JPH09246671A - Strained multiple quantum well structure - Google Patents

Strained multiple quantum well structure

Info

Publication number
JPH09246671A
JPH09246671A JP8327796A JP8327796A JPH09246671A JP H09246671 A JPH09246671 A JP H09246671A JP 8327796 A JP8327796 A JP 8327796A JP 8327796 A JP8327796 A JP 8327796A JP H09246671 A JPH09246671 A JP H09246671A
Authority
JP
Japan
Prior art keywords
substrate
strain
sector
well layer
multiple quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8327796A
Other languages
Japanese (ja)
Other versions
JP3371317B2 (en
Inventor
Matsuyuki Ogasawara
松幸 小笠原
Hideo Sugiura
英雄 杉浦
Manabu Mitsuhara
学 満原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8327796A priority Critical patent/JP3371317B2/en
Publication of JPH09246671A publication Critical patent/JPH09246671A/en
Application granted granted Critical
Publication of JP3371317B2 publication Critical patent/JP3371317B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit the generation of a misfitted dislocation in a distorted multiple quantum well structure in the case where an effective strain in the structure is zero by a method wherein the inverted mesa sector substrate of a wafer having the orientation (001) is used as the substrate for the structure. SOLUTION: A multiple quantum well structure consisting of well layers (the strain is εw and the thickness is (h).), which have a grating constant different from that of an inverted mesa sector substrate, and barrier layers (The strain is εb and the thickness is (h).), which have a lattice constant different from that of the substrate, have a strain of a sign different the sign of the strain of the well layers and have a band gap wider than that of the well layers, is formed on the inverted mesa sector substrate. The inverted mesa sector substrate indicates a substrate cut off from two inlays in the orientation [110] and the orientation [-1-10] in a wafer having the orientation (001). By using the inverted mesa sector substrate in such a way, the generation of a misfitted dislocation in the structure can be inhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は光半導体素子の活
性層に用いられる歪多重量子井戸構造に関する。特に、
井戸層の歪を相殺するようにバリア層に反対符号の歪を
導入した構造の歪補償型多重量子井戸構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strained multiple quantum well structure used for an active layer of an optical semiconductor device. Especially,
The present invention relates to a strain-compensated multiple quantum well structure having a structure in which strain of opposite sign is introduced into a barrier layer so as to cancel strain of the well layer.

【0002】[0002]

【従来の技術】厚さが数nmの井戸層をそれよりもバン
ドギャップの大きなバリア層で挟み、それらを多層に積
層した多重量子井戸構造(MQW)は現在の光半導体素
子の活性層に広く利用されている。近年、井戸層に圧縮
歪を導入したMQWを活性層に用いたレーザが、従来の
基板に格子整合した井戸層を用いたMQWのそれに較
べ、素子特性(しきい値電流、光出力)が向上すること
が多くの研究機関から報告されている。しかしながら、
所望の歪量を持つ井戸層を基板に格子整合したバリア層
で挟み、それらを交互に多層に積層してMQWを形成す
ると、MQW全体の厚さがある一定の臨界値(所謂、臨
界膜厚)を超えると基板とMQWとの界面にミスフィッ
ト転位が発生する。臨界膜厚は、井戸層の歪が大きい程
小さくなる。これは、井戸層の歪による応力が井戸層の
数が増える毎に蓄積され、この応力がミスフィット転位
の発生を招くからである。素子特性を向上させるために
は、大きな歪を懸ける必要があるが、MQWの厚さが臨
界膜厚で制限される。これを避けるために、歪補償型M
QWが考案された。歪補償型MQWでは、引っ張り歪を
有する井戸層に対し、圧縮歪を有するバリア層を組合せ
ることにより、ミスフィット転位を発生させる応力を相
殺させ、ミスフィット転位の発生を抑制するものであ
る。従って、大きな歪を持つ井戸層であっても大きな厚
みを持つMQWが得られる。
2. Description of the Related Art A multi-quantum well structure (MQW) in which a well layer having a thickness of several nm is sandwiched between barrier layers having a bandgap larger than that and a multi-layered structure is widely used as an active layer of a current optical semiconductor device. It's being used. In recent years, a laser using an MQW in which a compressive strain has been introduced into the well layer as an active layer has improved device characteristics (threshold current, optical output) as compared with a conventional MQW using a well layer lattice-matched to a substrate. It has been reported by many research institutions. However,
When an MQW is formed by sandwiching a well layer having a desired amount of strain between barrier layers lattice-matched to a substrate and alternately stacking them in multiple layers, the total MQW thickness has a certain critical value (so-called critical film thickness). ), Misfit dislocations occur at the interface between the substrate and MQW. The critical film thickness decreases as the strain of the well layer increases. This is because the stress due to the strain in the well layer is accumulated every time the number of well layers increases, and this stress causes the occurrence of misfit dislocations. In order to improve the device characteristics, it is necessary to apply a large strain, but the thickness of MQW is limited by the critical film thickness. In order to avoid this, distortion compensation type M
QW was invented. In the strain-compensated MQW, a well layer having tensile strain is combined with a barrier layer having compressive strain to cancel the stress that causes misfit dislocations and suppress the occurrence of misfit dislocations. Therefore, an MQW having a large thickness can be obtained even for a well layer having a large strain.

