JP3364145B2 - Manufacturing method of multilayer printed wiring board - Google Patents

Manufacturing method of multilayer printed wiring board

Info

Publication number
JP3364145B2
JP3364145B2 JP1309198A JP1309198A JP3364145B2 JP 3364145 B2 JP3364145 B2 JP 3364145B2 JP 1309198 A JP1309198 A JP 1309198A JP 1309198 A JP1309198 A JP 1309198A JP 3364145 B2 JP3364145 B2 JP 3364145B2
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
temperature
prepreg
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1309198A
Other languages
Japanese (ja)
Other versions
JPH11207766A (en
Inventor
則康 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1309198A priority Critical patent/JP3364145B2/en
Publication of JPH11207766A publication Critical patent/JPH11207766A/en
Application granted granted Critical
Publication of JP3364145B2 publication Critical patent/JP3364145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、多層プリント配線
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer printed wiring board.

【0002】[0002]

【従来の技術】多層プリント配線板は、内層回路板とプ
リプレグを複数枚重ね、その両面に銅箔等の金属箔を重
ね、これを加熱加圧して積層成形することによって製造
されている。上記の積層成形を行なうにあたっては、内
層回路板とプリプレグと金属箔を重ねた組み合わせ材を
多段に積み重ね、これを熱盤間にセットしてプレスす
る、いわゆる多段ホットプレスで行なうのが一般的であ
る。
2. Description of the Related Art A multilayer printed wiring board is manufactured by stacking a plurality of inner layer circuit boards and prepregs, stacking metal foils such as copper foils on both surfaces thereof, and heating and pressurizing them to form a laminate. In carrying out the above-mentioned lamination molding, it is general to carry out a so-called multi-stage hot press, in which the combination material in which the inner layer circuit board, the prepreg and the metal foil are laminated is stacked in a multi-stage, and this is set between hot plates and pressed. is there.

【0003】しかし、熱盤を用いた多段ホットプレスで
は、熱盤に近い組み合わせ材と熱盤から遠い組み合わせ
材とでは加熱温度が異なったものとなり、加熱温度の不
均一のために、得られた多層プリント配線板の品質がば
らつくおそれがある。従って多段ホットプレスでは、積
み重ねることのできる組み合わせ材の段数は限られたも
のになっていた。
However, in a multi-stage hot press using a heating plate, the heating temperature is different between the combination material close to the heating plate and the combination material far from the heating plate, and the heating temperature is non-uniform. The quality of the multilayer printed wiring board may vary. Therefore, in the multi-stage hot press, the number of stages of the combination material that can be stacked is limited.

【0004】積層板の製造分野で、このような問題に配
慮した、新しい技術が開発された。それは、全属箔に電
源を接続し、金属箔に通電して金属箔を発熱させること
によってプリプレグ等の積層体の加熱を行なうようにす
る方法である(特表平7−508940号公報等)。図
1はその一例を示すものであり、金属箔2として長尺の
ものを2枚用い、この2枚の金属箔2の間にプリプレグ
1と内層回路板3を重ねた積層体を金属箔2の長手方向
で複数個狭み込むことによって、プリプレグ1と内層回
路板3と上下の金属箔2からなる長尺の組み合わせ材4
を形成する。この長尺の組み合わせ材4をを蛇行状に折
り曲げ、その屈曲部間に絶縁性の鏡面板5を挿入して、
プリプレグ1と内層回路板3の積層体を金属箔2で挟み
込んだ状態で多段に積み重ねる。そして、これを加圧プ
レート6の間にセットし、金属箔2に電源7を接続し、
加圧プレート6で冷間プレスしながら全属箔2に通電す
ると、金属箔2はジュール熱によって発熱し、この発熱
でプリプレグ1と内層回路板3の積層体を加熱しつつ、
加圧成形を行なう方法である。
In the field of manufacturing laminated sheets, a new technique has been developed in consideration of such a problem. It is a method in which a power source is connected to all the metal foils and the metal foil is energized to heat the metal foil to heat a laminate such as a prepreg (Japanese Patent Publication No. 7-508940). . FIG. 1 shows an example thereof, in which two long metal foils 2 are used, and a laminated body in which a prepreg 1 and an inner circuit board 3 are stacked between the two metal foils 2 is used as a metal foil 2. A long combination material 4 composed of a prepreg 1, an inner layer circuit board 3, and upper and lower metal foils 2 by sandwiching a plurality in the longitudinal direction of the
To form. This long combination material 4 is bent in a meandering shape, and an insulating mirror plate 5 is inserted between the bent portions,
The laminated body of the prepreg 1 and the inner circuit board 3 is sandwiched by the metal foils 2 and stacked in multiple stages. Then, this is set between the pressure plates 6, the power source 7 is connected to the metal foil 2,
When the metal foil 2 is energized while cold pressing with the pressure plate 6, the metal foil 2 generates heat due to Joule heat, and this heat generation heats the laminate of the prepreg 1 and the inner layer circuit board 3 while
This is a method of performing pressure molding.

