm、サイズ340mm
×510mmの両面銅張り積層板を製造した。
(Comparative Example 10) WEA762 manufactured by Nitto Boseki Co., Ltd.
Eight types of glass cloth base materials were impregnated with an epoxy resin varnish of "F" so that the resin content was 50 to 52% by weight, and dried in a dryer at a temperature of 170 ° C for 50 seconds to obtain a reaction rate constant. Of 0.06 and a melt viscosity at 130 ° C. of 500 poise, and a prepreg 1 having a thickness of 0.20 mm was obtained. Using this prepreg 1, the rest is loaded and molded in the same manner as in Example 19, and the thickness is 1.6 mm and the size is 340 mm.
A double-sided copper-clad laminate of × 510 mm was manufactured.

【0066】(比較例11)日東紡績社製WEA762
8タイプのガラス布基材に「F」の配合のエポキシ樹脂
ワニスを樹脂含量が50〜52重量%になるように含浸
し、温度170℃の乾燥機で100秒間乾燥することに
よって、反応速度定数が0.06、130℃での溶融粘
度が60000ポイズの、厚み0.20mmのプリプレ
グ1を得た。このプリプレグ1を用い、後は実施例19
と同様に積載・成形して、厚み1.6mm、サイズ34
0mm×510mmの両面銅張り積層板を製造した。
(Comparative Example 11) WEA762 manufactured by Nitto Boseki Co., Ltd.
Eight types of glass cloth base materials were impregnated with an epoxy resin varnish of “F” so that the resin content was 50 to 52% by weight, and dried for 100 seconds in a dryer at a temperature of 170 ° C. to give a reaction rate constant. Of 0.06 and a melt viscosity at 130 ° C. of 60,000 poise, and a prepreg 1 having a thickness of 0.20 mm was obtained. This prepreg 1 was used, and thereafter Example 19 was used.
Stacked and molded in the same way as the, thickness 1.6mm, size 34
A double-sided copper-clad laminate having a size of 0 mm × 510 mm was manufactured.

【0067】上記の実施例19〜22及び比較例7〜1
1で製造した銅張り積層板について、板厚の標準偏差を
測定し、エッチング後の外観を検査した。結果を表7、
表8に示す。
The above Examples 19-22 and Comparative Examples 7-1
With respect to the copper-clad laminate manufactured in No. 1, the standard deviation of the plate thickness was measured, and the appearance after etching was inspected. The results are shown in Table 7,
It is shown in Table 8.

【0068】[0068]

【表7】 [Table 7]

【0069】[0069]

【表8】 [Table 8]

【0070】[0070]

【発明の効果】上記のように請求項1の発明は、プリプ
レグに積層される金属箔に通電して金属箔を発熱させる
ことによって積層板を製造するにあたって、このプリプ
レグとして、ガラス布基材に含浸されたエポキシ樹脂の
反応速度定数が0.10〜0.30のものを使用するよ
うにしたので、成形時の樹脂の流れが最適になり、板厚
のバラツキや製品端部のカスレ、ミーズリング、ボイド
等の成形不良の問題なく、金属箔に通電して発熱させる
ことによって加熱を行なう工法で金属箔張り積層板を成
形することができるものである。
As described above, according to the first aspect of the invention, when a laminated sheet is manufactured by energizing the metal foil laminated on the prepreg to heat the metal foil, the prepreg is used as a glass cloth substrate. Since the impregnated epoxy resin with a reaction rate constant of 0.10 to 0.30 is used, the flow of the resin at the time of molding is optimized, resulting in variations in plate thickness, scraping of product edges, and measles. The metal foil-clad laminate can be molded by a method of heating by energizing the metal foil to generate heat, without the problem of molding defects such as rings and voids.

【0071】上記の発明において、プリプレグとして、
ガラス布基材に含浸されたエポキシ樹脂の反応速度定数
が0.15〜0.25のものを使用することによって、
成形時の樹脂の流れが一層最適になり、金属箔張り積層
板を一層良好に製造することができるものである。また
請求項3の発明は、プリプレグに積層される金属箔に通
電して金属箔を発熱させることによって積層板を製造す
るにあたって、このプリプレグとして、ガラス布基材に
含浸されたエポキシ樹脂が、その反応速度定数が0.1
0〜0.30であり、且つ130℃での溶融粘度が15
00〜50000ポイズのものを使用するようにしたの
で、成形時の樹脂の流れが最適になり、板厚のバラツキ
や製品端部のカスレ、ミーズリング、ボイド等の成形不
良の問題なく、金属箔に通電して発熱させることによっ
て加熱を行なう工法で金属箔張り積層板を成形すること
ができるものである。
In the above invention, as the prepreg,
By using an epoxy resin having a reaction rate constant of 0.15 to 0.25 impregnated in a glass cloth substrate,
The flow of resin at the time of molding is further optimized, and the metal foil-clad laminate can be manufactured better. According to the invention of claim 3, when a metal foil laminated on the prepreg is energized to heat the metal foil to produce a laminated plate, an epoxy resin impregnated in a glass cloth base material is used as the prepreg. Reaction rate constant is 0.1
0 to 0.30, and the melt viscosity at 130 ° C. is 15
Since the one with a poise of 0 to 50000 is used, the flow of the resin at the time of molding is optimized, and there is no problem of molding defects such as variations in plate thickness, scrapes at the end of the product, measling, voids, etc. The metal foil-clad laminate can be molded by a method of heating by energizing and generating heat.

