JPH09246598A - Linear light source - Google Patents

Linear light source

Info

Publication number
JPH09246598A
JPH09246598A JP5351696A JP5351696A JPH09246598A JP H09246598 A JPH09246598 A JP H09246598A JP 5351696 A JP5351696 A JP 5351696A JP 5351696 A JP5351696 A JP 5351696A JP H09246598 A JPH09246598 A JP H09246598A
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
reflecting surface
emitting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5351696A
Other languages
Japanese (ja)
Other versions
JP3600973B2 (en
Inventor
Yoshinobu Suehiro
好伸 末広
Koji Uchida
浩二 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP5351696A priority Critical patent/JP3600973B2/en
Publication of JPH09246598A publication Critical patent/JPH09246598A/en
Application granted granted Critical
Publication of JP3600973B2 publication Critical patent/JP3600973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a linear light source, which can improve a uniformity ratio. SOLUTION: A first recessed columnar reflecting surface 24 and a second recessed columnar reflecting surface 28 are formed on the light emitting side of a light emitting element 12. The shape of the first recessed columnar reflecting surface is designed so that the light emitted from the light emitting element 12 is reflected on the straight line where the light emitting element 12 is aligned. An intermediate reflecting surface 26 is the surface of the tip part of a lead 14b and arranged between the respective light emitting elements 12 in the vicinity of the straight line where the light emitting elements 12 are aligned. The light reflected from the intermediate reflecting surface 26 acts as if the light is emitted from the light emitting element. Furthermore, the shape of the second recessed columnar reflecting surface 28 is designed so that the light is condensed at the specified illuminating width at the illuminated surface after the light emitted from the light emitting element 12 is reflected from the second recessed columnar reflecting surface 28.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、発光素子を直線状
に配置した線状光源に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear light source in which light emitting elements are linearly arranged.

【0002】[0002]

【従来の技術】図5(a)は従来の線状光源の概略正面
図、図5(b)はその線状光源のE−E矢視方向概略断
面図、図5(c)はその線状光源のF−F矢視方向概略
断面図、図6はその線状光源において発光素子の配列方
向における照度分布を示す図である。尚、図5におい
て、x軸は発光素子の配列方向、y軸は発光素子の発光
面を含む平面においてx軸に直交する方向、z軸はx軸
及びy軸に直交する方向である。
2. Description of the Related Art FIG. 5 (a) is a schematic front view of a conventional linear light source, FIG. 5 (b) is a schematic sectional view of the linear light source taken in the direction of arrow E, and FIG. 6 is a schematic sectional view of the linear light source in the direction of arrow F-F, and FIG. 6 is a diagram showing an illuminance distribution in the array direction of the light emitting elements in the linear light source. In FIG. 5, the x-axis is the arrangement direction of the light-emitting elements, the y-axis is the direction orthogonal to the x-axis in the plane including the light-emitting surface of the light-emitting element, and the z-axis is the direction orthogonal to the x-axis and the y-axis.

【0003】図5に示す線状光源は、複数の発光素子5
2と、複数のリード54a,54bと、複数のワイヤ5
6と、光透過性材料58と、発光素子52の発光面に対
向して形成された凹面状反射面62と、発光素子52の
背面側に形成された放射面64とを有するものである。
複数の発光素子52は発光面を同じ方向に向けて直線状
に配列される。各発光素子52は一方のリード54a上
にマウントされ、発光素子52と他方のリード54bと
はワイヤ56により電気的に接続されている。また、発
光素子52、リード54a,54bの先端部及びワイヤ
56は光透過性材料58により封止されている。凹面状
反射面62は、光透過性材料58の下面をメッキや金属
蒸着等により鏡面加工したものである。ここでは、凹面
状反射面62を柱面状に形成し、そのy−z平面での切
断面を略楕円形状としている。そして、凹面状反射面6
2に近い方の焦点には発光素子52の発光面の中心を配
置している。一方、光透過性材料58の上面は平面状に
形成された放射面64である。
The linear light source shown in FIG. 5 includes a plurality of light emitting elements 5.
2, a plurality of leads 54a and 54b, and a plurality of wires 5
6, a light transmissive material 58, a concave reflecting surface 62 formed to face the light emitting surface of the light emitting element 52, and a radiation surface 64 formed on the back side of the light emitting element 52.
The plurality of light emitting elements 52 are linearly arranged with their light emitting surfaces facing the same direction. Each light emitting element 52 is mounted on one lead 54a, and the light emitting element 52 and the other lead 54b are electrically connected by a wire 56. Further, the light emitting element 52, the tips of the leads 54 a and 54 b, and the wire 56 are sealed with a light transmissive material 58. The concave reflecting surface 62 is formed by mirror-finishing the lower surface of the light transmissive material 58 by plating, metal deposition or the like. Here, the concave reflection surface 62 is formed in a columnar shape, and the cut surface in the yz plane is formed into a substantially elliptical shape. And the concave reflecting surface 6
The center of the light emitting surface of the light emitting element 52 is arranged at the focal point closer to 2. On the other hand, the upper surface of the light transmissive material 58 is a radiation surface 64 formed in a planar shape.

【0004】発光素子52に電力が供給されると、発光
素子52が発光し、発光素子52が発する光は凹面状反
射面62によって反射され、放射面64から外部に放射
される。特に、y−z平面による凹面状反射面62の切
断面が略楕円形状に形成され、その凹面状反射面62の
一の焦点に発光素子52の発光面の中心を配置している
ので、放射面64を通過した光は所定領域へ集光され
る。
When electric power is supplied to the light emitting element 52, the light emitting element 52 emits light, and the light emitted by the light emitting element 52 is reflected by the concave reflecting surface 62 and emitted from the emitting surface 64 to the outside. In particular, since the cut surface of the concave reflecting surface 62 by the yz plane is formed in a substantially elliptical shape and the center of the light emitting surface of the light emitting element 52 is arranged at one focal point of the concave reflecting surface 62, The light that has passed through the surface 64 is focused on a predetermined area.

【0005】[0005]

【発明が解決しようとする課題】ところで、従来の線状
光源では、発光素子52の配列方向(x軸方向)におけ
る照度分布が図6に示すようになる。ここで、破線は各
発光素子52が発する光の照度分布を示し、実線は線状
光源全体についての照度分布を示す。図6からわかるよ
うに、各発光素子52が発する光の照度分布はあまり広
い範囲に及ばない。このため、たとえば、一の発光素子
が他のものに比べて特性が劣っていたり早く劣化したり
すると、均斉度が著しく低下し、線状光源として使いも
のにならなくなる。このように、従来の線状光源では、
十分な均斉度を得ることが困難であるという問題があっ
た。
By the way, in the conventional linear light source, the illuminance distribution in the arrangement direction of the light emitting elements 52 (x-axis direction) is as shown in FIG. Here, the broken line shows the illuminance distribution of the light emitted by each light emitting element 52, and the solid line shows the illuminance distribution for the entire linear light source. As can be seen from FIG. 6, the illuminance distribution of the light emitted by each light emitting element 52 does not reach a very wide range. For this reason, for example, if one light emitting element has inferior characteristics or deteriorates faster than the other one, the uniformity is remarkably reduced, and it becomes unusable as a linear light source. Thus, in the conventional linear light source,
There is a problem that it is difficult to obtain a sufficient degree of uniformity.