【0005】この方法によれば、金属箔2を熱源とし
て、各段の積層体を直接に加熱することができるため
に、多段に積み重ねた積層体の各プリプレグ1を格段均
一に加熱することができ、多層プリント配線板を品質の
ばらつきなく多段成形で得ることができるのである。こ
の直接加熱法は、均一加熱法として原理的に優れた方法
であるが、外観、成形性、樹脂流れ、製品温度バラツキ
を考えると、いまだ十分ではない。
According to this method, since the laminated body of each stage can be directly heated by using the metal foil 2 as a heat source, each prepreg 1 of the laminated body laminated in multiple stages can be remarkably uniformly heated. Therefore, the multilayer printed wiring board can be obtained by multistage molding without variation in quality. This direct heating method is an excellent method in principle as a uniform heating method, but it is still insufficient in view of variations in appearance, moldability, resin flow, and product temperature.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明の課題
は、直接加熱法により多層プリント配線板を製造する際
に、外観、成形性、樹脂流れ、製品温度バラツキにおい
て満足すべき結果を得させる多層プリント配線板の製造
方法を提供することにある。
Therefore, an object of the present invention is to obtain satisfactory results in appearance, moldability, resin flow, and product temperature variation when manufacturing a multilayer printed wiring board by a direct heating method. It is to provide a method for manufacturing a multilayer printed wiring board.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記課題を
加熱方法の最適条件を求めることによって解決しようと
して種々検討し、実験を重ねて、本発明に到達した。す
なわち、本発明にかかる多層プリント配線板の製造方法
は、内層回路板とプリプレグの積層体を長尺の金属箔で
挟んでなる長尺の組み合わせ材を屈曲することにより前
記内層回路板とプリプレグの積層体を金属箔で挟んだ状
態で多段に積み重ね、前記金属箔に通電して金属箔を発
熱させることにより前記積層体を加熱しつつ、加圧成形
することにより、前記内層回路板とプリプレグと金属箔
とを積層一体化させて多層プリント配線板を得る方法に
おいて、前記積層体を加熱する際の昇温速度を、前記積
層体の内部温度が90℃に達するまでを8〜10℃/
分、90℃から140℃に達するまでを1.5〜2.5
℃/分、そして140℃から180℃に達するまでを5
〜7℃/分となるように調整することを特徴とする。
Means for Solving the Problems The present inventor has reached various points of the present invention through various studies and experiments in order to solve the above problems by finding optimum conditions for a heating method. That is, the method for manufacturing a multilayer printed wiring board according to the present invention, the inner layer circuit board and the prepreg by bending a long combination material sandwiching the laminate of the inner layer circuit board and the prepreg with a long metal foil. The laminated body is stacked in multiple stages in a state of being sandwiched by metal foils, and while heating the laminated body by energizing the metal foils to generate heat in the metal foils, by press molding, the inner layer circuit board and the prepreg are formed. In a method for obtaining a multilayer printed wiring board by laminating and integrating a metal foil, the temperature rising rate at the time of heating the laminate is 8 to 10 ° C / until the internal temperature of the laminate reaches 90 ° C.
1.5 to 2.5 minutes from 90 ℃ to 140 ℃
℃ / min, and 5 from 140 ℃ to 180 ℃
It is characterized in that it is adjusted to be ~ 7 ° C / min.

【0008】[0008]

【発明の実施の形態】以下ではまず、本発明の方法で使
用する、好ましいプリプレグについて詳しく説明する。
プリプレグは通常のもの、すなわち、紙や布やガラス織
布、不織布等にエポキシ樹脂やフェノール樹脂等を含浸
させたものであってもよいが、以下の理由で、この直接
加熱法により適したプリプレグは、ガラス布基材にエポ
キシ樹脂を含浸したものであって、エポキシ樹脂の13
0℃での溶融粘度が1500〜50000ポイズである
プリプレグである。このプリプレグにおいて、エポキシ
樹脂の130℃での溶融粘度は4000〜10000ポ
イズであることがより好ましい。プリプレグ中のエポキ
シ樹脂の130℃での溶融粘度が1500(4000)
ポイズ未満では、成形時の樹脂の流れが大きくなり過
ぎ、板厚のバラツキや製品端部のカスレやミーズリング
などの成形不良が発生するおそれがある。逆にプリプレ
グ中のエポキシ樹脂の130℃での溶融粘度が5000
0(10000)ポイズを超えると、成形時の樹脂の流
れが悪く、内層回路板を積層する場合に内層回路板の表
面とプリプレグによる絶縁層との間にボイドが発生する
おそれがある。なお、溶融粘度の測定は、プリプレグ1
を揉みほぐすことによってガラス布基材から分離される
樹脂粉約2gを加圧して円柱状のピペットにし、島津製
作所社製高化式フローテスター「CFT−100」によ
って、0.5mmφのノズルを用いて圧力3〜40kg
/cm2の条件で、温度を130℃として粘度を計測す
ることによって行なうことができる。
BEST MODE FOR CARRYING OUT THE INVENTION First, preferred prepregs used in the method of the present invention will be described in detail below.
The prepreg may be a normal prepreg, that is, paper, cloth, glass woven cloth, non-woven cloth, etc. impregnated with epoxy resin or phenol resin, but for the following reasons, this prepreg is more suitable for this direct heating method. Is a glass cloth base material impregnated with an epoxy resin.
A prepreg having a melt viscosity at 0 ° C. of 1500 to 50,000 poises. In this prepreg, the melt viscosity of the epoxy resin at 130 ° C. is more preferably 4000-10000 poise. Melt viscosity of epoxy resin in prepreg at 130 ℃ is 1500 (4000)
If it is less than poise, the flow of resin at the time of molding becomes too large, and there is a possibility that molding defects such as variations in plate thickness, scrapes at the end of the product, and measling will occur. Conversely, the melt viscosity of the epoxy resin in the prepreg at 130 ° C is 5000.
When it exceeds 0 (10000) poise, the resin flow during molding is poor, and voids may occur between the surface of the inner layer circuit board and the insulating layer formed by the prepreg when laminating the inner layer circuit board. In addition, the measurement of the melt viscosity is performed by the prepreg 1
Approximately 2 g of resin powder separated from the glass cloth base material is rubbed and made into a cylindrical pipette, and a 0.5 mmφ nozzle is used by a Shimadzu Corporation advanced flow tester “CFT-100”. Pressure 3-40kg
It can be performed by measuring the viscosity at a temperature of 130 ° C. under the condition of / cm 2.

【0009】従来の多段ホットプレスによる方法では、
各段のプリプレグに対する加熱温度が不均一になるため
に、加熱温度の不均一に対して不良発生率が小さくなる
ように工夫したプリプレグが使用されている。しかし、
金属箔に通電して発熱させることによって加熱する方法
では、各段のプリプレグに対する加熱温度が均一になる
ために、従来から使用されているプリプレグをそのまま
用いたのでは、かえって樹脂の流れが大きくなって、製
品の中央と端部の間の板厚にバラツキが生じたり、製品
端部にカスレやミーズリングなどの成形不良が発生した
りするおそれがあり、プリント配線板として十分な性能
を得ることができないので、上に述べたプリプレグが本
出願人により開発されたのである。この新規なプリプレ
グを使用すると、板厚のバラツキや製品端部のカスレ、
ミーズリング等の成形不良の問題なく、直接加熱法で多
層プリント配線板を製造することができる。
In the conventional multi-step hot pressing method,
Since the heating temperature for the prepregs in each stage becomes non-uniform, a prepreg is devised so that the failure occurrence rate is reduced with respect to the non-uniform heating temperature. But,
In the method of heating by energizing the metal foil to generate heat, the heating temperature for the prepreg in each stage becomes uniform.Therefore, if the prepreg that has been conventionally used is used as it is, the flow of resin becomes rather large. As a result, there is a risk of variations in the thickness of the product between the center and the edge of the product, or defective molding such as scraping or measling at the edge of the product. Therefore, the above-mentioned prepreg was developed by the present applicant. By using this new prepreg, variations in plate thickness, scrapes on the product edge,
The multilayer printed wiring board can be manufactured by the direct heating method without the problem of molding defects such as measling.

【0010】新規なプリプレグは、ガラス織維の織布あ
るいは不織布からなるガラス布基材にエポキシ樹脂ワニ
スを含浸して乾燥することによって、ガラス布基材にB
ステージ状態に半硬化させたエポキシ樹脂を含有させた
ものとして調製される。このプリプレグにおいては、樹
脂含有率が40〜70重量%の範囲になるようにエポキ
シ樹脂を含浸させるのが好ましい。
The novel prepreg is prepared by impregnating a glass cloth base material made of a woven or non-woven cloth of glass fiber with an epoxy resin varnish and drying it to form a glass cloth base material with B
It is prepared as containing an epoxy resin semi-cured in a stage state. The prepreg is preferably impregnated with an epoxy resin so that the resin content is in the range of 40 to 70% by weight.

【0011】上記のような溶融粘度に調整したプリプレ
グ1を用い、図1に示す方法で多層プリント配線板を製
造することができる。すなわち、銅箔など金属箔2とし
て長尺のものを2枚用い、この2枚の金属箔2の間に、
プリプレグ1と内層回路板3の積層体を金属箔2の長手
方向で複数個挟み込むことによって、プリプレグ1と内
層回路板3と上下の金属箔2からなる長尺の組み合わせ
材4を形成し、この長尺の組み合わせ材4を、絶縁性の
鏡面板5を介して蛇行状に折り曲げて、前記積層体を多
段に積み重ねる。そして、これを加圧プレート6の間に
セットしたあと、2枚の各金属箔2に電源7を接続し、
加圧プレート6で冷間プレスしながら、金属箔2に通電
することにより各段の積層体を直接加熱する。このよう
にして、各段の積層体と金属箔を加圧成形し積層一体化
するのである。
A multi-layer printed wiring board can be manufactured by the method shown in FIG. 1 by using the prepreg 1 whose melt viscosity is adjusted as described above. That is, two long metal foils 2 such as copper foil are used, and between the two metal foils 2,
By sandwiching a plurality of laminates of the prepreg 1 and the inner layer circuit board 3 in the longitudinal direction of the metal foil 2, a long combination material 4 composed of the prepreg 1, the inner layer circuit board 3 and the upper and lower metal foils 2 is formed. The long combination material 4 is bent in a meandering shape via the insulating mirror surface plate 5 to stack the stacked bodies in multiple stages. Then, after setting this between the pressure plates 6, the power source 7 is connected to each of the two metal foils 2,
While cold pressing with the pressure plate 6, the metal foil 2 is energized to directly heat the stacked body of each stage. In this way, the laminated body of each stage and the metal foil are pressure-molded to be laminated and integrated.

【0012】ここで、成形時、前記積層体を加熱する際
の昇温速度を、前記積層体の内部温度が90℃に達する
までを8〜10℃/分、90℃から140℃に達するま
でを1.5〜2.5℃/分、そして140℃から180
℃に達するまでを5〜7℃/分となるように調整する。
好ましくは、通電する際の最大電流量を、設定昇温速度
(℃/分)×積層体面積(cm2)×0.020に調整
する。前記加圧成形を100torr以下の真空下で行
う。100torrの真空に達するまでの間、前記積層
体には圧力を掛けないようにする。また、前記加圧成形
の際の圧力を、前記積層体の内部温度が110℃に達す
るまでを1kg/cm2以下、それ以降を8〜15kg
/cm2に調整するのである。上述のように、真空チャ
ンバー内で減圧条件下で加圧成形を行なうことによっ
て、ボイドレスの製品を得ることが容易になる。
Here, during molding, the temperature rising rate at the time of heating the laminate is 8 to 10 ° C./minute until the internal temperature of the laminate reaches 90 ° C., or from 90 ° C. to 140 ° C. 1.5-2.5 ° C / min, and 140 ° C to 180
The temperature is adjusted to reach 5 to 7 ° C / minute until the temperature reaches 0 ° C.
Preferably, the maximum current amount during energization is adjusted to a set temperature rising rate (° C./min)×a laminate area (cm 2 ) × 0.020. The pressure molding is performed under a vacuum of 100 torr or less. No pressure is applied to the stack until a vacuum of 100 torr is reached. Moreover, the pressure at the time of the pressure molding is 1 kg / cm 2 or less until the internal temperature of the laminate reaches 110 ° C., and 8 to 15 kg after that.
It is adjusted to / cm 2 . As described above, by performing the pressure molding in the vacuum chamber under reduced pressure conditions, it becomes easy to obtain a voidless product.

【0013】上記のように成形に際して、金属箔3に通
電して発熱させることによって加熱を行なうために、金
属箔2を熱源として各段のプリプレグ1を直接加熱する
ことができ、多段に積み重ねた積層体のプリプレグ1を
均一に加熱することができるものであり、多層プリント
配線板を品質のばらつきなく成形することができるので
ある。
In the above-mentioned molding, since the metal foil 3 is heated by energizing the metal foil 3 to generate heat, the prepreg 1 in each stage can be directly heated using the metal foil 2 as a heat source, and the prepreg 1 is stacked in multiple stages. The prepreg 1 of the laminated body can be uniformly heated, and the multilayer printed wiring board can be formed without quality variations.

【0014】プリプレグ1として、含浸したエポキシ樹
脂の130℃での溶融粘度が1500〜50000ポイ
ズであるプリプレグを使用した場合には、成形時の樹脂
の流れが最適になり、板厚のバラツキや製品端部のカス
レ、ミーズリング等の成形不良なく多層プリント配線板
を成形することができる。
When a prepreg in which the melt viscosity of the impregnated epoxy resin at 130 ° C. is 1500 to 50000 poise is used as the prepreg 1, the flow of the resin at the time of molding is optimized, and variations in plate thickness and products are achieved. A multilayer printed wiring board can be molded without defective molding such as scraping of edges and measling.

【0015】[0015]

【実施例】次に、本発明を実施例により、具体的に説明
する。 (エポキシ樹脂ワニスの調製)ブロム化エポキシ樹脂
(東都化成社製「YDB500K EK80」)90.
0重量部、ノボラック型エポキシ樹脂(東都化成社製
「YDCN220 EK75」)10.0重量部、ジシ
アンジアミド(日本カーパイド社製「DICY」)2.
0重量部、ジメチルホルムアミド10.0重量部、2−
エチル−4メチルイミダゾール(四国化成社製「2E4
MZ」)0.2重量部の配合物をメチルエチルケトンに
溶解させ、60重量%濃度のエポキシ樹脂ワニスを調製
した。
EXAMPLES Next, the present invention will be specifically described by way of examples. (Preparation of epoxy resin varnish) Brominated epoxy resin ("YDB500K EK80" manufactured by Tohto Kasei Co., Ltd.) 90.
0 parts by weight, novolac type epoxy resin ("YDCN220 EK75" manufactured by Tohto Kasei Co., Ltd.) 10.0 parts by weight, dicyandiamide ("DICY" manufactured by Nippon Carpide Co., Ltd.) 2.
0 parts by weight, dimethylformamide 10.0 parts by weight, 2-
Ethyl-4 methyl imidazole ("2E4" manufactured by Shikoku Kasei Co., Ltd.
MZ ") 0.2 parts by weight of the formulation was dissolved in methyl ethyl ketone to prepare an epoxy resin varnish having a concentration of 60% by weight.

【0016】(実施例1)日東紡績社製WEA116E
タイプのガラス布基材に上記エポキシ樹脂ワニスを樹脂
含量が48重量%になるように含浸し、温度170℃の
乾燥機で150秒間乾燥することによって、厚みが0.
10mm、130℃での溶融粘度が1500ポイズの長
尺のプリプレグ1を得た。
(Example 1) WEA116E manufactured by Nitto Boseki Co., Ltd.
Type epoxy resin varnish is impregnated into a glass cloth base material of a type to a resin content of 48% by weight and dried in a dryer at a temperature of 170 ° C. for 150 seconds to give a thickness of 0.
A long prepreg 1 having a melt viscosity at 10 mm and 130 ° C. of 1500 poise was obtained.

【0017】次に、面積510mm×340mm、厚み
1.10mmのエポキシ樹脂積層板の両面にそれぞれ厚
み35μmの銅箔で内層回路3aを設けて作製した内層
回路板3の両側に、このプリプレグ1をそれぞれ2枚ず
つ重ね、これを厚み18μmの銅箔で形成した2枚の長
尺金属箔2の間に挟み込み、図2のような積層構成の長
尺の組み合わせ材4を作るようにした。そして、この長
尺の組み合わせ材4を、鏡面板5を介して蛇行状に折曲
してプリプレグ1と内層回路板3の積層体を多段に重ね
合わせ、これを図1のように加圧ブレート6の間にセッ
トすると共に金属箔2に電源7を接続した。
Next, the prepreg 1 was formed on both sides of the inner layer circuit board 3 which was prepared by providing inner layer circuits 3a with copper foil having a thickness of 35 μm on both sides of an epoxy resin laminated plate having an area of 510 mm × 340 mm and a thickness of 1.10 mm. Two sheets each were stacked and sandwiched between two long metal foils 2 formed of a copper foil having a thickness of 18 μm to prepare a long combination material 4 having a laminated structure as shown in FIG. Then, this long combination material 4 is bent in a meandering manner through the mirror surface plate 5 so that the laminated body of the prepreg 1 and the inner layer circuit board 3 is superposed in multiple stages, and this is combined with the pressure plate as shown in FIG. 6 and the power source 7 was connected to the metal foil 2.

【0018】この後、金属箔2の発熱を利用した加熱と
加圧プレート6による加圧とによって加熱加圧成形し
た。その成型条件として、プレス内の真空圧力が100
Torrになるまで無加圧で、その後、通電を開始し、
製品温度が90℃に達するまでを9℃/分で昇温した。
その際通電する最大電流値(A)は312Aであり、9
0℃に達した後、140℃に達するまでを2.0℃/分
で昇温した。その際通電する最大電流値(A)は70A
であった。140℃に達した後、180℃に達するまで
を6℃/分で昇温した。その際通電する最大電流値
(A)を208Aにして加熱昇温し、製品温度が110
℃に達するまでを1kg/cm2で加圧し、以降、10
kg/cm2で加圧し、4層プリント配線板を得た。得
られた4層プリント配線板の品質特性を表1に示した。 (実施例2)使用材料及び成型法は実施例1と同様で、
プレス内の真空圧力が50Torrになるまで無加圧
で、その後、通電を開始し、昇温及び昇温以降の加圧は
実施例1と同条件にて4層プリント配線板を得た。得ら
れた4層プリント配線板の品質特性を表1に示した。 (実施例3)使用材料及び成型法は実施例1と同様で、
プレス内の真空圧力が100Torrになるまでを無加
圧で、その後、通電を開始し、製品温度が90℃に達す
るまでを8℃/分で昇温した。その際通電する最大電流
値(A)は277A、90℃に達した後、140℃に達
するまでを1.5℃/分で昇温した。その際通電する最
大電流値(A)は52Aであった。140℃に達した
後、180℃に達するまでを5℃/分で昇温した。その
際通電する最大電流値(A)を173Aにして加熱昇温
し、製品温度が110℃に達するまでを1kg/cm2
で加圧し、以降、10kg/cm2で加圧し4層プリン
ト配線板を得た。得られた4層プリント配線板の品質特
性を表1に示した。 (実施例4)使用材料及び成型法は実施例1と同様で、
プレス内の真空圧力が100Torrになるまでを無加
圧で、その後、通電を開始し、製品温度が90℃に達す
るまでを10℃/分で昇温した。その際通電する最大電
流値(A)は347A、90℃に達した後、140℃に
達するまでを2.5℃/分で昇温した。その際通電する
最大電流値(A)を87Aにして加熱昇温し、140℃
に達した後、180℃に達するまでを7℃/分で昇温し
た。その際通電する最大電流値(A)を243Aにして
加熱昇温し、製品温度が110℃に達するまでを1kg
/cm2で加圧し、以降、10kg/cm2で加圧し4層
プリント配線板を得た。得られた4層プリント配線板の
品質特性を表1に示した。 (実施例5)使用材料、成型法及び加熱昇温は実施例1
と同様で、製品温度が110℃に達するまでを1kg/
cm2で加圧し、以降、8kg/cm2で加圧し4層プリ
ント配線板を得た。得られた4層プリント配線板の特性
を表1に示した。 (実施例6)使用材料、成型法及び加熱昇温は実施例1
と同様で、製品温度が110℃に達するまでを1kg/
cm2で加圧し、以降、15kg/cm2で加圧し4層プ
リント配線板を得た。得られた4層プリント配線板の品
質特性を表1に示した。
After that, heat and pressure molding was performed by heating utilizing the heat generation of the metal foil 2 and pressing by the pressure plate 6. As the molding condition, the vacuum pressure in the press is 100
No pressure applied until Torr, then energization starts,
The temperature was raised at 9 ° C / minute until the product temperature reached 90 ° C.
The maximum current value (A) to be applied at that time is 312 A, and 9
After reaching 0 ° C., the temperature was raised at 2.0 ° C./minute until reaching 140 ° C. The maximum current value (A) that can be applied at that time is 70A
Met. After reaching 140 ° C, the temperature was raised at 6 ° C / min until reaching 180 ° C. At that time, the maximum current value (A) to be energized is set to 208 A to heat and raise the temperature of the product to 110
Pressurized at 1 kg / cm 2 until reaching ℃, then 10
The pressure was applied at kg / cm 2 to obtain a 4-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 1. (Example 2) The materials used and the molding method are the same as in Example 1,
No pressure was applied until the vacuum pressure in the press reached 50 Torr, then energization was started, and a four-layer printed wiring board was obtained under the same conditions as in Example 1 for temperature increase and pressure increase after temperature increase. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 1. (Example 3) The materials used and the molding method are the same as in Example 1,
No pressure was applied until the vacuum pressure in the press reached 100 Torr, then energization was started, and the temperature was raised at 8 ° C / minute until the product temperature reached 90 ° C. At that time, the maximum current value (A) to be energized was 277 A, and after reaching 90 ° C., the temperature was raised at 1.5 ° C./min until reaching 140 ° C. At that time, the maximum current value (A) to be energized was 52A. After reaching 140 ° C, the temperature was raised at 5 ° C / min until reaching 180 ° C. At that time, the maximum current value (A) to be energized is set to 173 A, the temperature is raised by heating, and 1 kg / cm 2 is required until the product temperature reaches 110 ° C.
And then 10 kg / cm 2 to obtain a four-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 1. (Example 4) The materials used and the molding method are the same as in Example 1,
No pressure was applied until the vacuum pressure in the press reached 100 Torr, then energization was started, and the temperature was raised at 10 ° C / minute until the product temperature reached 90 ° C. At that time, the maximum current value (A) to be energized was 347 A, and after reaching 90 ° C., the temperature was raised at 2.5 ° C./min until reaching 140 ° C. At that time, the maximum current value (A) to be energized is set to 87 A and heated to 140 ° C
The temperature was raised at 7 ° C / min until the temperature reached 180 ° C. At that time, the maximum current value (A) to be energized is set to 243 A, the temperature is increased by heating, and 1 kg until the product temperature reaches 110 ° C.
/ Cm 2 and then 10 kg / cm 2 to obtain a 4-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 1. (Example 5) The materials used, the molding method, and the heating temperature are the same as those in Example 1.
Same as above, 1kg / until the product temperature reaches 110 ℃
The pressure was applied at cm 2 and thereafter at 8 kg / cm 2 , to obtain a 4-layer printed wiring board. The characteristics of the obtained 4-layer printed wiring board are shown in Table 1. (Example 6) The materials used, the molding method, and the heating temperature were set in Example 1.
Same as above, 1kg / until the product temperature reaches 110 ℃
The pressure was applied at cm 2 and thereafter at 15 kg / cm 2 , to obtain a 4-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】(比較例1)使用材料及び成型法は実施例
1と同様で、プレス内の真空圧力が150Torrにな
るまでを無加圧で、その後、通電を開始し、製品温度が
90℃に達するまでを9℃/分で昇温した。その際通電
する最大電流値(A)は312A、90℃に達した後、
140℃に達するまでを2.0℃/分で昇温した。その
際通電する最大電流値(A)を70Aにして加熱昇温
し、140℃に達した後、180℃に達するまでを6℃
/分で昇温した。その際通電する最大電流値(A)を2
08Aにして加熱昇温し、製品温度が110℃に達する
までを1kg/cm2で加圧し、以降、10kg/cm2
で加圧し4層プリント配線板を得た。得られた4層プリ
ント配線板の品質特性を表2に示した。 (比較例2)使用材料及び成型法は実施例1と同様で、
プレス内の真空圧力が100Torrになるまでを無加
圧で、その後、通電を開始し、製品温度が90℃に達す
るまでを7℃/分で昇温した。その際通電する最大電流
値(A)は243A、90℃に達した後、140℃に達
するまでを1.0℃/分で昇温した。その際通電する最
大電流値(A)を35Aにして加熱昇温し、140℃に
達した後、180℃に達するまでを4℃/分で昇温し
た。その際通電する最大電流値(A)を139Aにして
加熱昇温し、製品温度が110℃に達するまでを1kg
/cm2で加圧し、以降、10kg/cm2で加圧し4層
プリント配線板を得た。得られた4層プリント配線板の
品質特性を表2に示した。 (比較例3)使用材料及び成型法は実施例1と同様で、
プレス内の真空圧力が100Torrになるまでを無加
圧で、その後、通電を開始し、製品温度が90℃に達す
るまでを11℃/分で昇温した。その際通電する最大電
流値(A)は381A、90℃に達した後、140℃に
達するまでを3.0℃/分で昇温した。その際通電する
最大電流値(A)を104Aにして加熱昇温し、140
℃に達した後、180℃に達するまでを8℃/分で昇温
した。その際通電する最大電流値(A)を277Aにし
て加熱昇温し、製品温度が110℃に達するまでを1k
g/cm2で加圧し、以降、10kg/cm2で加圧し4
層プリント配線板を得た。得られた4層プリント配線板
の品質特性を表2に示した。 (比較例4)昇温時通電する最大電流値(A)を一律1
000Aとし、他の条件は実施例1とすべて同じ条件に
て4層プリント配線板を得た。得られた4層プリント配
線板の品質特性を表2に示した。 (比較例5)使用材料及び成型法は実施例1と同様で、
プレス内の真空圧力が100Torrになる前に1kg
/cm2に加圧し、その後の通電による昇温は実施例1
と同様に実施し、製品温度が110℃に達した後10k
g/cm2で加圧し4層プリント配線板を得た。得られ
た4層プリント配線板の品質特性を表2に示した。 (比較例6)使用材料及び成型法は実施例1と同様で、
プレス内の真空圧力が100Torrになる前に10k
g/cm2に加圧し、その後、実施例1と同様に通電加
熱し、4層プリント配線板を得た。得られた4層プリン
ト配線板の品質特性を表2に示した。 (比較例7)使用材料及び成型法は実施例1と同様で、
プレス内の真空圧力が100Torrになる前に1kg
/cm2に加圧し、以降、20kg/cm2で加圧し、4
層プリント配線板を得た。得られた4層プリント配線板
の品質特性を表2に示した。 (従来例)使用材料及び成型法は実施例1と同様で、プ
レス内の真空開始と同時に1kg/cm2で加圧し、そ
の後、通電による昇温開始と同時に10kg/cm2
加圧し、製品温度が180℃に達するまで、3℃/mi
nで昇温して加熱加圧して、4層プリント配線板を得
た。得られた4層プリント配線板の品質特性を表2に示
した。
(Comparative Example 1) The material used and the molding method are the same as in Example 1, no pressure was applied until the vacuum pressure in the press reached 150 Torr, and then energization was started to bring the product temperature to 90 ° C. The temperature was raised to 9 ° C./minute until the temperature reached. At that time, the maximum current value (A) to be energized is 312 A, after reaching 90 ° C,
The temperature was raised at 2.0 ° C / minute until the temperature reached 140 ° C. At that time, the maximum current value (A) to be energized is set to 70 A, the temperature is raised by heating, and after reaching 140 ° C., it is 6 ° C. until reaching 180 ° C.
The temperature was raised at a rate of / minute. The maximum current value (A) to be applied at that time is 2
The temperature is raised to 08 A, the temperature is raised, and pressure is applied at 1 kg / cm 2 until the product temperature reaches 110 ° C., then 10 kg / cm 2
Then, pressure was applied to obtain a 4-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 2. (Comparative Example 2) The materials used and the molding method are the same as in Example 1,
No pressure was applied until the vacuum pressure in the press reached 100 Torr, then energization was started, and the temperature was raised at 7 ° C / minute until the product temperature reached 90 ° C. At that time, the maximum current value (A) to be energized was 243 A, and after reaching 90 ° C., the temperature was raised at 1.0 ° C./min until reaching 140 ° C. At that time, the maximum current value (A) to be energized was set to 35 A to heat and raise the temperature, and after reaching 140 ° C., the temperature was raised at 4 ° C./min until reaching 180 ° C. At that time, the maximum current value (A) to be energized is set to 139A to heat up the temperature, and 1kg until the product temperature reaches 110 ° C.
/ Cm 2 and then 10 kg / cm 2 to obtain a 4-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 2. (Comparative Example 3) The materials used and the molding method are the same as in Example 1,
No pressure was applied until the vacuum pressure in the press reached 100 Torr, then energization was started, and the temperature was raised at 11 ° C / minute until the product temperature reached 90 ° C. At that time, the maximum current value (A) to be energized was 381 A, and after reaching 90 ° C., the temperature was raised at 3.0 ° C./min until reaching 140 ° C. At that time, the maximum current value (A) to be energized is set to 104 A and the temperature is raised by heating to 140
After reaching 180 ° C., the temperature was raised at 8 ° C./min until reaching 180 ° C. At that time, the maximum current value (A) to be energized is set to 277 A to heat and raise the temperature, and 1 k is required until the product temperature reaches 110 ° C.
Pressurize at g / cm 2 , then press at 10 kg / cm 2 4
A layer printed wiring board was obtained. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 2. (Comparative Example 4) The maximum current value (A) to be energized at the time of temperature rise is uniformly 1
000 A and all other conditions were the same as in Example 1 to obtain a 4-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 2. (Comparative Example 5) The materials used and the molding method are the same as in Example 1,
1kg before the vacuum pressure in the press reaches 100 Torr
/ Cm 2 pressurized, the Atsushi Nobori caused by the subsequent energizing Example 1
10k after the product temperature reaches 110 ℃
A pressure of g / cm 2 was applied to obtain a 4-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 2. (Comparative Example 6) The materials used and the molding method are the same as in Example 1,
10k before the vacuum pressure in the press reaches 100 Torr
The pressure was increased to g / cm 2 and then the same heating as in Example 1 was performed to obtain a four-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 2. (Comparative Example 7) The materials used and the molding method are the same as in Example 1,
1kg before the vacuum pressure in the press reaches 100 Torr
/ Cm 2 and then 20 kg / cm 2
A layer printed wiring board was obtained. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 2. (Conventional example) The material used and the molding method are the same as in Example 1, and pressure is applied at 1 kg / cm 2 at the same time when the vacuum in the press is started, and then pressure is applied at 10 kg / cm 2 at the same time as the start of temperature rise due to energization. 3 ℃ / mi until the temperature reaches 180 ℃
The temperature was raised at n and the pressure was applied to obtain a four-layer printed wiring board. The quality characteristics of the obtained 4-layer printed wiring board are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】表1のとおり、本発明の製造方法では、外
観、成型性に優れ、樹脂流れ及び製品温度バラツキの少
ない4層プリント配線板を短時間に成型して得ることが
できた。
As shown in Table 1, according to the manufacturing method of the present invention, a four-layer printed wiring board having excellent appearance, moldability, resin flow and product temperature variation can be obtained by molding in a short time.