【0003】歪補償型MQWを作製するさいには、ガイ
ドラインとして次の式で定義される実効歪εをほぼゼロ
にすることが提案されている(B.I.Miller et.al.,Appl.
Phys.Lett.,58(1991)1952)。 ε=(εw h+εb H)/(h+H) (1) ここでhとHはそれぞれ井戸層とバリア層の厚さ、εw
とεb はそれぞれ井戸層とバリア層の歪である(引張り
歪は−、圧縮歪は+の符号をとるものとする)。すなわ
ち、実効歪εをできるだけ小さくするように井戸層及び
バリア層の厚さと歪を選ぶことが、ミスフィット転位の
無い多重量子井戸層を成長するための指針である。
In producing a strain-compensated MQW, it has been proposed as a guideline that the effective strain ε defined by the following equation be made almost zero (BIMiller et.al., Appl.
Phys. Lett., 58 (1991) 1952). ε = (ε w h + ε b H) / (h + H) (1) where h and H are the thicknesses of the well layer and the barrier layer, respectively, and ε w
And ε b are strains of the well layer and the barrier layer, respectively (tensile strain is −, compressive strain is +). That is, selecting the thickness and strain of the well layer and the barrier layer so that the effective strain ε is as small as possible is a guideline for growing a multiple quantum well layer without misfit dislocations.

【0004】歪補償型MQWにおいては、前述したよう
に井戸層とバリア層の界面に大きな歪の食い違いがあ
る。そのため、井戸層の上にバリア層を成長する際に、
バリア層が層状に成長せず3次元的な島状に成長するこ
とが知られている。そのため島同士が合体するときに欠
陥(ミスフィット転位以外の欠陥)が入り、MQWの光
学特性を劣化させていた。バリア層の上に井戸層を成長
するときも同様の欠陥導入が起こる。このような欠陥導
入は、井戸層とバリア層の歪の食い違いが大きいほど顕
著である。従って、歪補償型MQWにおいては実効歪を
完全にゼロとしても、ミスフィット転位以外の欠陥によ
り、光学特性が向上しないという問題もあった。
In the strain-compensated MQW, there is a large strain discrepancy at the interface between the well layer and the barrier layer as described above. Therefore, when growing the barrier layer on the well layer,
It is known that the barrier layer does not grow in layers but grows in three-dimensional islands. Therefore, defects (defects other than misfit dislocations) were introduced when the islands were united, and the optical characteristics of the MQW were deteriorated. Similar defect introduction occurs when growing a well layer on a barrier layer. The introduction of such defects is more remarkable as the difference in strain between the well layer and the barrier layer is larger. Therefore, in the strain-compensated MQW, even if the effective strain is set to zero, there is a problem that optical characteristics are not improved due to defects other than misfit dislocations.

【0005】実効歪をゼロに近づける程、井戸層とバリ
ア層の歪の食い違いは大きくなる。実効歪をゼロでない
ある有限の値に停める事が出来れば井戸層とバリア層の
歪の食い違いは大きくならずに済み、ミスフィット転位
以外の欠陥発生を抑制することが出来る。実効歪がゼロ
でない場合における、ミスフィット転位の発生を抑制す
る事が望まれている。
The closer the effective strain is to zero, the larger the strain difference between the well layer and the barrier layer. If the effective strain can be stopped at a certain finite value other than zero, the strain discrepancy between the well layer and the barrier layer need not be large, and defects other than misfit dislocations can be suppressed. It is desired to suppress the occurrence of misfit dislocations when the effective strain is not zero.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の欠点を
改善するために提案されたもので、実効歪がゼロでない
場合における、ミスフィット転位の発生を抑制すること
を目的とする。
The present invention has been proposed in order to improve the above-mentioned drawbacks, and an object thereof is to suppress the occurrence of misfit dislocations when the effective strain is not zero.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、基板の格子定数と異なる格子定数を有す
る井戸層と、該基板の格子定数と異なる格子定数を有
し、該井戸層と相異なる符号の歪を有し、該井戸層より
も広いバンドギャップを有するバリア層とから成る歪多
重量子井戸構造において、該基板が(001)面方位を
有するウェハの逆メサセクタであることを特徴とする。
従来、MQWを形成する基板として、順メサ方向セクタ
と逆メサ方向セクタを区別せずに用いていた。これに対
し、本発明は逆メサセクタのみを用いるところが異な
る。
In order to achieve the above object, the present invention provides a well layer having a lattice constant different from that of a substrate and a lattice constant different from that of the substrate. In a strained multi-quantum well structure composed of a layer and a barrier layer having a different sign strain and a bandgap wider than that of the well layer, the substrate is an inverted mesa sector of a wafer having a (001) plane orientation. Is characterized by.
Conventionally, a forward mesa direction sector and a reverse mesa direction sector have been used without distinction as a substrate for forming an MQW. In contrast, the present invention is different in that only the reverse mesa sector is used.

【0008】MQWのミスフィット転位は、基板からの
貫通転位が、MQWと基板との界面において折れ曲がる
ことにより形成される。(001)面方位を有する基板
上に、この基板と異なる格子定数を持つ膜を成長する場
合には、膜厚が増加しある値を超えると〔−110〕方
向及び〔1−10〕方向(順メサ方向)に伸びるミスフ
ィット転位が形成され、更に膜厚が増加すると〔11
0〕方向及び〔−1−10〕方向(逆メサ方向)に伸び
るミスフィット転位が形成される。すなわち、逆メサ方
向のミスフィット転位に対する臨界膜厚は順メサ方向の
それよりも大きい。本発明において用いる逆メサセクタ
基板には、順メサ方向に伸びるミスフィット転位を形成
する転位がないため、従来よりも臨界膜厚が大きくな
り、ミスフィット転位の形成が抑制される。
A misfit dislocation of MQW is formed by a threading dislocation from the substrate bending at the interface between the MQW and the substrate. When a film having a lattice constant different from that of a substrate having a (001) plane orientation is grown, if the film thickness increases and exceeds a certain value, the [-110] direction and the [1-10] direction ( If misfit dislocations extending in the forward mesa direction are formed and the film thickness is further increased, [11
Misfit dislocations extending in the [0] direction and the [-1-10] direction (reverse mesa direction) are formed. That is, the critical film thickness for misfit dislocations in the reverse mesa direction is larger than that in the forward mesa direction. Since the reverse mesa sector substrate used in the present invention does not have dislocations that form misfit dislocations extending in the forward mesa direction, the critical film thickness becomes larger than in the past, and the formation of misfit dislocations is suppressed.

【0009】[0009]

【発明の実施の形態】本発明は、基板の格子定数と異な
る格子定数を有する井戸層と、該基板の格子定数と異な
る格子定数を有し、かつ該井戸層と相異なる符号の歪を
有し、該井戸層よりも広いバンドギャップを有するバリ
ア層とから成る歪多重量子井戸構造において、該基板が
(001)面方位を有するウェハの逆メサセクタであ
る。従来、MQWを形成する基板として、順メサ方向セ
クタと逆メサ方向セクタを区別せずに用いていた。これ
に対し、本発明は逆メサセクタのみを用いるところが異
なる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention has a well layer having a lattice constant different from that of a substrate, a lattice constant different from that of the substrate, and a strain having a sign different from that of the well layer. However, in a strained multiple quantum well structure composed of a barrier layer having a bandgap wider than that of the well layer, the substrate is an inverted mesa sector of a wafer having a (001) plane orientation. Conventionally, a forward mesa direction sector and a reverse mesa direction sector have been used without distinction as a substrate for forming an MQW. In contrast, the present invention is different in that only the reverse mesa sector is used.

【0010】[0010]

【実施例】図1に、本発明による歪多重量子井戸構造を
模式的に示す。逆メサセクタ基板上に、基板の格子定数
と異なる格子定数を有する井戸層(歪εw 、厚さh)
と、該基板の格子定数と異なる格子定数を有し、該井戸
層と相異なる符号の歪を有し、該井戸層よりも広いバン
ドギャップを有するバリア層(歪εb 、厚さH)とから
成るMQWが形成されている。MQWの実効歪εは
(1)式を用いて計算される。
FIG. 1 schematically shows a strained multiple quantum well structure according to the present invention. A well layer (strain ε w , thickness h) having a lattice constant different from that of the substrate on the reverse mesa sector substrate
And a barrier layer (strain ε b , thickness H) having a lattice constant different from that of the substrate, a strain having a sign different from that of the well layer, and a bandgap wider than that of the well layer. MQW consisting of The effective strain ε of MQW is calculated using the equation (1).

【0011】逆メサセクタ基板とは、図2に示す様に、
(001)面方位を持つウェハにおいて〔110〕及び
〔−1−10〕方向の2つの象限から切り出した基板を
指す。また、〔−110〕及び〔1−10〕方向の2つ
の象限から切り出したものを順メサセクタ基板と呼ぶこ
とにする。逆メサセクタ基板には、逆メサ方向に伸びる
ミスフット転位となる転位が多く、順メサ方向に伸びる
ミスフィット転位となる転位は殆どない。これに対し
て、順メサセクタ基板には、順メサ方向に伸びるミスフ
ィット転位となる転位が多く、逆メサ方向に伸びるミス
フィット転位となる転位は殆どない。これは、ウェハを
切り出すインゴットを液体封止チョクラルスキ法で育成
するときの熱履歴に由来する(H.Ono, T.Kitano, and
J.Matsui, Slip dislocation in In-doped liquid enca
psulated Czochralski GaAs duringcrystal growth, Ap
pl.Phys.Lett.vol. 51, No.4, p.238-240,1987)。
The reverse mesa sector substrate is, as shown in FIG.
A substrate cut out from two quadrants in the [110] and [-1-10] directions in a wafer having a (001) plane orientation. Further, the one cut out from the two quadrants in the [-110] and [1-10] directions will be referred to as a forward mesa sector substrate. In the reverse mesa sector substrate, there are many dislocations that become misfoot dislocations that extend in the reverse mesa direction, and there are almost no dislocations that become misfit dislocations that extend in the forward mesa direction. On the other hand, in the forward mesa sector substrate, many dislocations are misfit dislocations extending in the forward mesa direction, and few dislocations are misfit dislocations extending in the reverse mesa direction. This is due to the thermal history of growing a wafer ingot by the liquid sealed Czochralski method (H.Ono, T.Kitano, and
J. Matsui, Slip dislocation in In-doped liquid enca
psulated Czochralski GaAs duringcrystal growth, Ap
pl.Phys.Lett.vol.51, No.4, p.238-240,1987).

【0012】図3は、本発明の効果を示す図であり、
(001)面方位を持つInPの2インチウェハ上に、
MQWを成長したときのミスフィット転位の発生状況を
模式的に示したものである。井戸層として引っ張り歪−
1.8%で厚さが100ÅのInGaAsPを、バリア
層として圧縮歪0.6%で厚さが150ÅのInGaA
sPを用いている。実効歪は−0.36%である。成長
は有機金属分子線エピタキシ(MOMBE)法で行っ
た。成長温度は520℃である。μ−PL法を用いてミ
スフィット転位の有無を評価したところ、〔110〕及
び〔−1−10〕方向の2つの象限ではミスフィット転
位が無く、〔−110〕及び〔1−10〕方向の2つの
象限では順メサ方向に伸びるミスフィット転位の存在が
確認された。同じ厚さで同じ実効歪を有するMQWを形
成したにもかかわらず、順メサセクタではミスフィット
転位が発生し、逆メサセクタではミスフィット転位の発
生はなかった事から、逆メサセクタ基板を用いることに
より、ミスフィット転位の発生が抑制されることが分か
る。
FIG. 3 is a diagram showing the effect of the present invention.
On an InP 2-inch wafer with a (001) plane orientation,
It is a diagram schematically showing the occurrence of misfit dislocations when growing MQW. Tensile strain as well layer-
InGaAsP with a thickness of 1.8% and a thickness of 100Å is used as a barrier layer and InGaA with a compression strain of 0.6% and a thickness of 150Å.
sP is used. The effective strain is -0.36%. The growth was performed by a metalorganic molecular beam epitaxy (MOMBE) method. The growth temperature is 520 ° C. When the presence or absence of misfit dislocations was evaluated using the μ-PL method, there were no misfit dislocations in the two quadrants of the [110] and [−1-10] directions, and the [−110] and [1-10] directions were found. The presence of misfit dislocations extending in the forward mesa direction was confirmed in the two quadrants. Despite forming MQW with the same thickness and the same effective strain, misfit dislocations occurred in the forward mesa sector and no misfit dislocations occurred in the reverse mesa sector. Therefore, by using the reverse mesa sector substrate, It can be seen that the occurrence of misfit dislocations is suppressed.

【0013】[0013]

【発明の効果】基板の格子定数と異なる格子定数を有す
る井戸層と、該基板の格子定数と異なる格子定数を有
し、該井戸層と相異なる符号の歪を有し、該井戸層より
も広いバンドギャップを有するバリア層とから成る歪多
重量子井戸構造において、逆メサセクタ基板を用いるた
め、ミスフィット転位の発生が抑制される効果がある。
EFFECT OF THE INVENTION A well layer having a lattice constant different from that of the substrate, a lattice constant different from that of the substrate, and a strain having a sign different from that of the well layer, In the strained multiple quantum well structure including the barrier layer having a wide band gap, the use of the inverted mesa sector substrate has an effect of suppressing the occurrence of misfit dislocations.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による歪多重量子井戸構造を示す。FIG. 1 shows a strained multiple quantum well structure according to the present invention.

【図2】逆メサセクタ基板を説明する図を示す。FIG. 2 is a diagram illustrating an inverted mesa sector substrate.

【図3】本発明の効果を示す図を示す。FIG. 3 is a diagram showing an effect of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板の格子定数と異なる格子定数を有す
る井戸層と、該基板の格子定数と異なる格子定数を有
し、該井戸層と相異なる符号の歪を有し、該井戸層より
も広いバンドギャップを有するバリア層とから成る歪多
重量子井戸構造において、 該基板が(001)面方位を有するウェハの逆メサセク
タであることを特徴とする歪多重量子井戸構造。
1. A well layer having a lattice constant different from that of the substrate, a lattice constant different from that of the substrate, and a strain having a sign different from that of the well layer. A strained multiple quantum well structure comprising a barrier layer having a wide bandgap, wherein the substrate is an inverted mesa sector of a wafer having a (001) plane orientation.
JP8327796A 1996-03-11 1996-03-11 Strained multiple quantum well structure Expired - Fee Related JP3371317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8327796A JP3371317B2 (en) 1996-03-11 1996-03-11 Strained multiple quantum well structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8327796A JP3371317B2 (en) 1996-03-11 1996-03-11 Strained multiple quantum well structure

Publications (2)

Publication Number Publication Date
JPH09246671A true JPH09246671A (en) 1997-09-19
JP3371317B2 JP3371317B2 (en) 2003-01-27

Family

ID=13797875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8327796A Expired - Fee Related JP3371317B2 (en) 1996-03-11 1996-03-11 Strained multiple quantum well structure

Country Status (1)

Country Link
JP (1) JP3371317B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610105B2 (en) 2009-05-15 2013-12-17 Oclaro Japan, Inc. Semiconductor electroluminescent device with a multiple-quantum well layer formed therein

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8610105B2 (en) 2009-05-15 2013-12-17 Oclaro Japan, Inc. Semiconductor electroluminescent device with a multiple-quantum well layer formed therein

Also Published As

Publication number Publication date
JP3371317B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
US5221367A (en) Strained defect-free epitaxial mismatched heterostructures and method of fabrication
JPH0422185A (en) Semiconductor optical element
JPH03119761A (en) Method of making quantum well structure with highly mismatching lattice
KR20060050798A (en) Sapphire substrate, epitaxial substrate and semiconductor device
US7683392B2 (en) Semiconductor device with anisotropy-relaxed quantum dots
JP2649936B2 (en) Strained superlattice buffer
JPH033364A (en) Semiconductor device
JPH09246654A (en) Semiconductor laser
JPH09148556A (en) Semiconductor device and its manufacture
JPH09246671A (en) Strained multiple quantum well structure
JPH10190143A (en) Compressive-strain multiple quantum well structure
JP4575173B2 (en) Manufacturing method of quantum well structure
JP3869641B2 (en) Semiconductor device and semiconductor laser device
JP3149879B2 (en) Semiconductor laser
JPH0541560A (en) Semiconductor laser element
JPH10303510A (en) Iii-group nitride semiconductor device and its manufacture
JP2001308464A (en) Nitride semiconductor element, method for manufacturing nitride semiconductor crystal, and nitride semiconductor substrate
JP3250495B2 (en) Semiconductor structure and semiconductor crystal growth method
JPH10242571A (en) Strained multiple quantum well structure and its manufacture
JPH10242511A (en) Strained multiple quantum well structure
JP2970103B2 (en) Semiconductor superlattice structure
JP2004363265A (en) Compound-semiconductor laminated structure and its manufacturing method
JP2967719B2 (en) Semiconductor crystal growth method and semiconductor device
JPH0141269B2 (en)
JPH1131811A (en) Method for growing strained multiple quantum well structure

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20081122

LAPS Cancellation because of no payment of annual fees