【0072】上記発明において、プリプレグとして、ガ
ラス布基材に含浸されたエポキシ樹脂が、その反応速度
定数が0.10〜0.30であり、且つ130℃での溶
融粘度が4000〜10000ポイズでのもの、あるい
はその反応速度定数が0.15〜0.25であり、且つ
130℃での溶融粘度が1500〜50000ポイズの
もの、あるはその反応速度定数が0.15〜0.25で
あり、且つ130℃での溶融粘度が4000〜1000
0ポイズのものを使用することによって、成形時の樹脂
の流れが一層最適になり、金属箔張り積層板を一層良好
に製造することができるものである。
In the above invention, an epoxy resin impregnated in a glass cloth base material as a prepreg has a reaction rate constant of 0.10 to 0.30 and a melt viscosity at 130 ° C. of 4000 to 10,000 poises. Or its reaction rate constant is 0.15 to 0.25 and its melt viscosity at 130 ° C. is 1500 to 50,000 poise, or its reaction rate constant is 0.15 to 0.25. And the melt viscosity at 130 ° C. is 4000 to 1000
By using the one having 0 poise, the flow of the resin at the time of molding is further optimized, and the metal foil-clad laminate can be manufactured more favorably.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の一例を示す概略正面図で
ある。
FIG. 1 is a schematic front view showing an example of an embodiment of the present invention.

【図2】本発明の実施の形態の他例を示す概略正面図で
ある。
FIG. 2 is a schematic front view showing another example of the embodiment of the present invention.

【図3】プリプレグや金属箔等の積層構成を示すもので
あり,(a)乃至(c)はそれぞれ概略正面図である。
FIG. 3 shows a laminated structure of a prepreg, a metal foil, etc., and (a) to (c) are schematic front views.

【符号の説明】[Explanation of symbols]

1 プリプレグ 2 金属箔 1 prepreg 2 metal foil

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プリプレグに積層される金属箔に通電し
て金属箔を発熱させることによって積層板を製造するた
めに使用されるプリプレグにおいて、ガラス布基材に含
浸されたエポキシ樹脂の反応速度定数が0.10〜0.
30であることを特徴とする金属箔張り積層板製造用プ
リプレグ。
1. A reaction rate constant of an epoxy resin impregnated in a glass cloth base material in a prepreg used for producing a laminate by energizing a metal foil laminated on a prepreg to generate heat in the metal foil. Is 0.10 to 0.
A prepreg for producing a metal foil-clad laminate, which is 30.
【請求項2】 エポキシ樹脂の反応速度定数が0.15
〜0.25であることを特徴とする請求項1に記載の金
属箔張り積層板製造用プリプレグ。
2. The reaction rate constant of the epoxy resin is 0.15.
The prepreg for manufacturing a metal foil-clad laminate according to claim 1, wherein the prepreg is 0.25 to 0.25.
【請求項3】 プリプレグに積層される金属箔に通電し
て金属箔を発熱させることによって積層板を製造するた
めに使用されるプリプレグにおいて、ガラス布基材に含
浸されたエポキシ樹脂が、その反応速度定数が0.10
〜0.30であり、且つ130℃での溶融粘度が150
0〜50000ポイズであることを特徴とする金属箔張
り積層板製造用プリプレグ。
3. A prepreg used for producing a laminated sheet by energizing a metal foil laminated on a prepreg to generate heat in the metal foil, wherein an epoxy resin impregnated in a glass cloth base material reacts with the prepreg. Speed constant is 0.10
Is about 0.30 and the melt viscosity at 130 ° C. is 150.
A prepreg for producing a metal foil-clad laminate, which is 0 to 50,000 poise.
【請求項4】 ガラス布基材に含浸されたエポキシ樹脂
が、その反応速度定数が0.10〜0.30であり、且
つ130℃での溶融粘度が4000〜10000ポイズ
であることを特徴とする請求項3に記載の金属箔張り積
層板製造用プリプレグ。
4. The epoxy resin impregnated in a glass cloth substrate has a reaction rate constant of 0.10 to 0.30 and a melt viscosity at 130 ° C. of 4000 to 10,000 poise. The prepreg for producing a metal foil-clad laminate according to claim 3.
【請求項5】 ガラス布基材に含浸されたエポキシ樹脂
が、その反応速度定数が0.15〜0.25であり、且
つ130℃での溶融粘度が1500〜50000ポイズ
であることを特徴とする請求項3に記載の金属箔張り積
層板製造用プリプレグ。
5. The epoxy resin with which the glass cloth substrate is impregnated has a reaction rate constant of 0.15 to 0.25 and a melt viscosity at 130 ° C. of 1500 to 50,000 poises. The prepreg for producing a metal foil-clad laminate according to claim 3.
【請求項6】 ガラス布基材に含浸されたエポキシ樹脂
が、その反応速度定数が0.15〜0.25であり、且
つ130℃での溶融粘度が4000〜10000ポイズ
であることを特徴とする請求項3に記載の金属箔張り積
層板製造用プリプレグ。
6. An epoxy resin impregnated in a glass cloth substrate has a reaction rate constant of 0.15 to 0.25 and a melt viscosity at 130 ° C. of 4000 to 10000 poise. The prepreg for producing a metal foil-clad laminate according to claim 3.
JP5959396A 1996-03-15 1996-03-15 Prepreg for manufacturing metal foil-clad laminates Expired - Fee Related JP3151402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5959396A JP3151402B2 (en) 1996-03-15 1996-03-15 Prepreg for manufacturing metal foil-clad laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5959396A JP3151402B2 (en) 1996-03-15 1996-03-15 Prepreg for manufacturing metal foil-clad laminates

Publications (2)

Publication Number Publication Date
JPH09248876A true JPH09248876A (en) 1997-09-22
JP3151402B2 JP3151402B2 (en) 2001-04-03

Family

ID=13117702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5959396A Expired - Fee Related JP3151402B2 (en) 1996-03-15 1996-03-15 Prepreg for manufacturing metal foil-clad laminates

Country Status (1)

Country Link
JP (1) JP3151402B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241207A1 (en) * 2001-03-13 2002-09-18 Sumitomo Bakelite Co., Ltd. Prepreg and process for manufacturing same
EP1241208A1 (en) * 2001-03-13 2002-09-18 Sumitomo Bakelite Company Limited Process for manufacturing prepreg

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241207A1 (en) * 2001-03-13 2002-09-18 Sumitomo Bakelite Co., Ltd. Prepreg and process for manufacturing same
EP1241208A1 (en) * 2001-03-13 2002-09-18 Sumitomo Bakelite Company Limited Process for manufacturing prepreg
CN100404240C (en) * 2001-03-13 2008-07-23 住友电木株式会社 Process for producing polyester film

Also Published As

Publication number Publication date
JP3151402B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JPH07323501A (en) Prepreg for multilayered plate, laminated sheet, multilayered printed circuit board and production thereof
JP3364145B2 (en) Manufacturing method of multilayer printed wiring board
JPH09248876A (en) Prepreg for manufacturing metal foil plated laminate
JP3145915B2 (en) Prepreg for manufacturing metal foil-clad laminates
JP3352034B2 (en) Prepreg and laminate
JP3382169B2 (en) Laminated plate manufacturing method and laminated plate
JPH0381122A (en) Manufacture of thermosetting resin laminated sheet plated with metallic foil
JPH01272416A (en) Manufacture of prepreg
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JPH0295845A (en) Continuous manufacture of electrical laminate
JP2000071386A (en) Production of laminated sheet
JPH0568343B2 (en)
JPH0592423A (en) Manufacture for prepreg and copper plated laminated sheet
JPH04323034A (en) Manufacture of laminated board
JPH07117174A (en) Metal-foiled laminated plate and manufacture thereof
JP2001150432A (en) Prepreg, method of manufacturing the same and method of manufacturing laminated sheet
JPH06344502A (en) Production of laminated sheet
JPH09117987A (en) Production of metal foil clad laminate
JPH06914A (en) Manufacture of single-faced copper-clad laminated sheet
JPH04323032A (en) Manufacture of laminated board
JP2001179884A (en) Metal foil clad laminated sheet and method of manufacturing the same
JPH10324755A (en) Resin impregnated substrate, its production, laminated sheet and its production
JPS63118242A (en) Continuous preparation of laminated sheet for electrical use
JPS63295217A (en) Preparation of laminated plate
JP2000210962A (en) Manufacture of laminate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001226

LAPS Cancellation because of no payment of annual fees