【0023】[0023]

【発明の効果】本発明にかかる多層プリント配線板の製
造方法によれば、外観、成形性、樹脂流れ、製品温度バ
ラツキにおいて満足すべき結果を得させる多層プリント
配線板を得させることができる。
According to the method for manufacturing a multilayer printed wiring board according to the present invention, it is possible to obtain a multilayer printed wiring board which gives satisfactory results in appearance, moldability, resin flow, and product temperature variation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の一例を示す概略正面図で
ある。
FIG. 1 is a schematic front view showing an example of an embodiment of the present invention.

【図2】プリプレグや金属箔等の積層構成を示す概略正
面図である。
FIG. 2 is a schematic front view showing a laminated structure of a prepreg, a metal foil and the like.

【符号の説明】[Explanation of symbols]

1 プリプレグ 2 金属箔 3 内層回路板 3a 内層回路 4 組み合わせ材 5 鏡面板 6 加圧プレート 7 電源 1 prepreg 2 metal foil 3 inner layer circuit board 3a inner layer circuit 4 combined materials 5 mirror plate 6 Pressure plate 7 power supply

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H05K 3/46 H05K 3/46 B // B29K 105:08 B29K 105:08 B29L 31:34 B29L 31:34 (58)調査した分野(Int.Cl.7,DB名) B29C 43/00 - 43/58 B32B 15/08,31/20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H05K 3/46 H05K 3/46 B // B29K 105: 08 B29K 105: 08 B29L 31:34 B29L 31:34 (58) Field (Int.Cl. 7 , DB name) B29C 43/00-43/58 B32B 15 / 08,31 / 20

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内層回路板とプリプレグの積層体を長尺の
金属箔で挟んでなる長尺の組み合わせ材を屈曲すること
により前記内層回路板とプリプレグの積層体を金属箔で
挟んだ状態で多段に積み重ね、前記金属箔に通電して金
属箔を発熱させることにより前記積層体を加熱しつつ、
加圧成形することにより、前記内層回路板とプリプレグ
と金属箔とを積層一体化させて多層プリント配線板を得
る方法において、前記積層体を加熱する際の昇温速度
を、前記積層体の内部温度が90℃に達するまでを8〜
10℃/分、90℃から140℃に達するまでを1.5
〜2.5℃/分、そして140℃から180℃に達する
までを5〜7℃/分となるように調整することを特徴と
する多層プリント配線板の製造方法。
1. A laminate comprising an inner layer circuit board and a prepreg sandwiched between elongated metal foils is bent so that the laminate of the inner layer circuit board and prepreg is sandwiched between the metal foils. While stacking in multiple stages, while heating the laminate by heating the metal foil by energizing the metal foil,
In the method for obtaining a multilayer printed wiring board by laminating and integrating the inner layer circuit board, the prepreg, and the metal foil by pressure molding, the temperature rising rate at the time of heating the laminate is 8 ~ until the temperature reaches 90 ℃
10 ℃ / min, 1.5 to 90 ℃ to 140 ℃
A method for producing a multilayer printed wiring board, which comprises adjusting the temperature to be 2.5 ° C./min, and from 140 ° C. to 180 ° C. to be 5 to 7 ° C./min.
【請求項2】通電する際の最大電流量を、設定昇温速度
(℃/分)×積層体面積(cm2)×0.020に調整
する、請求項1に記載の多層プリント配線板の製造方
法。
2. The multilayer printed wiring board according to claim 1, wherein the maximum current amount when energized is adjusted to a set temperature rising rate (° C./min)×a laminate area (cm 2 ) × 0.020. Production method.
【請求項3】前記加圧成形を100torr以下の真空
下で行う、請求項1または2に記載の多層プリント配線
板の製造方法。
3. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein the pressure molding is performed under a vacuum of 100 torr or less.
【請求項4】100torrの真空に達するまでの間、
前記積層体には圧力を掛けないようにする、請求項3に
記載の多層プリント配線板の製造方法。
4. Until a vacuum of 100 torr is reached,
The method for manufacturing a multilayer printed wiring board according to claim 3, wherein pressure is not applied to the laminate.
【請求項5】前記加圧成形の際の圧力を、前記積層体の
内部温度が110℃に達するまでを1kg/cm2
下、それ以降を8〜15kg/cm2に調整する、請求
項1から3までのいずれかに記載の多層プリント配線板
の製造方法。
The pressure during wherein said pressing, the laminate 1 kg / cm 2 until the internal temperature reached 110 ° C. below, adjusting the subsequent to 8~15kg / cm 2, claim 1 4. The method for manufacturing a multilayer printed wiring board according to any one of 1 to 3.
JP1309198A 1998-01-26 1998-01-26 Manufacturing method of multilayer printed wiring board Expired - Fee Related JP3364145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309198A JP3364145B2 (en) 1998-01-26 1998-01-26 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309198A JP3364145B2 (en) 1998-01-26 1998-01-26 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JPH11207766A JPH11207766A (en) 1999-08-03
JP3364145B2 true JP3364145B2 (en) 2003-01-08

Family

ID=11823500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309198A Expired - Fee Related JP3364145B2 (en) 1998-01-26 1998-01-26 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3364145B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370243A (en) * 2001-06-19 2002-12-24 Ibiden Co Ltd Laminated sheet manufacturing method
JP2002370244A (en) * 2001-06-19 2002-12-24 Ibiden Co Ltd Laminated sheet manufacturing method
JP2002370308A (en) * 2001-06-19 2002-12-24 Ibiden Co Ltd Method for manufacturing laminated sheet
JP2003080544A (en) * 2001-09-11 2003-03-19 Hitachi Chem Co Ltd Method for manufacturing laminated sheet
US7181839B2 (en) 2003-01-14 2007-02-27 Matsushita Electric Industrial Co., Ltd. Method for producing a circuit board
JP2007250882A (en) * 2006-03-16 2007-09-27 Furukawa Electric Co Ltd:The Printed wiring board and its manufacturing method
JP5845924B2 (en) * 2011-01-27 2016-01-20 住友ベークライト株式会社 Prepreg continuum and prepreg
CN105058676A (en) * 2015-07-16 2015-11-18 佛山威明塑胶有限公司 Thin-film heating roller heating system
CN111491452B (en) * 2020-04-28 2021-05-25 深圳市信维通信股份有限公司 LCP flexible circuit board and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11207766A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3364145B2 (en) Manufacturing method of multilayer printed wiring board
US20060064871A1 (en) Method of manufactruing circuit board
JP2001015933A (en) Thermally fusible insulating sheet
JP3145915B2 (en) Prepreg for manufacturing metal foil-clad laminates
JP3151402B2 (en) Prepreg for manufacturing metal foil-clad laminates
JP3698863B2 (en) Bonding material for single-sided metal-clad laminate production
JP2001260241A (en) Method for manufacturing laminate sheet
JP3382169B2 (en) Laminated plate manufacturing method and laminated plate
JPH0476784B2 (en)
JP3058045B2 (en) Manufacturing method of multilayer printed wiring board
JPH04323034A (en) Manufacture of laminated board
JP2004288896A (en) Manufacturing method of multilayer flexible printed wiring board
JP2002067061A (en) Method for manufacturing metal-clad laminate
JPH1134273A (en) Manufacture of laminate
JP2001150432A (en) Prepreg, method of manufacturing the same and method of manufacturing laminated sheet
JPH05110256A (en) Manufacture of copper-clad laminated board for multilayer printed board
JP2001179877A (en) Method for manufacturing laminated sheet
JPH0946050A (en) Multilayered substrate
JPH06260734A (en) Laminated board for printed wiring board
JPS634935A (en) Preparation of multilayer circuit board
JP2007095769A (en) Method of manufacturing copper clad laminate for multilayer printed wiring board
JPH0592423A (en) Manufacture for prepreg and copper plated laminated sheet
JPH0216696B2 (en)
JPH1197845A (en) Method of manufacturing multlayered printed wiring board
JP2002053681A (en) Prepreg and laminated sheet using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees