JPH09246037A - Superconducting magnet equipment - Google Patents

Superconducting magnet equipment

Info

Publication number
JPH09246037A
JPH09246037A JP7538696A JP7538696A JPH09246037A JP H09246037 A JPH09246037 A JP H09246037A JP 7538696 A JP7538696 A JP 7538696A JP 7538696 A JP7538696 A JP 7538696A JP H09246037 A JPH09246037 A JP H09246037A
Authority
JP
Japan
Prior art keywords
superconducting coil
superconducting
coil
magnetic field
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7538696A
Other languages
Japanese (ja)
Inventor
Masamichi Kawai
正道 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7538696A priority Critical patent/JPH09246037A/en
Publication of JPH09246037A publication Critical patent/JPH09246037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease current density in the inner periphery, and decrease magnetic field, by forming the section of a superconducting coil in a trapezoid wherein the outer peripheral side is longer than the inner peripheral side. SOLUTION: The section of a superconducting coil 1 is formed in a trapezoid wherein the outer peripheral side 5 of the superconducting coil 1 is longer than the inner peripheral side 6 of the coil 1. As to the maximum empirical magnetic field of the innermost periphery, the strength of magnetic field is reduced by about 10%, on account of the trapezoidal form. Characteristics of the superconducting coil 1 are defined by the maximum empirical magnetic field. As a result, when the maximum empirical magnetic field is reduced, the load factor of a superconducting wire is reduced by that amount, and the margin reaching the quenching is increased. Thereby a stable superconducting coil is obtained, and the quenching phenomenon is made hard to occur.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導線を巻回し
てなる超電導コイルを冷媒と共に内槽容器に収納して構
成された超電導磁石装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device having a superconducting coil formed by winding a superconducting wire in an inner container together with a refrigerant.

【0002】[0002]

【従来の技術】例えば、現在開発が進められている磁気
浮上式鉄道(リニアモーターカー)用の超電導磁石装置
は、図7に示すように構成されている。すなわち、超電
導磁石装置は、超電導線を巻回してなる超電導コイル1
と、超電導コイル1を冷却するための冷媒(液体ヘリウ
ム)2とを内槽容器3内に収納し、コイル支持具4で内
槽容器3内に支持する構造となっている。この内槽容器
3は超電導コイル1の発生する電磁力を支持し、変形に
よる超電導コイル1の破壊を防ぐとともに、冷煤である
液体ヘリウムを所定量貯蔵する役目を有している。
2. Description of the Related Art For example, a superconducting magnet device for a magnetic levitation railway (linear motor car), which is currently under development, is constructed as shown in FIG. That is, the superconducting magnet device includes a superconducting coil 1 formed by winding a superconducting wire.
And a coolant (liquid helium) 2 for cooling the superconducting coil 1 are housed in the inner tank container 3 and supported by the coil support 4 in the inner tank container 3. The inner tank container 3 supports the electromagnetic force generated by the superconducting coil 1, prevents the destruction of the superconducting coil 1 due to deformation, and stores a predetermined amount of liquid helium as cold soot.

【0003】ここで、超電導コイル1の断面形状に着目
すると、製造の容易さから単純な矩形断面形状をとって
いる。この断面に沿って超電導コイル1自身が作り出す
磁場の分布をみると、図8に示すように、超電導コイル
1の内周側に高い磁場の領域が現れる。これは、ソレノ
イド型コイルやレーストラック型コイルでは物理的に避
けられない現象である。また、一般に、超電導線は高い
磁場に晒されると、超電導線に流し得る最大電流である
臨界電流が低下し、超電導状態が破れてしまうクエンチ
現象を起こしやすくなる。従って、超電導コイル1の最
高性能は超電導コイル1の外周側の線材の能力にまだ余
裕があるにも拘わらず、高磁場に晒される内周側の超電
導線材の能力によって規定されてしまうことになる。
Here, paying attention to the cross-sectional shape of the superconducting coil 1, the superconducting coil 1 has a simple rectangular cross-sectional shape because of its ease of manufacture. Looking at the distribution of the magnetic field generated by the superconducting coil 1 itself along this cross section, as shown in FIG. 8, a high magnetic field region appears on the inner peripheral side of the superconducting coil 1. This is a phenomenon that is physically unavoidable with solenoid coils and racetrack coils. Further, in general, when a superconducting wire is exposed to a high magnetic field, the critical current, which is the maximum current that can be passed through the superconducting wire, decreases, and the quenching phenomenon that breaks the superconducting state is likely to occur. Therefore, the maximum performance of the superconducting coil 1 is defined by the capacity of the superconducting wire on the inner peripheral side exposed to the high magnetic field, although the capacity of the wire on the outer peripheral side of the superconducting coil 1 still has a margin. .

【0004】そこで、従来はこの内周側部分の電流密度
を下げて磁場を下げるか、あるいは臨界電流の大きな線
材を用いる等の手法によって超電導コイル1全体の性能
を向上させるグレーディング手法がとられていた。
Therefore, conventionally, a grading method has been taken to improve the performance of the superconducting coil 1 as a whole by reducing the current density in the inner peripheral portion to reduce the magnetic field or using a wire having a large critical current. It was

【0005】一方、超電導コイル1の固定については、
図7に示すように矩形断面の超電導コイル1の内外周面
を平面での摩擦力をもって、コイル支持具4で保持する
構造であった。
On the other hand, for fixing the superconducting coil 1,
As shown in FIG. 7, the inner and outer peripheral surfaces of the superconducting coil 1 having a rectangular cross section are held by the coil supporting tool 4 with a frictional force in a plane.

【0006】[0006]

【発明が解決しようとする課題】ところが、超電導コイ
ル1の内周側部分の電流密度を下げるために、グレーデ
ィング手法を採用すると、別種の線材を途中で接続する
必要があり、構造の複雑化につながるだけでなく、超電
導コイル1の断面積が増加して重量増につながり、さら
に接続部分に僅かながら電気抵抗が発生するという欠点
がある。
However, if a grading method is adopted in order to reduce the current density in the inner peripheral side portion of the superconducting coil 1, it is necessary to connect another kind of wire in the middle, which complicates the structure. In addition to being connected, the cross-sectional area of the superconducting coil 1 increases, leading to an increase in weight, and there is a drawback that a slight electric resistance is generated in the connecting portion.

【0007】また、超電導コイル1の固定という観点か
らみると、図7のように矩形断面の超電導コイル1をコ
イル支持具4で保持する構造では、超電導コイル1の内
外周面を平面で摩擦力をもって支持せざるを得ないの
で、振動を加えた際に微少な滑りを発生しやすい。滑り
が発生すると摩擦発熱が起こる。発熱によって超電導線
材の温度が上昇すると、超電導線の臨界電流が急激に低
下し、磁気浮上式鉄道用の超電導磁石装置の場合は、通
常は液体ヘリウム温度(4.2K)である超電導コイル
1が部分的に7〜8Kの温度に達しただけでクエンチし
てしまう場合がある。
From the standpoint of fixing the superconducting coil 1, in the structure in which the superconducting coil 1 having a rectangular cross section is held by the coil support 4 as shown in FIG. 7, the inner and outer peripheral surfaces of the superconducting coil 1 are flat with friction force. Since there is no choice but to support it, it is easy for slight slippage to occur when vibration is applied. When sliding occurs, frictional heat is generated. When the temperature of the superconducting wire rises due to heat generation, the critical current of the superconducting wire sharply decreases, and in the case of the magnetic levitation railway superconducting magnet device, the superconducting coil 1 which is usually liquid helium temperature (4.2K) is Quenching may occur only when the temperature reaches 7 to 8 K partially.

【0008】さらに、超電導コイル1には常温で組み立
て、極低温にまで冷却するという過程が必須であるが、
この場合、熱収縮によって超電導コイル1とコイル支持
具4と間の面圧力が低下してしまい、より小さな力で滑
りを起こしやすくなってしまう。従って、この部分の摩
擦発熱は最小限に抑える必要があり、コイル固定部分に
は特別な低摩擦化の必要があり、構造の複雑化を招いて
いた。
Further, the superconducting coil 1 must be assembled at room temperature and cooled down to an extremely low temperature.
In this case, the surface pressure between the superconducting coil 1 and the coil supporting tool 4 decreases due to thermal contraction, and slippage is likely to occur with a smaller force. Therefore, it is necessary to minimize frictional heat generation in this portion, and it is necessary to reduce friction particularly in the coil fixing portion, resulting in a complicated structure.

【0009】このように、従来の超電導磁石装置におい
ては、超電導コイル1内周側に磁場の高い領域が現れ、
超電導コイル1全体の性能はこの部分を通る超電導線材
の能力によって規定されてしまうので、超電導コイル1
全体の性能を向上させるために超電導コイル1の内周側
に臨界電流の高い太い線材を使用する必要がある。
As described above, in the conventional superconducting magnet device, a region having a high magnetic field appears on the inner peripheral side of the superconducting coil 1.
Since the performance of the superconducting coil 1 as a whole is defined by the ability of the superconducting wire passing through this portion, the superconducting coil 1
In order to improve the overall performance, it is necessary to use a thick wire having a high critical current on the inner peripheral side of the superconducting coil 1.

【0010】従って、超電導コイル1の構造が複雑化し
て断面積や重量が増加するほか、接続部分に僅かながら
電気抵抗が発生することがあり、クエンチ発生の原因に
なっていた。
Therefore, the structure of the superconducting coil 1 is complicated, the cross-sectional area and the weight are increased, and a slight electric resistance may be generated in the connection portion, which causes the quench.

【0011】一方、矩形断面の超電導コイル1をコイル
支持具4を介して摩擦力で保持する場合、従来構造では
単純に平面同士の突き合わせであったので、熱収縮によ
って固定力が低下し、微少な滑りが発生しやすくなる。
すると、滑った部分が発熱して超電導コイルの温度が上
昇し、クエンチ発生の原因となり超電導磁石装置の安定
性が著しく損なわれる場合があった。
On the other hand, when the superconducting coil 1 having a rectangular cross section is held by frictional force via the coil support 4, the conventional structure is simply the abutting of the planes with each other. Slippage is likely to occur.
Then, the slipped portion generates heat and the temperature of the superconducting coil rises, which may cause quenching, and the stability of the superconducting magnet device may be significantly impaired.

【0012】本発明の目的は、クエンチが発生し難い安
定した特性の超電導磁石装置を得ることである。
An object of the present invention is to obtain a superconducting magnet device having stable characteristics in which quenching hardly occurs.

【0013】[0013]

【課題を解決するための手段】請求項1の発明は、超電
導線を巻回してなる超電導コイルと、超電導コイルを冷
媒と共に収納する内槽容器と、超電導コイルを内槽容器
内で固定支持するためのコイル支持具とを有し、超電導
コイルの断面形状を、超電導コイルの外周辺が超電導コ
イルの内周辺より長い台形形状に形成したものである。
According to a first aspect of the present invention, there is provided a superconducting coil formed by winding a superconducting wire, an inner vessel for accommodating the superconducting coil together with a refrigerant, and the superconducting coil fixedly supported in the inner vessel. And a coil supporting member for forming a superconducting coil having a trapezoidal shape in which the outer periphery of the superconducting coil is longer than the inner periphery of the superconducting coil.

【0014】請求項1の発明では、超電導コイルの内周
側の断面積が外周側の断面積より小さくなり、内周側部
分の電流密度を下げ磁場を下げる。これにより超電導コ
イルの最大経験磁界が下がる。
According to the first aspect of the present invention, the cross-sectional area of the inner peripheral side of the superconducting coil becomes smaller than the cross-sectional area of the outer peripheral side, and the current density in the inner peripheral side portion is lowered and the magnetic field is lowered. This reduces the maximum empirical magnetic field of the superconducting coil.

【0015】請求項2の発明は、超電導線を巻回してな
る超電導コイルと、超電導コイルを冷媒と共に収納する
内槽容器と、超電導コイルを内槽容器内で固定支持する
ためのコイル支持具とを有し、超電導コイルの断面形状
を、超電導コイルの外周辺を底辺とする三角形形状に形
成したものである。
According to the second aspect of the present invention, a superconducting coil formed by winding a superconducting wire, an inner vessel for accommodating the superconducting coil together with a refrigerant, and a coil support for fixing and supporting the superconducting coil in the inner vessel. And the cross-sectional shape of the superconducting coil is formed in a triangular shape with the outer periphery of the superconducting coil as the base.

【0016】請求項2の発明では、請求項1の発明と同
様に、超電導コイルの内周側の断面積が外周側の断面積
より小さくなり、内周側部分の電流密度を下げ磁場を下
げる。これにより超電導コイルの最大経験磁界が下が
る。
According to the second aspect of the invention, similarly to the first aspect of the invention, the cross-sectional area of the inner peripheral side of the superconducting coil becomes smaller than the cross-sectional area of the outer peripheral side, and the current density in the inner peripheral side portion is lowered and the magnetic field is lowered. . This reduces the maximum empirical magnetic field of the superconducting coil.

【0017】請求項3の発明は、超電導線を巻回してな
る超電導コイルと、超電導コイルを冷媒と共に収納する
内槽容器と、超電導コイルを内槽容器内で固定支持する
ためのコイル支持具とを有し、超電導コイルの断面形状
を、超電導コイルの内周辺が超電導コイルの外周辺より
長い台形形状に形成し、コイル支持具は、超電導コイル
の外周辺を挟持する複数個の支持部材で構成し超電導コ
イルの周方向に不連続に配置したものである。
According to the third aspect of the present invention, there is provided a superconducting coil formed by winding a superconducting wire, an inner vessel for accommodating the superconducting coil together with a refrigerant, and a coil support for fixing and supporting the superconducting coil in the inner vessel. And the cross-sectional shape of the superconducting coil is formed in a trapezoidal shape in which the inner periphery of the superconducting coil is longer than the outer periphery of the superconducting coil, and the coil support is composed of a plurality of supporting members that sandwich the outer periphery of the superconducting coil. The superconducting coils are arranged discontinuously in the circumferential direction.

【0018】請求項3の発明では、各々の支持部材は、
超電導コイルの周方向に所定の間隔で不連続に配置さ
れ、外周辺を挟持して超電導コイルを支持する。これに
より、超電導コイルの支持がより強固になる。
In the invention of claim 3, each support member is
The superconducting coils are discontinuously arranged at predetermined intervals in the circumferential direction, and the outer periphery is sandwiched to support the superconducting coils. As a result, the superconducting coil is supported more firmly.

【0019】請求項4の発明は、超電導線を巻回してな
る超電導コイルと、超電導コイルを冷媒と共に収納する
内槽容器と、超電導コイルを内槽容器内で固定支持する
ためのコイル支持具とを有し、超電導コイルの断面形状
を、超電導コイルの内周辺を底辺とする三角形形状に形
成し、コイル支持具は、超電導コイルの外周における三
角形形状の頂点部を挟持する複数個の支持部材で構成し
超電導コイルの周方向に不連続に配置したものである。
According to a fourth aspect of the present invention, there is provided a superconducting coil formed by winding a superconducting wire, an inner vessel for accommodating the superconducting coil together with a refrigerant, and a coil support for fixing and supporting the superconducting coil in the inner vessel. And forming the cross-sectional shape of the superconducting coil into a triangular shape with the inner periphery of the superconducting coil as the base, and the coil support is a plurality of supporting members that sandwich the triangular apex of the outer periphery of the superconducting coil. The superconducting coil is arranged discontinuously in the circumferential direction.

【0020】請求項4の発明では、請求項3の発明と同
様に、各々の支持部材は、超電導コイルの周方向に所定
の間隔で不連続に配置され、外周辺を挟持して超電導コ
イルを支持する。これにより、超電導コイルの支持がよ
り強固になる。
In the invention of claim 4, as in the invention of claim 3, the respective support members are discontinuously arranged at a predetermined interval in the circumferential direction of the superconducting coil, and the outer periphery is sandwiched to sandwich the superconducting coil. To support. As a result, the superconducting coil is supported more firmly.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1は本発明の第1の実施の形態における超電導
コイルの説明図である。この第1の実施の形態は、超電
導コイル1の断面形状を、超電導コイル1の外周辺5が
超電導コイル1の内周辺6より長い台形形状に形成した
ものである。この超電導コイル1は、超電導線の線材を
樹脂含浸により固定して形成される。なお、自己融着線
材を用いて線材を接着固定するようにしても良い。
Embodiments of the present invention will be described below. FIG. 1 is an explanatory diagram of a superconducting coil according to the first embodiment of the present invention. In the first embodiment, the cross-sectional shape of the superconducting coil 1 is formed in a trapezoidal shape in which the outer periphery 5 of the superconducting coil 1 is longer than the inner periphery 6 of the superconducting coil 1. The superconducting coil 1 is formed by fixing a wire material of a superconducting wire by resin impregnation. The wire may be adhesively fixed using a self-bonding wire.

【0022】図1において、超電導コイル1は、その断
面形状の外周辺5が長く、内周辺6が短い台形形状をな
している。この様な断面形状のレーストラック型の超電
導コイル1においては、最大磁場を示す点の内周側から
半径方向の磁場分布を解析すると図2に示すような特性
となる。
In FIG. 1, the superconducting coil 1 has a trapezoidal shape in which the outer periphery 5 of the cross-sectional shape is long and the inner periphery 6 is short. In the racetrack type superconducting coil 1 having such a cross-sectional shape, the magnetic field distribution in the radial direction from the inner peripheral side of the point showing the maximum magnetic field has the characteristics shown in FIG.

【0023】図2の特性曲線S1は、第1の実施の形態
による断面形状が台形形状の超電導コイル1の特性曲線
であり、特性曲線S2は従来例における断面形状が矩形
形状の超電導コイル1の特性曲線である。
A characteristic curve S1 of FIG. 2 is a characteristic curve of the superconducting coil 1 having a trapezoidal cross section according to the first embodiment, and a characteristic curve S2 of the conventional superconducting coil 1 having a rectangular cross section. It is a characteristic curve.

【0024】この解析で使用した超電導コイル1は、従
来のものとして、図3(a)に示すように断面寸法が8
0mm×45mmの矩形断面コイルを使用し、第1の実
施の形態のものとして、図3(b)に示すように80m
m×(80mm+10mm)/2の台形断面コイルを使
用している。つまり、断面積を同じとし、起磁力は共に
700kAである。
The superconducting coil 1 used in this analysis is of a conventional type and has a sectional size of 8 as shown in FIG. 3 (a).
A rectangular section coil of 0 mm × 45 mm is used, and as in the first embodiment, as shown in FIG.
A trapezoidal section coil of m × (80 mm + 10 mm) / 2 is used. That is, the magnetomotive force is 700 kA for the same cross-sectional area.

【0025】図2において、最内周側の最大経験磁界は
台形断面コイルでは約4.6テスラであり、矩形断面で
は約5.1テスラである。従って、台形形状とすること
により、磁場の大きさを約10%低減できる。超電導コ
イル1の特性はコイルの最大経験磁界によって規定され
てしまうので、最大経験磁界が低減されると、その分超
電導線の負荷率が下がり、クエンチに至るまでの余裕が
大きくなる。
In FIG. 2, the maximum empirical magnetic field on the innermost circumference side is about 4.6 Tesla for the trapezoidal section coil and about 5.1 Tesla for the rectangular section. Therefore, the trapezoidal shape can reduce the magnitude of the magnetic field by about 10%. Since the characteristics of the superconducting coil 1 are defined by the maximum empirical magnetic field of the coil, if the maximum empirical magnetic field is reduced, the load factor of the superconducting wire is reduced by that amount, and the margin until quenching becomes large.

【0026】そのため、グレーディングを施す必要性が
低下し、超電導コイル1の単純化や軽量化につながる。
もしグレーディングを施すならば、より安定した特性の
超電導コイルが得られる。
Therefore, the need for grading is reduced, which leads to simplification and weight saving of the superconducting coil 1.
If graded, a superconducting coil with more stable characteristics can be obtained.

【0027】次に、本発明の第2の実施の形態を図4に
示す。この第2の実施の形態は、超電導コイル1の断面
形状を、超電導コイル1の外周辺を底辺とする三角形形
状に形成したものである。この様な断面形状とすること
により、第1の実施の形態と同様に、超電導コイル1の
内周側の最大磁場を低減する効果がある。
Next, a second embodiment of the present invention is shown in FIG. In the second embodiment, the cross-sectional shape of the superconducting coil 1 is formed in a triangular shape having the outer periphery of the superconducting coil 1 as the base. With such a cross-sectional shape, the maximum magnetic field on the inner peripheral side of the superconducting coil 1 can be reduced as in the first embodiment.

【0028】次に、本発明の第3の実施の形態を説明す
る。図5は、本発明の第3の実施の形態の説明図であ
る。この第4の実施の形態は、超電導コイル1の断面形
状を、超電導コイル1の内周辺6が超電導コイル1の外
周辺5より長い台形形状に形成すると共に、コイル支持
具4は、超電導コイル1の外周辺5を挟持する複数個の
支持部材7で構成し多ものである。そして、その複数個
の支持部材7は、超電導コイル1の外周辺5の外側の周
方向に不連続に配置される。
Next, a third embodiment of the present invention will be described. FIG. 5 is an explanatory diagram of the third embodiment of the present invention. In the fourth embodiment, the cross-sectional shape of the superconducting coil 1 is formed in a trapezoidal shape in which the inner periphery 6 of the superconducting coil 1 is longer than the outer periphery 5 of the superconducting coil 1, and the coil supporting member 4 is formed in the superconducting coil 1. It is composed of a plurality of support members 7 that sandwich the outer periphery 5 and is many. The plurality of supporting members 7 are arranged discontinuously in the circumferential direction outside the outer periphery 5 of the superconducting coil 1.

【0029】図5において、第3の実施の形態における
超電導コイル1は、その断面形状の外周辺5が短く、内
周辺6が長い台形形状をなしている。この様に断面の内
周辺6が外周辺5より長い場合は、磁場の分布では内周
側の最大経験磁界が大きくなり、矩形断面コイルより不
利となることが予想される。
In FIG. 5, the superconducting coil 1 according to the third embodiment has a trapezoidal shape in which the outer periphery 5 of the cross-sectional shape is short and the inner periphery 6 is long. When the inner periphery 6 of the cross section is longer than the outer periphery 5 as described above, the maximum empirical magnetic field on the inner periphery side becomes large in the distribution of the magnetic field, which is expected to be more disadvantageous than the rectangular cross section coil.

【0030】しかし、第3の実施の形態のように、超電
導コイル1の外周側にコイル支持具4として複数の支持
部材を取り付けて、超電導コイル1を固定するので、超
電導コイル1の固定力が増し、コイル支持具4とk超電
導コイル1との摩擦による発熱が抑制されることにより
クエンチの発生を防止することができ安定性が向上す
る。すなわち、超電導コイル1を励磁するとコイルフー
プ力によって、凸型の超電導コイル1が凹型の支持部材
7に外周面及び側面ともに強固に押し当てられるので、
超電導コイル1の固定力が増す。
However, as in the third embodiment, since a plurality of supporting members as the coil support 4 are attached to the outer peripheral side of the superconducting coil 1 to fix the superconducting coil 1, the fixing force of the superconducting coil 1 is increased. In addition, heat generation due to friction between the coil support 4 and the k superconducting coil 1 is suppressed, so that quenching can be prevented and stability is improved. That is, when the superconducting coil 1 is excited, the convex superconducting coil 1 is firmly pressed against the concave supporting member 7 on both the outer peripheral surface and the side surface by the coil hoop force.
The fixing force of the superconducting coil 1 increases.

【0031】通常、樹脂と導体よりなる超電導コイルの
熱収縮は金属を主体とするコイル支持具4より大きいの
で、極低温への冷却によってコイル固定力がある程度減
少するのはやむを得ないが、この第3の実施の形態のよ
うな構成とすることにより、超電導コイル1の励磁によ
り超電導コイル1の周方向及び側面方向の両方向とも固
定力が増加して超電導コイル1の動きが抑えられ、熱収
縮によるコイル固定力の低下を補うことができる。
Generally, the heat shrinkage of the superconducting coil made of resin and conductor is larger than that of the coil support 4 mainly made of metal. Therefore, it is unavoidable that the coil fixing force is reduced to some extent by cooling to a very low temperature. With the configuration as in the third embodiment, the exciting force of the superconducting coil 1 increases the fixing force in both the circumferential direction and the lateral direction of the superconducting coil 1 to suppress the movement of the superconducting coil 1 and to reduce the heat contraction. The decrease in coil fixing force can be compensated.

【0032】従って、従来構造の図7の様に超電導コイ
ル1を単平面の摩擦力で支持していた場合に比べて、超
電導コイル1とコイル支持具4(支持部材7)との間で
微小滑りが起こりにくくなり、摩擦発熱による線材の温
度上昇が抑制され、超電導コイル1の安定性が増すこと
になる。
Therefore, as compared with the conventional structure in which the superconducting coil 1 is supported by a single-plane frictional force as shown in FIG. 7, the superconducting coil 1 and the coil supporting member 4 (support member 7) are slightly smaller than each other. Sliding is less likely to occur, the temperature rise of the wire due to frictional heat generation is suppressed, and the stability of the superconducting coil 1 is increased.

【0033】図6は、本発明の第4の実施の形態の説明
図である。図6において、超電導コイル1はその断面形
状が内周辺6を底辺とする三角形形状をなしている。こ
の様な断面形状とすることにより、第3の実施の形態と
同様に、超電導コイル1の励磁により超電導コイル1の
固定力を増加させ、超電導コイル1とコイル支持具4
(支持部材7)との間の微小滑りによる摩擦発熱を抑制
し、超電導コイル1の安定性を増す効果がある。
FIG. 6 is an explanatory view of the fourth embodiment of the present invention. In FIG. 6, the superconducting coil 1 has a triangular cross-sectional shape whose inner periphery 6 is the base. With such a cross-sectional shape, as in the third embodiment, the fixing force of the superconducting coil 1 is increased by exciting the superconducting coil 1, and the superconducting coil 1 and the coil support 4 are provided.
It has an effect of suppressing frictional heat generation due to minute slippage with the (support member 7) and increasing stability of the superconducting coil 1.

【0034】このように、第3の実施の形態及び第4の
実施の形態においては、断面の内周辺6が外周辺5より
長く、外周側にコイル支持具4として支持部材7を周方
向に所定の間隔で取り付けて、超電導コイル1を固定し
ているので、超電導コイル1の励磁によるコイルフープ
力によって、超電導コイル1がコイル支持具4である支
持部材7ににより強固に押し当てられるようになる。従
って、超電導コイル1の固定力が増すので、熱収縮によ
るコイル固定力の低下を補うことができる。すなわち、
超電導コイル1を単平面の摩擦力で支持していた場合に
比べて、コイル支持具4での滑りが起こりにくくなり、
超電導コイル1の安定性が増すことになる。
As described above, in the third embodiment and the fourth embodiment, the inner periphery 6 of the cross section is longer than the outer periphery 5, and the support member 7 is used as the coil support 4 on the outer peripheral side in the circumferential direction. Since the superconducting coil 1 is fixed and fixed at predetermined intervals, the coil hoop force generated by the excitation of the superconducting coil 1 causes the superconducting coil 1 to be more firmly pressed against the supporting member 7 which is the coil supporting member 4. . Therefore, since the fixing force of the superconducting coil 1 is increased, it is possible to compensate for the decrease in the coil fixing force due to thermal contraction. That is,
Compared with the case where the superconducting coil 1 is supported by the frictional force on a single plane, the coil support 4 is less likely to slip,
The stability of the superconducting coil 1 will be increased.

【0035】[0035]

【発明の効果】以上述べたように、本発明によれば、安
定した超電導コイルが得られるので、クエンチ現象が発
生しにくい超電導磁石装置を得ることができる。
As described above, according to the present invention, since a stable superconducting coil can be obtained, it is possible to obtain a superconducting magnet device in which the quench phenomenon does not easily occur.

【0036】すなわち、請求項1又は請求項2の発明に
よれば、超電導コイルの断面形状を外周辺が外周辺より
長い台形形状又は外周辺を底辺とする三角形形状とした
ので、超電導コイルの最大経験磁界を低減でき、超電導
線の負荷率を下げた安定した超電導磁石装置が得られ
る。
That is, according to the invention of claim 1 or claim 2, the cross-sectional shape of the superconducting coil is a trapezoidal shape in which the outer periphery is longer than the outer periphery or a triangular shape having the outer periphery as the base. An empirical magnetic field can be reduced, and a stable superconducting magnet device with a reduced load factor of the superconducting wire can be obtained.

【0037】また、請求項3又は請求項4の発明名で
は、超電導コイルの断面形状を内周辺が外周辺より長い
台形形状又は内周辺を底辺とする三角形形状とし、コイ
ル励磁時のコイルフープ力を利用して複数個の支持部材
により超電導コイルの外周側を周方向に渡って支持する
ので、超電導コイルの固定力を増すことができる。つま
り、超電導コイルとコイル支持具との間の摩擦発熱が抑
制でき、安定した超電導磁石装置が得られる。
Further, in the invention of claim 3 or claim 4, the cross-sectional shape of the superconducting coil is a trapezoidal shape in which the inner periphery is longer than the outer periphery or a triangular shape having the inner periphery as the base, and the coil hoop force during coil excitation is Since the outer peripheral side of the superconducting coil is circumferentially supported by the plurality of supporting members by utilizing it, the fixing force of the superconducting coil can be increased. That is, frictional heat generation between the superconducting coil and the coil support can be suppressed, and a stable superconducting magnet device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態による超電導コイル
の説明図である。
FIG. 1 is an explanatory diagram of a superconducting coil according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態による超電導コイル
及び従来の超電導コイルの磁場特性を示した特性図であ
る。
FIG. 2 is a characteristic diagram showing magnetic field characteristics of the superconducting coil according to the first embodiment of the present invention and a conventional superconducting coil.

【図3】図2の磁場特性を有する超電導コイルの説明図
である。
FIG. 3 is an explanatory diagram of a superconducting coil having the magnetic field characteristics of FIG.

【図4】本発明の第2の実施の形態による超電導コイル
の説明図である。
FIG. 4 is an explanatory diagram of a superconducting coil according to a second embodiment of the present invention.

【図5】本発明の第3の実施の形態の説明図である。FIG. 5 is an explanatory diagram of a third embodiment of the present invention.

【図6】本発明の第4の実施の形態の説明図である。FIG. 6 is an explanatory diagram of a fourth embodiment of the present invention.

【図7】従来の超電導磁石装置の説明図である。FIG. 7 is an explanatory diagram of a conventional superconducting magnet device.

【図8】従来の超電導磁石装置の磁気分布特性を示す特
性図である。
FIG. 8 is a characteristic diagram showing magnetic distribution characteristics of a conventional superconducting magnet device.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 液体ヘリウム 3 内槽容器 4 コイル支持具 5 外周辺 6 内周辺 7 支持部材 1 Superconducting coil 2 Liquid helium 3 Inner tank container 4 Coil support 5 Outer periphery 6 Inner periphery 7 Support member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 超電導線を巻回してなる超電導コイル
と、前記超電導コイルを冷媒と共に収納する内槽容器
と、前記超電導コイルを前記内槽容器内で固定支持する
ためのコイル支持具とからなる超電導磁石装置におい
て、前記超電導コイルの断面形状は、前記超電導コイル
の外周辺が前記超電導コイルの内周辺より長い台形形状
に形成されたことを特徴とする超電導磁石装置。
1. A superconducting coil formed by winding a superconducting wire, an inner vessel container for accommodating the superconducting coil together with a refrigerant, and a coil support for fixing and supporting the superconducting coil in the inner vessel container. In the superconducting magnet device, a cross-sectional shape of the superconducting coil is formed in a trapezoidal shape in which an outer periphery of the superconducting coil is longer than an inner periphery of the superconducting coil.
【請求項2】 超電導線を巻回してなる超電導コイル
と、前記超電導コイルを冷媒と共に収納する内槽容器
と、前記超電導コイルを前記内槽容器内で固定支持する
ためのコイル支持具とからなる超電導磁石装置におい
て、前記超電導コイルの断面形状は、前記超電導コイル
の外周辺を底辺とする三角形形状に形成されたことを特
徴とする超電導磁石装置。
2. A superconducting coil formed by winding a superconducting wire, an inner tank container for accommodating the superconducting coil together with a refrigerant, and a coil support for fixing and supporting the superconducting coil in the inner tank container. In the superconducting magnet device, the cross-sectional shape of the superconducting coil is formed in a triangular shape having the outer periphery of the superconducting coil as a base.
【請求項3】 超電導線を巻回してなる超電導コイル
と、前記超電導コイルを冷媒と共に収納する内槽容器
と、前記超電導コイルを前記内槽容器内で固定支持する
ためのコイル支持具とからなる超電導磁石装置におい
て、前記超電導コイルの断面形状は、前記超電導コイル
の内周辺が前記超電導コイルの外周辺より長い台形形状
に形成され、前記コイル支持具は、前記超電導コイルの
外周辺を挟持する複数個の支持部材で構成し前記超電導
コイルの周方向に不連続に配置したことを特徴とする超
電導磁石装置。
3. A superconducting coil formed by winding a superconducting wire, an inner vessel container for accommodating the superconducting coil together with a refrigerant, and a coil support for fixing and supporting the superconducting coil in the inner vessel container. In the superconducting magnet device, the cross-sectional shape of the superconducting coil is formed in a trapezoidal shape in which the inner periphery of the superconducting coil is longer than the outer periphery of the superconducting coil, and the coil support includes a plurality of sandwiching the outer periphery of the superconducting coil. A superconducting magnet device comprising a plurality of supporting members and discontinuously arranged in the circumferential direction of the superconducting coil.
【請求項4】 超電導線を巻回してなる超電導コイル
と、前記超電導コイルを冷媒と共に収納する内槽容器
と、前記超電導コイルを前記内槽容器内で固定支持する
ためのコイル支持具とからなる超電導磁石装置におい
て、前記超電導コイルの断面形状は、前記超電導コイル
の内周辺を底辺とする三角形形状に形成され、前記コイ
ル支持具は、前記超電導コイルの外周における前記三角
形形状の頂点部を挟持する複数個の支持部材で構成し前
記超電導コイルの周方向に不連続に配置したことを特徴
とする超電導磁石装置。
4. A superconducting coil formed by winding a superconducting wire, an inner tank container for accommodating the superconducting coil together with a refrigerant, and a coil support for fixing and supporting the superconducting coil in the inner tank container. In the superconducting magnet device, the cross-sectional shape of the superconducting coil is formed in a triangular shape having the inner periphery of the superconducting coil as a base, and the coil support holds the apex of the triangular shape on the outer periphery of the superconducting coil. A superconducting magnet device comprising a plurality of supporting members and discontinuously arranged in the circumferential direction of the superconducting coil.
JP7538696A 1996-03-06 1996-03-06 Superconducting magnet equipment Pending JPH09246037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7538696A JPH09246037A (en) 1996-03-06 1996-03-06 Superconducting magnet equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7538696A JPH09246037A (en) 1996-03-06 1996-03-06 Superconducting magnet equipment

Publications (1)

Publication Number Publication Date
JPH09246037A true JPH09246037A (en) 1997-09-19

Family

ID=13574713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7538696A Pending JPH09246037A (en) 1996-03-06 1996-03-06 Superconducting magnet equipment

Country Status (1)

Country Link
JP (1) JPH09246037A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087533A1 (en) 2004-03-09 2005-09-22 Thyssenkrupp Transrapid Gmbh Magnetic pole for magnetic levitation vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087533A1 (en) 2004-03-09 2005-09-22 Thyssenkrupp Transrapid Gmbh Magnetic pole for magnetic levitation vehicles
US7911312B2 (en) 2004-03-09 2011-03-22 Thyssenkrupp Transrapid Gmbh Magnet pole for magnetic levitation vehicles

Similar Documents

Publication Publication Date Title
EP0207286B1 (en) Conical, unimpregnated winding for mr magnets
JPH0260042B2 (en)
US5404122A (en) Superconducting coil apparatus with a quenching prevention means
JPH09246037A (en) Superconducting magnet equipment
JP2016049159A (en) Superconducting magnet and magnetic resonance imaging apparatus
JPH04134808A (en) Superconducting magnet
JPH10116725A (en) Superconducting magnet device
JP2829008B2 (en) Superconducting magnet. Semiconductor single crystal pulling equipment. Nuclear magnetic resonance apparatus and method of manufacturing superconducting magnet
JP2624831B2 (en) Superconducting magnet
JPH09102414A (en) Superconducting coil
JP2014175599A (en) Superconducting coil
JP3302757B2 (en) Superconducting magnet device
JPS6119089B2 (en)
JPS59208811A (en) Superconductive coil
JPH0786643A (en) Conduction cooling superconducting magnet device
JPH08162316A (en) Superconducting magnet apparatus
JPH0851016A (en) Superconducting coil
JP3418862B2 (en) Radiation shield plate
JPH09213520A (en) Superconducting coil
JP2739159B2 (en) Toroidal magnet
JP3529442B2 (en) Superconducting coil
JP3542222B2 (en) Superconducting coil
JP3198189B2 (en) Mounting structure of permanent current switch
JPH10340810A (en) Supporting structure for superconducting magnet
JPH0510335Y2 (en)