【0006】本発明は上記事情に基づいてなされたもの
であり、均斉度の向上を図ることができる線状光源を提
供することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a linear light source capable of improving the uniformity.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1記載の発明に係る線状光源は、直線状に配
列された複数の発光素子と、前記複数の発光素子に電力
を供給するリード部と、前記発光素子と発光素子との間
に配置された中間反射面と、前記発光素子の発光面に対
向して設けられた前記発光素子が発した光及び前記中間
反射面で反射された光を反射する凹柱面状反射面とを具
備し、前記凹柱面状反射面は、前記発光素子が配列され
た直線を含む面で二分割され、その一方の凹柱面状反射
面の長手方向における断面は前記発光素子の位置を中心
とする略円形状に形成され、且つ他方の凹柱面状反射面
の長手方向における断面は入射した光を反射して外部に
放射するように形成されていることを特徴とするもので
ある。
In order to achieve the above object, a linear light source according to a first aspect of the present invention has a plurality of linearly arranged light emitting elements, and power is supplied to the plurality of light emitting elements. A lead portion for supplying, an intermediate reflecting surface arranged between the light emitting element and the light emitting element, and light emitted by the light emitting element and the intermediate reflecting surface provided facing the light emitting surface of the light emitting element. A concave cylindrical surface reflecting surface that reflects the reflected light, wherein the concave cylindrical surface reflecting surface is divided into two by a surface including a straight line on which the light emitting elements are arranged, and one of the concave cylindrical surface shapes The cross section in the longitudinal direction of the reflecting surface is formed in a substantially circular shape centered on the position of the light emitting element, and the cross section in the longitudinal direction of the other concave columnar reflecting surface reflects the incident light and radiates it to the outside. It is characterized in that it is formed as follows.

【0008】請求項2記載の発明に係る線状光源は、請
求項1記載の発明において、前記他方の凹柱面状反射面
は、反射した光を線状に集光するものであることを特徴
とするものである。請求項3記載の発明に係る線状光源
は、請求項1又は2記載の発明において、前記リード部
を前記一方の凹柱面状反射面の側から外部に引き出した
ことを特徴とするものである。
According to a second aspect of the present invention, there is provided the linear light source according to the first aspect of the present invention, wherein the other concave cylindrical reflecting surface linearly collects the reflected light. It is a feature. A linear light source according to a third aspect of the invention is the linear light source according to the first or second aspect of the invention, wherein the lead portion is drawn out from the side of the one concave cylindrical surface. is there.

【0009】請求項4記載の発明に係る線状光源は、請
求項1乃至3記載の発明において、前記複数の発光素子
及び前記中間反射面と前記凹柱面状反射面との空間を、
光透過性材料で充填したことを特徴とするものである。
請求項5記載の発明に係る線状光源は、請求項1乃至4
記載の発明において、前記リード部は回路パターンが形
成された基板を含むものであり、前記複数の発光素子は
前記基板の回路パターン上に取り付けられていることを
特徴とするものである。
A linear light source according to a fourth aspect of the present invention is the linear light source according to the first to third aspects, wherein a space between the plurality of light emitting elements and the intermediate reflection surface and the concave columnar reflection surface is formed.
It is characterized by being filled with a light transmissive material.
A linear light source according to a fifth aspect of the invention is the linear light source according to the first to fourth aspects.
In the invention described above, the lead portion includes a substrate on which a circuit pattern is formed, and the plurality of light emitting elements are mounted on the circuit pattern of the substrate.

【0010】請求項6記載の発明に係る線状光源は、請
求項1乃至5記載の発明において、前記発光素子の配列
方向における両側部に前記発光素子が発した光及び前記
中間反射面で反射された光を反射する側部反射面を設け
たことを特徴とするものである。請求項7記載の発明に
係る線状光源は、請求項1乃至6記載の発明において、
前記複数の発光素子として、赤色系の光を発する発光素
子と、緑色系の光を発する発光素子と、青色系の光を発
する発光素子とを用いたことを特徴とするものである。
A linear light source according to a sixth aspect of the present invention is the linear light source according to the first to fifth aspects, wherein the light emitted by the light emitting elements and the intermediate reflection surface are reflected on both sides in the arrangement direction of the light emitting elements. It is characterized in that a side reflection surface for reflecting the reflected light is provided. A linear light source according to a seventh aspect of the invention is the linear light source according to the first to sixth aspects,
As the plurality of light emitting elements, a light emitting element that emits red light, a light emitting element that emits green light, and a light emitting element that emits blue light are used.

【0011】[0011]

【作用】請求項1記載の発明は上記の構成によって、一
方の凹柱面状反射面の長手方向における断面を発光素子
の位置を中心とする略円形状に形成したことにより、発
光素子が発した光のうち一方の凹柱面状反射面に入射す
る光は、一方の凹柱面状反射面で反射された後、発光素
子が配列された直線上に入射する。このうち中間反射面
に入射した光は、反射面で乱反射され、凹面状反射面に
向かって進む。ここで、中間反射面は発光素子と発光素
子との間に配置されているので、この中間反射面で反射
された光はあたかも各発光素子から発された光であるか
のように振る舞う。このため、中間反射面で反射された
光のうち一方の凹柱面状反射面に入射する光は、再度、
一方の柱面状反射面で反射された後、発光素子が配列さ
れた直線上に入射することになる。一方、中間反射面で
反射した光のうち他方の凹柱面状反射面に入射する光
は、他方の凹柱面状反射面で反射された後、外部に放射
される。
According to the invention described in claim 1, the light emitting element is formed by forming the cross section in the longitudinal direction of the one concave columnar reflecting surface into a substantially circular shape with the position of the light emitting element as the center. The light incident on one of the concave cylindrical surface-reflecting surfaces is reflected by the one concave cylindrical surface-reflecting surface, and then is incident on the straight line on which the light emitting elements are arranged. Of these, the light incident on the intermediate reflecting surface is diffusely reflected by the reflecting surface and travels toward the concave reflecting surface. Here, since the intermediate reflecting surface is arranged between the light emitting element and the light emitting element, the light reflected by the intermediate reflecting surface behaves as if it were the light emitted from each light emitting element. Therefore, of the light reflected by the intermediate reflection surface, the light incident on one concave cylindrical surface is again
After being reflected by one of the columnar reflecting surfaces, it is incident on the straight line on which the light emitting elements are arranged. On the other hand, of the light reflected by the intermediate reflection surface, the light incident on the other concave prismatic reflection surface is reflected by the other concave prismatic reflection surface and then radiated to the outside.

【0012】[0012]

【発明の実施の形態】以下に、本発明の第一実施形態に
ついて図面を参照して説明する。図1(a)は本発明の
第一実施形態である線状光源の概略正面図、図1(b)
はその線状光源のA−A矢視方向概略断面図、図1
(c)はその線状光源のB−B矢視方向概略断面図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a schematic front view of a linear light source that is a first embodiment of the present invention, and FIG.
1 is a schematic sectional view of the linear light source in the direction of arrow AA, FIG.
(C) is a schematic sectional view of the linear light source taken along the line BB.

【0013】図1に示す線状光源は、複数の発光素子1
2と、リード部としての複数のリード14a,14b
と、複数のワイヤ18と、光透過性材料22と、第一凹
柱面状反射面24と、中間反射面26と、第二凹柱面状
反射面28と、側部反射面32と、放射面34とを備え
るものである。複数の発光素子12は、図1(c)にお
いて、発光面を下側に向けて一定間隔で直線状に配列さ
れる。ここでは、発光素子12として単色のものを用い
ている。尚、図1において、x軸は発光素子12の配列
方向、y軸は発光素子12の発光面を含む平面において
x軸に直交する方向、z軸はx軸及びy軸に直交する方
向である。
The linear light source shown in FIG. 1 comprises a plurality of light emitting elements 1.
2 and a plurality of leads 14a and 14b as lead portions
A plurality of wires 18, a light transmissive material 22, a first concave prismatic reflecting surface 24, an intermediate reflecting surface 26, a second concave prismatic reflecting surface 28, a side reflecting surface 32, The radiation surface 34 is provided. In FIG. 1C, the plurality of light emitting elements 12 are linearly arranged at regular intervals with the light emitting surface facing downward. Here, a monochromatic element is used as the light emitting element 12. In FIG. 1, the x axis is the arrangement direction of the light emitting elements 12, the y axis is the direction orthogonal to the x axis in the plane including the light emitting surface of the light emitting element 12, and the z axis is the direction orthogonal to the x axis and the y axis. .

【0014】リード14a,14bは、発光素子12に
電力を供給するためのものであり、各発光素子12毎に
設けられている。リード14a,14bの材料には銅合
金や鉄合金等の金属を用い、リード14a,14bの表
面には銀メッキ処理を施している。発光素子12は一方
のリード14a上にマウントされ、発光素子12と他方
のリード14bとはワイヤ18により電気的に接続され
ている。このとき、ワイヤ18はリード14bの先端部
以外の部分に接続される。これらのリード14a,14
bはともに第一凹柱面状反射面24の側から外部に引き
出されている。また、発光素子12、リード14a,1
4bの一部及びワイヤ18は、光透過性材料22により
一体的に封止されている。
The leads 14a and 14b are for supplying electric power to the light emitting element 12, and are provided for each light emitting element 12. A metal such as a copper alloy or an iron alloy is used as the material of the leads 14a and 14b, and the surfaces of the leads 14a and 14b are silver-plated. The light emitting element 12 is mounted on one lead 14a, and the light emitting element 12 and the other lead 14b are electrically connected by a wire 18. At this time, the wire 18 is connected to a portion other than the tip portion of the lead 14b. These leads 14a, 14
Both b are drawn out from the side of the first concave cylindrical surface 24. In addition, the light emitting element 12, the leads 14a, 1
Part of the wire 4b and the wire 18 are integrally sealed with a light transmissive material 22.

【0015】中間反射面26は、複数の発光素子12が
配列された直線上付近であって各発光素子12の間に配
置される。第一実施形態では、中間反射面26として、
リード14bの先端部の表面を利用することにしてい
る。このリード14bの先端部はT字状に形成され、ま
た、中間反射面は、発光素子12の発光面と略同一平面
上に位置するように配置される。一般に、中間反射面2
6は、高反射率を有する材料で形成されるが、この中間
反射面26の性質としては、光を正反射するものであっ
てもよいし、乱反射するものであってもよい。特に、望
ましいのは、入射する光を、ある程度正反射すると共
に、ある程度乱反射するものである。第一実施形態で
は、リード14bに銀メッキ処理を施して、中間反射面
26に、かかる望ましい性質を付与している。尚、リー
ド14bの先端部以外の部分にワイヤ18を接続するの
は、中間反射面26で光を有効に反射することができる
ようにするためである。
The intermediate reflecting surface 26 is disposed between the light emitting elements 12 in the vicinity of the straight line on which the plurality of light emitting elements 12 are arranged. In the first embodiment, as the intermediate reflecting surface 26,
The surface of the tip of the lead 14b is used. The ends of the leads 14b are formed in a T shape, and the intermediate reflection surface is arranged so as to be located on substantially the same plane as the light emitting surface of the light emitting element 12. Generally, the intermediate reflecting surface 2
6 is made of a material having a high reflectance, and the nature of the intermediate reflecting surface 26 may be that which specularly reflects light or that which diffusely reflects light. Particularly desirable is that the incident light is specularly reflected to some extent and diffusely reflected to some extent. In the first embodiment, the lead 14b is silver-plated to give the intermediate reflecting surface 26 such desirable properties. The wire 18 is connected to a portion other than the tip portion of the lead 14b so that the intermediate reflection surface 26 can effectively reflect light.

【0016】第一凹柱面状反射面24及び第二凹柱面状
反射面28は、光透過性材料22の裏面上にメッキや金
属蒸着等により鏡面加工したものであり、発光素子12
の発光面側に形成されている。また、かかる第一凹柱面
状反射面24及び第二凹柱面状反射面28の中心軸をそ
れぞれ、発光素子12の配列方向(x軸方向)に平行と
している。図1(c)に示すように、第一凹柱面状反射
面24はx軸を含みy軸に垂直な平面に対して右側に形
成され、第二凹柱面状反射面28はその平面に対して左
側に形成される。
The first concave columnar reflecting surface 24 and the second concave columnar reflecting surface 28 are mirror-finished on the back surface of the light transmissive material 22 by plating, metal deposition or the like.
Is formed on the light emitting surface side. Further, the central axes of the first concave cylindrical surface-shaped reflecting surface 24 and the second concave cylindrical surface-shaped reflecting surface 28 are parallel to the arrangement direction of the light emitting elements 12 (x-axis direction). As shown in FIG. 1C, the first concave cylindrical surface-shaped reflecting surface 24 is formed on the right side of a plane including the x-axis and perpendicular to the y-axis, and the second concave cylindrical surface-shaped reflecting surface 28 is the plane thereof. Is formed on the left side.

【0017】側部反射面32は、発光素子12の配列方
向(x軸方向)における光透過性材料22の両端の側面
に第一凹柱面状反射面24及び第二凹柱面状反射面28
と同様の鏡面加工を施したものである。また、放射面3
4は、光透過性材料22の前面を平面状に加工したもの
であり、発光素子12の背面側に設けられている。ま
た、第一実施形態の第一凹柱面状反射面24の形状は、
発光素子12が発した光を発光素子12が配列された直
線上に反射するように設計している。すなわち、第一凹
柱面状反射面24の中心軸を発光素子12が配列された
直線と同一にし、第一凹柱面状反射面24のy−z平面
での切断面を円形状としている。一方、第二凹柱面状反
射面28の形状は、発光素子12が発した光及び中間反
射面26で反射された光が第二凹柱面状反射面28で反
射した後に、被照射面において所定の照射幅をもって集
光するように設計している。この設計の際には、発光素
子12の点光源からのズレ、第二凹柱面状反射面28で
反射した光が放射面34で屈折して外部に放射されるこ
とを考慮する必要がある。たとえば、本発明者等は、第
二凹柱面状反射面28のy−z平面での切断面を、10
次関数 z=a0 +a1 ×y+a2 ×y2 +・・・・+a9 ×y9
10×y10 で求めている。ここで、各係数ak (k=0,1,2,
・・・ ,9,10)は、発光素子から発された光が所定の
照射領域に集光するような11個の反射位置をコンピュ
ータ解析によって求め、この求めた反射位置を上記10
次関数に代入することにより決定される。尚、一般に
は、6次以上の関数を用いて第二凹面状反射面の形状を
設計することが望ましい。
The side reflection surface 32 has a first concave cylindrical surface reflecting surface 24 and a second concave cylindrical surface reflecting surface on the side surfaces of both ends of the light transmissive material 22 in the arrangement direction (x-axis direction) of the light emitting elements 12. 28
It has been subjected to the same mirror finishing as. Also, radiation surface 3
Reference numeral 4 denotes a light-transmissive material 22 whose front surface is processed into a flat shape, and which is provided on the back surface side of the light emitting element 12. Further, the shape of the first concave cylindrical surface 24 of the first embodiment is
The light emitted by the light emitting element 12 is designed to be reflected on a straight line on which the light emitting elements 12 are arranged. That is, the central axis of the first concave cylindrical surface reflecting surface 24 is made to be the same as the straight line on which the light emitting elements 12 are arranged, and the cut surface of the first concave cylindrical surface reflecting surface 24 in the yz plane is circular. . On the other hand, the shape of the second concave columnar reflecting surface 28 is such that the light emitted from the light emitting element 12 and the light reflected by the intermediate reflecting surface 26 are reflected on the second concave columnar reflecting surface 28, and then the irradiated surface is irradiated. It is designed to collect light with a predetermined irradiation width. At the time of this design, it is necessary to take into consideration the deviation from the point light source of the light emitting element 12 and the fact that the light reflected by the second concave cylindrical surface 28 is refracted by the emission surface 34 and emitted to the outside. . For example, the present inventors set the cut surface of the second concave cylindrical surface 28 on the yz plane to 10
Next function z = a 0 + a 1 × y + a 2 × y 2 + ... + a 9 × y 9 +
It is calculated by a 10 × y 10 . Here, each coefficient a k (k = 0, 1, 2,
..., 9, 10) is obtained by computer analysis of eleven reflection positions at which the light emitted from the light emitting element is condensed in a predetermined irradiation area, and the obtained reflection positions are calculated as described above in 10
It is determined by substituting into the next function. In general, it is desirable to design the shape of the second concave reflecting surface using a function of 6th order or higher.

【0018】次に、このように構成された線状光源の発
光素子から発せられた光の光路について説明する。図2
(a)はその線状光源の一の発光素子から発せられた光
のy−z平面における光路を示す図、図2(b)はその
線状光源の一の発光素子から発せられた光のx軸を含む
平面における光路を示す図である。ここでは、一の発光
素子12aから発せられた光に着目する。
Next, the optical path of the light emitted from the light emitting element of the linear light source configured as described above will be described. FIG.
FIG. 2A is a diagram showing an optical path in a yz plane of light emitted from one light emitting element of the linear light source, and FIG. 2B is a diagram showing light emitted from one light emitting element of the linear light source. It is a figure which shows the optical path in the plane containing an x-axis. Here, attention is paid to the light emitted from one light emitting element 12a.

【0019】まず、一の発光素子12aに電力が供給さ
れると、発光素子12aの発光面が発光し、発光面の中
心軸に対して角度が略90度以内であるすべての方向に
向かって光が放射される。このとき、発光素子12aが
発する光のうち第二凹柱面状反射面28に入射する光L
2 は、図2(a)に示すように、第二凹柱面状反射面2
8で反射された後、放射面34で屈折し、被照射面Sに
おいて所定の照射幅をもって集光する。
First, when power is supplied to one light emitting element 12a, the light emitting surface of the light emitting element 12a emits light, and the light is emitted in all directions whose angle is within about 90 degrees with respect to the central axis of the light emitting surface. Light is emitted. At this time, of the light emitted from the light emitting element 12a, the light L incident on the second concave cylindrical surface 28
As shown in FIG. 2 (a), 2 is a second concave prismatic reflecting surface 2
After being reflected by 8, the light is refracted by the emitting surface 34 and is condensed on the surface S to be irradiated with a predetermined irradiation width.

【0020】一方、発光素子12aが発する光のうち第
一凹柱面状反射面24に入射する光L1 は、第一凹柱面
状反射面24で反射された後、発光素子が配列された直
線上に入射する。このうち中間反射面26に入射した光
11は、図2(b)に示すように、中間反射面26で乱
反射され、第一凹柱面状反射面24及び第二凹柱面状反
射面28に向かって進む。ここで、中間反射面26は発
光素子が配列された直線上であって各発光素子の間に配
置されているので、この中間反射面26で反射された光
はあたかも発光素子から発された光であるかのように振
る舞う。すなわち、中間反射面26は擬似的な発光源と
なる。このため、中間反射面26で反射した光L11のう
ち第一凹柱面状反射面24に入射する光は、再度、第一
凹柱面状反射面24で反射された後、発光素子が配列さ
れた直線上に入射することになる。一方、中間反射面2
6で反射した光L11のうち第二凹柱面状反射面28に入
射する光は、第二凹柱面状反射面28で反射された後、
放射面34より外部に放射される。このとき、中間反射
面26は発光素子が配列された直線上に位置するので、
この外部に放射された光は、発光素子が発する光のうち
第二凹柱面状反射面28で反射されて外部に放射される
光L2 と同様に、被照射面Sにおいて所定の照射幅をも
って集光することになる。
On the other hand, of the light emitted from the light emitting element 12a, the light L 1 incident on the first concave cylindrical surface 24 is reflected by the first concave cylindrical reflective surface 24, and then the light emitting elements are arranged. Incident on a straight line. Of these, the light L 11 that has entered the intermediate reflection surface 26 is diffusely reflected by the intermediate reflection surface 26, as shown in FIG. 2B, and the first concave cylindrical surface reflecting surface 24 and the second concave cylindrical surface reflecting surface. Proceed towards 28. Here, since the intermediate reflecting surface 26 is arranged between the light emitting elements on the straight line on which the light emitting elements are arranged, the light reflected by the intermediate reflecting surface 26 is as if emitted from the light emitting elements. Acts as if. That is, the intermediate reflecting surface 26 becomes a pseudo light emitting source. Therefore, of the light L 11 reflected by the intermediate reflecting surface 26, the light incident on the first concave cylindrical reflecting surface 24 is reflected by the first concave cylindrical reflecting surface 24 again, and then the light emitting element It will be incident on the arranged straight lines. On the other hand, the intermediate reflection surface 2
Of the light L 11 reflected by 6, the light incident on the second concave columnar reflecting surface 28 is reflected by the second concave columnar reflecting surface 28,
It is radiated from the radiation surface 34 to the outside. At this time, since the intermediate reflecting surface 26 is located on the straight line on which the light emitting elements are arranged,
The light radiated to the outside has a predetermined irradiation width on the surface S to be irradiated, like the light L 2 reflected by the second concave cylindrical surface 28 of the light emitted from the light emitting element and radiated to the outside. Will be focused.

【0021】次に、第一実施形態の線状光源が発する光
の照度特性について説明する。図3はその線状光源にお
いて発光素子の配列方向(x軸方向)における照度分布
を示す図である。図3において、破線は各発光素子12
が発する光の照度分布を示し、実線は線状光源全体につ
いての照度分布を示す。上述のように、中間反射面26
は擬似的な発光源となり、各中間反射面26には、多数
の発光素子12から発せられた光が第一凹柱面状反射2
4を介して入射することになるので、各発光素子12が
発する光の照度分布は、図6に示す従来の線状光源にお
いて各発光素子が発する光の照度分布に比べて、はるか
に緩やかな山状となり、x軸方向の広い範囲に及ぶ。線
状光源全体についての照度分布は、これらの各発光素子
12が発する光の照度分布を加えることにより得られ
る。このため、第一実施形態の線状光源では、各x座標
位置における照度には多数の発光素子12からの光が寄
与する。
Next, the illuminance characteristic of the light emitted by the linear light source of the first embodiment will be described. FIG. 3 is a diagram showing an illuminance distribution in the array direction (x-axis direction) of the light emitting elements in the linear light source. In FIG. 3, the broken line indicates each light emitting element 12.
Shows the illuminance distribution of the light emitted by, and the solid line shows the illuminance distribution for the entire linear light source. As described above, the intermediate reflecting surface 26
Serves as a pseudo light emitting source, and the light emitted from a large number of light emitting elements 12 is reflected on each of the intermediate reflecting surfaces 26 by the first concave cylindrical surface reflection 2
4, the illuminance distribution of the light emitted by each light emitting element 12 is much gentler than the illuminance distribution of the light emitted by each light emitting element in the conventional linear light source shown in FIG. It becomes a mountain shape and extends over a wide range in the x-axis direction. The illuminance distribution for the entire linear light source is obtained by adding the illuminance distribution of the light emitted from each of the light emitting elements 12. Therefore, in the linear light source of the first embodiment, light from a large number of light emitting elements 12 contributes to the illuminance at each x coordinate position.

【0022】第一実施形態の線状光源では、発光素子が
発した光を発光素子が配列された直線上に反射する第一
凹柱面状反射面と、発光素子が配列された直線付近に配
置された中間反射面とを設けたことにより、中間反射面
が擬似的な発光源となり、各発光素子が発する光のx軸
方向における照度分布が広い範囲に及ぶので、均斉度の
向上を図ることができる。したがって、たとえば、一の
発光素子の特性が劣っていたり、早く劣化したりして、
その出力が他の発光素子の出力に比べて非常に低下した
場合でも、その一の発光素子の出力低下を他の発光素子
によってカバーすることができる。また、発光素子の配
列間隔を従来のものよりも広くしても、従来と同様の均
斉度を得ることができる。
In the linear light source of the first embodiment, the first concave cylindrical surface reflecting the light emitted from the light emitting element on the straight line on which the light emitting elements are arranged, and the linear reflection surface near the straight line on which the light emitting elements are arranged. By providing the arranged intermediate reflection surface, the intermediate reflection surface serves as a pseudo light emission source, and the illuminance distribution in the x-axis direction of the light emitted by each light emitting element extends over a wide range, thereby improving the uniformity. be able to. Therefore, for example, the characteristics of one light emitting element is inferior or deteriorates quickly,
Even when the output is much lower than the outputs of the other light emitting elements, the decrease in the output of the one light emitting element can be covered by the other light emitting element. Further, even if the arrangement interval of the light emitting elements is made wider than that of the conventional one, it is possible to obtain the same degree of uniformity as the conventional one.

【0023】また、発光素子から第一凹柱面状反射面の
側に放射された光は、第一凹柱面状反射面で反射された
後に発光素子が配列された直線上に入射し、このうち中
間反射面で反射された後に第二凹柱面状反射面の側に進
行する光は、第二凹柱面状反射面で反射されて外部に放
射される。したがって、放射面のうち図1(c)の矢印
Rの範囲からのみ外部に光が放射され、リードを引き出
した側からは光が外部に放射されないので、リードによ
って照射光量密度にムラが生じるのを防止することがで
きる。また、リードによって、発光素子が発した光を遮
光し、外部放射効率が低下するのを防止することができ
る。しかも、中間反射面は発光素子が配列された直線上
付近に配置されているので、中間反射面で反射された光
のうち第二凹柱面状反射面に入射する光は、発光素子か
ら第二凹柱面状反射面の側に放射された光と同様に、第
二凹柱面状反射面で制御されて所定の照射領域に照射さ
れるので、照射光量密度の向上を図ることができる。
Further, the light emitted from the light emitting element to the side of the first concave cylindrical surface reflecting surface is reflected by the first concave cylindrical surface reflecting surface, and then is incident on the straight line on which the light emitting elements are arranged, Of these, the light that has been reflected by the intermediate reflection surface and then travels toward the second concave prismatic reflection surface is reflected by the second concave prismatic reflection surface and radiated to the outside. Therefore, light is radiated to the outside only from the range of the arrow R in FIG. 1C on the radiation surface, and the light is not radiated to the outside from the side where the lead is drawn out, so that the lead causes unevenness in the irradiation light amount density. Can be prevented. Further, the lead can block the light emitted from the light emitting element and prevent the external radiation efficiency from being lowered. Moreover, since the intermediate reflecting surface is arranged near the straight line on which the light emitting elements are arranged, of the light reflected by the intermediate reflecting surface, the light that enters the second concave cylindrical reflecting surface is emitted from the light emitting element Similar to the light emitted to the side of the two-concave-cylindrical reflection surface, it is controlled by the second concave-cylindrical reflection surface to irradiate a predetermined irradiation region, so that the irradiation light quantity density can be improved. .

【0024】更に、発光素子の配列方向における両側部
に側部反射面を設けたことにより、発光素子が発した光
及び中間反射面で反射した光のうち側部反射面に入射す
る光は、側部反射面で反射されて内部に戻るので、かか
る光も放射面から放射して、被照射面に到達することに
なる。このため、側部反射面で反射された光を有効に利
用することができると共に、線状光源の端部における照
度の低下を抑えることができる。
Further, by providing the side reflection surfaces on both sides in the arrangement direction of the light emitting elements, the light emitted from the light emitting element and the light reflected by the intermediate reflection surface, which is incident on the side reflection surface, is Since the light is reflected by the side reflection surface and returns to the inside, such light is also emitted from the emission surface and reaches the irradiation surface. Therefore, it is possible to effectively use the light reflected by the side reflection surface, and it is possible to suppress a decrease in illuminance at the end of the linear light source.

【0025】尚、第一実施形態では、発光素子を光透過
性材料で封止しているため、発光素子内から光透過性材
料への光の取り出し効率は向上するが、一方で、発光素
子が発する光の中には、放射面で全反射されて外部に放
射されないものが存在する。しかしながら、放射面で全
反射される角度をもった光でも、中間反射面に入射する
と、中間反射面で乱反射される。このため、その一部は
放射面から外部に取り出すことが可能となり、これによ
り光の取り出し効率の向上を図ることができる。
In the first embodiment, since the light emitting element is sealed with the light transmissive material, the light extraction efficiency from the light emitting element to the light transmissive material is improved. Some of the light emitted by is totally reflected by the emitting surface and is not emitted to the outside. However, even light having an angle that is totally reflected by the emitting surface is diffusely reflected by the intermediate reflecting surface when entering the intermediate reflecting surface. Therefore, a part of the light can be extracted from the emission surface to the outside, which can improve the light extraction efficiency.

【0026】次に、本発明の第二実施形態について図面
を参照して説明する。図4(a)は本発明の第二実施形
態である線状光源の概略正面図、図4(b)はその線状
光源のC−C矢視方向概略断面図、図4(c)はその線
状光源のD−D矢視方向概略断面図である。尚、第二実
施形態において、第一実施形態のものと同一の機能を有
するものには、同一の符号を付すことによりその詳細な
説明を省略する。
Next, a second embodiment of the present invention will be described with reference to the drawings. 4 (a) is a schematic front view of a linear light source that is a second embodiment of the present invention, FIG. 4 (b) is a schematic cross-sectional view of the linear light source taken in the direction of arrows CC, and FIG. 4 (c) is FIG. 3 is a schematic cross-sectional view of the linear light source as viewed in the direction of arrows D-D. In the second embodiment, components having the same functions as those of the first embodiment are denoted by the same reference numerals, and a detailed description thereof will be omitted.

【0027】第二実施形態の線状光源は、複数の発光素
子12と、リード部としての基板16と、複数のワイヤ
(不図示)と、第一凹柱面状反射面24と、中間反射面
26aと、第二凹柱面状反射面28と、側部反射面32
と、放射面34aとを備えるものである。第二実施形態
の線状光源が第一実施形態のものと異なる主な点は、リ
ード部として基板16を用いた点である。基板16の裏
面には回路パターン17が形成されている。発光素子1
2はこの回路パターン17上にマウントされ、図示しな
い他の回路パターンとはワイヤにより電気的に接続され
ている。ここで、基板16には、ガラスエポキシ基板や
セラミック基板等が用いられる。また、中間反射面26
aとしては、基板16上に印刷、メッキ、蒸着、貼り付
け等により形成した高い反射率を有する材料を用いる。
この中間反射面26aは、一般には、鏡面であっても白
色であっても構わない。尚、中間反射面26aとして、
他の反射部材を基板16上にマウントしたものや、基板
16上に樹脂成形したものを用いてもよい。
The linear light source of the second embodiment has a plurality of light emitting elements 12, a substrate 16 as a lead portion, a plurality of wires (not shown), a first concave cylindrical surface 24, and an intermediate reflection. The surface 26a, the second concave prismatic reflecting surface 28, and the side reflecting surface 32.
And a radiation surface 34a. The main difference between the linear light source of the second embodiment and that of the first embodiment is that the substrate 16 is used as the lead portion. A circuit pattern 17 is formed on the back surface of the substrate 16. Light emitting element 1
2 is mounted on this circuit pattern 17 and is electrically connected to other circuit patterns (not shown) by wires. Here, as the substrate 16, a glass epoxy substrate, a ceramic substrate, or the like is used. In addition, the intermediate reflection surface 26
As a, a material having a high reflectance formed on the substrate 16 by printing, plating, vapor deposition, pasting or the like is used.
Generally, the intermediate reflecting surface 26a may be a mirror surface or white. Incidentally, as the intermediate reflecting surface 26a,
Other reflective members mounted on the substrate 16 or resin-molded on the substrate 16 may be used.

【0028】第二実施形態では、発光素子12及び中間
反射面26aと第一凹柱面状反射面24及び第二凹柱面
状反射面28との空間を、光透過性材料で充填せず、中
空としている。また、放射面34aは透明な板状のもの
であり、中空部にゴミ等が入らないようにするためのカ
バーとして用いられる。そして、発光素子12の周辺を
スプレーコート処理することにより、物理的な強度を高
めると共に、発光素子12の防湿を図っている。また、
第二実施形態では、線状光源の内部が中空であるため、
放射面での界面屈折を考慮する必要がなくなるので、第
二凹柱面状反射面28の形状は第一実施形態のものとや
や異なる。その他の構成は上記第一実施形態と同様であ
る。
In the second embodiment, the space between the light emitting element 12, the intermediate reflecting surface 26a, the first concave cylindrical surface reflecting surface 24 and the second concave cylindrical surface reflecting surface 28 is not filled with the light transmissive material. , Hollow. Further, the radiation surface 34a is a transparent plate-like member, and is used as a cover for preventing dust and the like from entering the hollow portion. By spray-coating the periphery of the light emitting element 12, the physical strength is increased and the light emitting element 12 is protected against moisture. Also,
In the second embodiment, since the inside of the linear light source is hollow,
Since it is not necessary to consider the interface refraction on the radiation surface, the shape of the second concave cylindrical surface 28 is slightly different from that of the first embodiment. Other configurations are similar to those of the first embodiment.

【0029】第二実施形態の線状光源でも、発光素子が
発した光を発光素子が配列された直線上に反射する第一
凹柱面状反射面と、発光素子が配列された直線上付近に
配置された中間反射面とを設けたことにより、上記第一
実施形態のものと同様に、均斉度及び照射光量密度の向
上を図ることができる。特に、第二実施形態では、発光
素子及び中間反射面と第一凹柱面状反射面及び第二凹柱
面状反射面との空間を中空としたことにより、発光素子
の配列方向の長さが長い線状光源を容易に作製すること
ができるという利点がある。発光素子の配列方向の長さ
が長い線状光源を作製する場合、発光素子及び中間反射
面と第一凹柱面状反射面及び第二凹柱面状反射面との空
間を光透過性材料等の樹脂で充填すると、樹脂封止する
際に樹脂が収縮して歪みが生じ、長手方向の直線性が悪
くなると共に、発光素子の寿命が低下してしまうからで
ある。
Also in the linear light source of the second embodiment, the first concave columnar reflecting surface for reflecting the light emitted by the light emitting element on the straight line on which the light emitting elements are arranged, and the vicinity of the straight line on which the light emitting elements are arranged By providing the intermediate reflecting surface arranged in the above, it is possible to improve the uniformity and the irradiation light quantity density, as in the first embodiment. In particular, in the second embodiment, by making the space between the light emitting element and the intermediate reflection surface and the first concave prismatic reflection surface and the second concave prismatic reflection surface hollow, the length in the arrangement direction of the light emitting elements The advantage is that a long linear light source can be easily manufactured. In the case of producing a linear light source having a long length in the array direction of the light emitting elements, the space between the light emitting elements and the intermediate reflecting surface and the first concave cylindrical surface reflecting surface and the second concave cylindrical surface reflecting surface is provided with a light transmitting material. This is because when the resin is filled with such a resin, the resin contracts and is distorted when the resin is sealed, the linearity in the longitudinal direction is deteriorated, and the life of the light emitting element is shortened.

【0030】尚、本発明は上記の各実施形態に限定され
るものではなく、その要旨の範囲内において種々の変形
が可能である。たとえば、上記の第二実施形態におい
て、発光素子の代わりにチップLEDを用いてもよい。
チップLEDとは、発光素子が透明樹脂により封止さ
れ、電極を有し、表面実装できる電子部品である。
The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the gist thereof. For example, in the above second embodiment, a chip LED may be used instead of the light emitting element.
A chip LED is an electronic component in which a light emitting element is sealed with a transparent resin, has electrodes, and can be surface-mounted.

【0031】また、上記の第二実施形態では、発光素子
及び中間反射面と第一凹柱面状反射面及び第二凹柱面状
反射面との空間を中空とした場合について説明したが、
かかる空間を光透過性材料で充填するようにしてもよ
い。更に、上記の各実施形態では、単色の発光素子を用
いる場合について説明したが、赤色系の光を発する発光
素子、緑色系の光を発する発光素子、青色系の光を発す
る発光素子を用いて、フルカラーの線状光源を形成する
ようにしてもよい。この場合、各色の発光素子毎に高い
均斉度を有することが必要とされる。単純に考えても、
単色の発光素子を用いた場合と同様の均斉度を持つよう
にするためには、三原色の発光素子を従来の三倍の密度
で搭載しなければならない。しかしながら、発光素子の
配列間隔をあまりに狭くすると、発熱により相互作用を
受けやすく、発光素子の出力が低下したり、劣化しやす
くなるという問題がある。また、線状光源では、一つの
発光素子が劣化しても不良品となるため、搭載する発光
素子が多くなれば、それだけ歩留りが悪くなるという問
題もある。本発明の線状光源では、均斉度及び照射光量
密度の向上を図ることができるため、三原色の発光素子
の配列間隔を従来のものよりも広くすることができ、し
たがって、上記の問題点を解消して、容易にフルカラー
化を実現することができる。しかも、たとえば、ある色
の発光素子の光量が他の色の発光素子の光量に比べて不
足している場合には、光量の不足している発光色の発光
素子を連続して並べることができるという利点もある。
In the second embodiment described above, the case where the space between the light emitting element and the intermediate reflection surface and the first concave prismatic reflection surface and the second concave prismatic reflection surface is hollow is described.
The space may be filled with a light transmissive material. Furthermore, in each of the above-described embodiments, the case of using a monochromatic light emitting element has been described, but a light emitting element that emits red light, a light emitting element that emits green light, and a light emitting element that emits blue light is used. Alternatively, a full-color linear light source may be formed. In this case, it is necessary that each light emitting element of each color has a high degree of uniformity. Even if you think simply
In order to obtain the same degree of uniformity as in the case of using a monochromatic light emitting element, it is necessary to mount the three primary color light emitting elements at a density three times that of the conventional one. However, if the arrangement interval of the light emitting elements is too narrow, there is a problem that the heat generation is likely to cause an interaction, and the output of the light emitting elements is likely to decrease or deteriorate. Further, in the linear light source, even if one light emitting element deteriorates, it becomes a defective product. Therefore, if the number of mounted light emitting elements increases, the yield also deteriorates accordingly. In the linear light source of the present invention, since it is possible to improve the uniformity and the irradiation light quantity density, it is possible to make the arrangement interval of the light emitting elements of the three primary colors wider than that of the conventional one. Therefore, the above problems are solved. Thus, full color can be easily realized. Moreover, for example, when the light amount of the light emitting element of a certain color is insufficient as compared with the light amount of the light emitting element of the other color, the light emitting elements of the light emitting color having the insufficient light amount can be continuously arranged. There is also an advantage.

【0032】[0032]

【発明の効果】以上説明したように請求項1記載の発明
によれば、発光素子と発光素子との間に配置された中間
反射面と、発光素子が発した光及び中間反射面で反射さ
れた光を反射する凹柱面状反射面とを有し、凹柱面状反
射面を発光素子が配列された直線を含む面で二分割し、
その一方の凹柱面状反射面の長手方向における断面を発
光素子の位置を中心とする略円形状に形成し、且つ他方
の凹柱面状反射面の長手方向における断面を入射した光
を反射して外部に放射するように形成したことにより、
中間反射面が擬似的な発光源となり、各発光素子が発す
る光の照度分布が広い範囲に及ぶので、均斉度の向上を
図ることができると共に、中間反射面で反射された光の
うち他方の凹柱面状反射面に入射する光も、発光素子か
ら他方の凹柱面状反射面の側に放射された光と同様に、
所定の照射領域に照射することができるので、照射光量
密度の向上を図ることができる線状光源を提供すること
ができる。
As described above, according to the first aspect of the invention, the light is emitted from the light emitting element and is reflected by the intermediate reflecting surface disposed between the light emitting element and the light emitting element. Having a concave cylindrical surface reflecting surface that reflects light, and dividing the concave cylindrical surface reflecting surface by a surface including a straight line in which light emitting elements are arranged,
The cross section in the longitudinal direction of one of the concave columnar reflecting surfaces is formed into a substantially circular shape centered on the position of the light emitting element, and the light incident on the cross section in the longitudinal direction of the other concave columnar reflecting surface is reflected. And by forming it to radiate to the outside,
Since the intermediate reflecting surface serves as a pseudo light emitting source and the illuminance distribution of the light emitted by each light emitting element extends over a wide range, it is possible to improve the uniformity, and at the same time, the other of the light reflected by the intermediate reflecting surface can be used. Light incident on the concave columnar reflecting surface is also similar to the light emitted from the light emitting element to the other concave columnar reflecting surface side,
Since it is possible to irradiate a predetermined irradiation region, it is possible to provide a linear light source that can improve the irradiation light amount density.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の第一実施形態である線状光源
の概略正面図、(b)はその線状光源のA−A矢視方向
概略断面図、(c)はその線状光源のB−B矢視方向概
略断面図である。
FIG. 1A is a schematic front view of a linear light source that is a first embodiment of the present invention, FIG. 1B is a schematic sectional view of the linear light source taken along the line AA, and FIG. FIG. 3 is a schematic cross-sectional view of the linear light source as viewed in the direction of arrows B-B.

【図2】(a)はその線状光源の一の発光素子から発せ
られた光のy−z平面における光路を示す図、(b)は
その線状光源の一の発光素子から発せられた光のx軸を
含む平面における光路を示す図である。
2A is a diagram showing an optical path in a yz plane of light emitted from one light emitting element of the linear light source, and FIG. 2B is a diagram showing light paths emitted from one light emitting element of the linear light source. It is a figure which shows the optical path in the plane containing the x-axis of light.

【図3】その線状光源において発光素子の配列方向にお
ける照度分布を示す図である。
FIG. 3 is a diagram showing an illuminance distribution in an array direction of light emitting elements in the linear light source.

【図4】(a)は本発明の第二実施形態である線状光源
の概略正面図、(b)はその線状光源のC−C矢視方向
概略断面図、(c)はその線状光源のD−D矢視方向概
略断面図である。
FIG. 4A is a schematic front view of a linear light source that is a second embodiment of the present invention, FIG. 4B is a schematic cross-sectional view of the linear light source in the direction of arrows CC, and FIG. FIG. 3 is a schematic cross-sectional view of the linear light source in the direction of arrows D-D.

【図5】(a)は従来の線状光源の概略正面図、(b)
はその線状光源のE−E矢視方向概略断面図、(c)は
その線状光源のF−F矢視方向概略断面図である。
5A is a schematic front view of a conventional linear light source, and FIG.
Is a schematic cross-sectional view of the linear light source in the EE arrow direction, and (c) is a schematic cross-sectional view of the linear light source in the FF arrow direction.

【図6】その線状光源において発光素子の配列方向にお
ける照度分布を示す図である。
FIG. 6 is a diagram showing an illuminance distribution in the array direction of light emitting elements in the linear light source.

【符号の説明】[Explanation of symbols]

12 発光素子 14a,14b リード 16 基板 17 回路パターン 18 ワイヤ 22 光透過性材料 24 第一凹柱面状反射面 26,26a 中間反射面 28 第二凹柱面状反射面 32 側部反射面 34,34b 放射面 12 light emitting element 14a, 14b lead 16 substrate 17 circuit pattern 18 wire 22 light transmissive material 24 first concave cylindrical surface reflecting surface 26, 26a intermediate reflecting surface 28 second concave cylindrical surface reflecting surface 32 side reflecting surface 34, 34b Radiating surface

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 直線状に配列された複数の発光素子と、
前記複数の発光素子に電力を供給するリード部と、前記
発光素子と発光素子との間に配置された中間反射面と、
前記発光素子の発光面に対向して設けられた前記発光素
子が発した光及び前記中間反射面で反射された光を反射
する凹柱面状反射面とを具備し、 前記凹柱面状反射面は、前記発光素子が配列された直線
を含む面で二分割され、その一方の凹柱面状反射面の長
手方向における断面は前記発光素子の位置を中心とする
略円形状に形成され、且つ他方の凹柱面状反射面の長手
方向における断面は入射した光を反射して外部に放射す
るように形成されていることを特徴とする線状光源。
1. A plurality of light emitting elements arranged linearly,
A lead portion for supplying electric power to the plurality of light emitting elements, an intermediate reflecting surface arranged between the light emitting elements and the light emitting element,
A concave columnar reflection surface for reflecting light emitted by the light emitting element and light reflected by the intermediate reflection surface, the concave columnar reflection surface being provided to face the light emitting surface of the light emitting element; The surface is divided into two by a surface including a straight line in which the light emitting element is arranged, the cross section in the longitudinal direction of one of the concave cylindrical surface is formed in a substantially circular shape centered on the position of the light emitting element, A linear light source characterized in that a cross section in the longitudinal direction of the other concave cylindrical surface is formed so as to reflect incident light and radiate it to the outside.
【請求項2】 前記他方の凹柱面状反射面は、反射した
光を線状に集光するものであることを特徴とする請求項
1記載の線状光源。
2. The linear light source according to claim 1, wherein the other concave cylindrical surface-shaped reflecting surface collects the reflected light linearly.
【請求項3】 前記リード部を前記一方の凹柱面状反射
面の側から外部に引き出したことを特徴とする請求項1
又は2記載の線状光源。
3. The lead portion is drawn out from the side of the one concave columnar reflecting surface to the outside.
Alternatively, the linear light source according to item 2.
【請求項4】 前記複数の発光素子及び前記中間反射面
と前記凹柱面状反射面との空間を、光透過性材料で充填
したことを特徴とする請求項1乃至3記載の線状光源。
4. The linear light source according to claim 1, wherein a space between the plurality of light emitting elements, the intermediate reflection surface, and the concave cylindrical surface is filled with a light transmissive material. .
【請求項5】 前記リード部は回路パターンが形成され
た基板を含むものであり、前記複数の発光素子は前記基
板の回路パターン上に取り付けられていることを特徴と
する請求項1乃至4記載の線状光源。
5. The lead portion includes a substrate having a circuit pattern formed thereon, and the plurality of light emitting elements are mounted on the circuit pattern of the substrate. Linear light source.
【請求項6】 前記発光素子の配列方向における両側部
に前記発光素子が発した光及び前記中間反射面で反射さ
れた光を反射する側部反射面を設けたことを特徴とする
請求項1乃至5記載の線状光源。
6. The side reflecting surfaces for reflecting the light emitted by the light emitting elements and the light reflected by the intermediate reflecting surface are provided on both sides in the arrangement direction of the light emitting elements. The linear light source according to any one of claims 1 to 5.
【請求項7】 前記複数の発光素子として、赤色系の光
を発する発光素子と、緑色系の光を発する発光素子と、
青色系の光を発する発光素子とを用いたことを特徴とす
る請求項1乃至6記載の線状光源。
7. A light emitting element which emits red light and a light emitting element which emits green light, as the plurality of light emitting elements,
7. The linear light source according to claim 1, wherein a light emitting element that emits blue light is used.
JP5351696A 1996-03-11 1996-03-11 Linear light source Expired - Fee Related JP3600973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5351696A JP3600973B2 (en) 1996-03-11 1996-03-11 Linear light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5351696A JP3600973B2 (en) 1996-03-11 1996-03-11 Linear light source

Publications (2)

Publication Number Publication Date
JPH09246598A true JPH09246598A (en) 1997-09-19
JP3600973B2 JP3600973B2 (en) 2004-12-15

Family

ID=12944995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5351696A Expired - Fee Related JP3600973B2 (en) 1996-03-11 1996-03-11 Linear light source

Country Status (1)

Country Link
JP (1) JP3600973B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432045B1 (en) * 2000-07-14 2004-05-22 교토덴키키 가부시키가이샤 Line type lighting device
JP2016207922A (en) * 2015-04-27 2016-12-08 シチズン電子株式会社 Light-emitting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432045B1 (en) * 2000-07-14 2004-05-22 교토덴키키 가부시키가이샤 Line type lighting device
JP2016207922A (en) * 2015-04-27 2016-12-08 シチズン電子株式会社 Light-emitting device

Also Published As

Publication number Publication date
JP3600973B2 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
US6886962B2 (en) Shielded reflective light-emitting diode
US5418384A (en) Light-source device including a linear array of LEDs
JP4182783B2 (en) LED package
US7029156B2 (en) Light emitting apparatus and display
KR101413503B1 (en) Optoelectronic component with a wireless contacting
TWI446568B (en) Semiconductor light-emitting device
US7781787B2 (en) Light-emitting diode, led light, and light apparatus
JP2004127604A (en) Light-emitting diode and backlight unit
JP2004235139A (en) Linear light source device and its manufacturing method, as well as surface light emitting device
JP2004363210A (en) Optical semiconductor device
JPH01130578A (en) Light emitting diode
JP2004191718A (en) Led light source device
KR100443097B1 (en) Linear Illumination Device
JP3649939B2 (en) Line light source device and manufacturing method thereof
US7411222B2 (en) Package for light emitting element and manufacturing method thereof
US20120032216A1 (en) Light Emitting Diode Package Structure
JPH09246598A (en) Linear light source
US10847503B2 (en) Optoelectronic component and method for producing an optoelectronic component
JPH09270534A (en) Linear light source
KR101309762B1 (en) Led package with downwardly relfective surface
JP2001007406A (en) Light emitting diode array
JPH01204481A (en) Led linear light source
KR101337601B1 (en) Led package with downwardly relfective surface
US20140022795A1 (en) Led bulb
JP3688988B2 (en) Chip LED

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040917

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees