JPH0924557A - Manufacture of optical component - Google Patents

Manufacture of optical component

Info

Publication number
JPH0924557A
JPH0924557A JP11604796A JP11604796A JPH0924557A JP H0924557 A JPH0924557 A JP H0924557A JP 11604796 A JP11604796 A JP 11604796A JP 11604796 A JP11604796 A JP 11604796A JP H0924557 A JPH0924557 A JP H0924557A
Authority
JP
Japan
Prior art keywords
optical component
master
pattern
manufactured
stamper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11604796A
Other languages
Japanese (ja)
Inventor
Mutsuji Watanabe
陸司 渡辺
Katsuya Fujisawa
克也 藤沢
Ikuo Onishi
伊久雄 大西
Koichiro Horino
紘一郎 堀野
Katsuhiko Hayashi
克彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP11604796A priority Critical patent/JPH0924557A/en
Publication of JPH0924557A publication Critical patent/JPH0924557A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture an optical component of a large area by transfer molding a pattern by using a stamper manufactured by electroforming a large-area original plate having a plurality of laminated small- area original plates. SOLUTION: The method for manufacturing an optical component comprises the steps of coating a lattice pattern surface with ultraviolet curable hard coating agent, and then transferring the pattern to a glass board to a slave original plate 1a. The method further comprises the steps of polishing the plate 1a until the chips of the end face are eliminated by an ultraprecise end face polishing unit to arrange the parallelism and flatness. The method further comprises the steps of temporarily fixing 9 slave original plates (1a to 1i) similarly treated on an optically polished glass board with the pattern faces disposed at the lower side with epoxy resin having high viscosity, then uniformly coating it with epoxy resin having low viscosity, and then sticking a glass board to be backed to manufacture a secondary original plate 2. An Ni stamper is manufactured from the plate 2 by electroforming. The laminated part cannot be recognized by the visual inspection of the optical component transferred from the stamper, and hence a lattice pattern of a large area can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は超微細パターンを
持つ大面積の精密光学部品を製造するための方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a large area precision optical component having an ultrafine pattern.

【0002】[0002]

【従来の技術】超微細パターンを持つ精密光学部品とし
て、マイクロレンズアレイ、回折格子、液晶表示装置の
ドット解消のための光学フィルタ、スクリーン、プリズ
ムシート等がある。これらマイクロレンズアレイ、回折
格子、光学フィルタ等の微細パターンは、リソグラフィ
法、電子ビーム描画法、レーザービーム描画法等によっ
て作製されている。リソグラフィ法では感光性樹脂をコ
ートした基板と、あるパターンをもつフォトマスクとを
用いて、感光性樹脂を紫外線露光した後に現像処理する
ことにより感光性樹脂の未反応部または反応部を除去す
ることによってパターンを作製することが一般的であ
る。この方法では、形成されるパターンの最大寸法は露
光装置の大きさにより制限され、一般に8インチ径程度
が最大である。また、電子ビーム描画法およびレーザー
ビーム描画法では長い描画時間を要し、しかも超平坦な
領域を持つステージの確保が困難であることから、一般
的に数cm角程度のパターンが最大である。しかしなが
ら、近年8インチ径以上の大面積を持つマイクロレンズ
アレイ、回折格子、光学フィルタ等の必要性が高まって
いる。一方、スクリーンやプリズムシートは超精密旋盤
を用いて金属製の原盤を作製し、該金属原盤または該金
属原盤から複製された樹脂原盤を用いてプレス法、紫外
線硬化樹脂を用いた2P法等を行うことにより作製され
ることが一般的である。この場合、超精密旋盤のチャッ
クテーブルの大きさが作製されるスクリーンの最大寸法
を決めることとなる。
2. Description of the Related Art Microlens arrays, diffraction gratings, optical filters for eliminating dots in liquid crystal display devices, screens, prism sheets and the like are used as precision optical components having ultrafine patterns. The fine patterns such as the microlens array, the diffraction grating, and the optical filter are produced by a lithography method, an electron beam drawing method, a laser beam drawing method, or the like. In the lithographic method, a substrate coated with a photosensitive resin and a photomask having a certain pattern are used to remove the unreacted portion or the reacted portion of the photosensitive resin by developing the photosensitive resin after exposing it to ultraviolet rays. It is common to create a pattern by. In this method, the maximum size of the pattern to be formed is limited by the size of the exposure apparatus, and generally the maximum size is about 8 inches. Further, the electron beam drawing method and the laser beam drawing method require a long drawing time and it is difficult to secure a stage having an ultra-flat region. Therefore, a pattern of about several cm square is generally the largest. However, in recent years, there is an increasing need for microlens arrays, diffraction gratings, optical filters, etc. having a large area of 8 inches or more. On the other hand, for screens and prism sheets, a metal master is manufactured using an ultra-precision lathe, and a press method using the metal master or a resin master replicated from the metal master, a 2P method using an ultraviolet curable resin, etc. It is generally produced by carrying out. In this case, the size of the chuck table of the ultra-precision lathe determines the maximum size of the screen to be manufactured.

【0003】[0003]

【発明が解決しようとする課題】このように超微細パタ
ーンを持つ精密光学部品に関しては、旋盤、露光装置、
描画装置等により原盤の大きさが限定され、ひいては製
品サイズも決定され、その原盤以上の面積を有する製品
を作製することはできない。
Regarding the precision optical component having the ultrafine pattern as described above, a lathe, an exposure device,
The size of the master is limited by the drawing device or the like, and the product size is also determined, so that a product having an area larger than that of the master cannot be manufactured.

【0004】この発明は上記課題に鑑みてなされたもの
で、大面積の光学部品を効率的に作製するための方法を
提供することを目的とする。さらに、大面積の光学部品
を製造するための原盤作製工程において、貼合せ端部の
視認性を低下するために貼合せ端部のすき間、段差、平
面度を小さくする方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object thereof is to provide a method for efficiently manufacturing a large-area optical component. Further, it is an object of the present invention to provide a method for reducing a gap, a step, and a flatness of a bonding end portion in order to reduce the visibility of the bonding end portion in a master production process for manufacturing a large area optical component. And

【0005】[0005]

【課題を解決するための手段】上記の課題を解決する本
発明の光学部品の作製方法では、一般的な露光装置を用
いて作製した、例えば8インチ径以下の複数枚の原盤の
端面同士を貼り合わせることによって大面積の原盤を作
製し、該原盤から電鋳工程を経て作製されるスタンパを
用いることによって大面積の光学部品を作製することを
特徴とする。ここで、貼合わせ端面の平行度および平滑
性を上げるためには超精密端面研磨加工装置によるか、
またはダミーガラスを貼合わせた原盤を作製し、超精密
切断装置やダイシング・ソーによりカットすることによ
ってチッピングの非常に小さい端面を持つ原盤を作製す
ることが好ましい。また、原盤の貼合わせ加工は面精度
を維持するためにパターン面を下側にして光学研磨ガラ
ス上で行い、原盤を高粘度の接着剤で仮固定した後、低
粘度の接着剤を塗布したガラス板等で裏打ち処理を行う
ことによることが好ましい。小面積原盤はプラスチック
のほか、ガラス、金属等を用いて作製することができ
る。原盤の貼合わせ加工は、複数枚のプラスチック製の
小面積原盤を光学研磨ガラス上で当該プラスチックに対
する良溶媒を接着剤として用いて仮固定した後、低粘度
の接着剤を塗布したガラス板等で裏打ちすることによっ
て行っても良い。
In the method of manufacturing an optical component of the present invention for solving the above problems, the end faces of a plurality of masters, for example, having a diameter of 8 inches or less, which are manufactured by using a general exposure apparatus, are joined together. It is characterized in that a large-area master is produced by laminating them and a large-area optical component is produced by using a stamper produced from the master through an electroforming process. Here, in order to improve the parallelism and smoothness of the bonded end surface, is it an ultra-precision end surface polishing machine?
Alternatively, it is preferable to manufacture a master having a dummy glass bonded thereto and cut it with an ultra-precision cutting device or a dicing saw to manufacture a master having an end face with very small chipping. In addition, the laminating process of the master is performed on the optical polishing glass with the pattern surface facing downward in order to maintain the surface accuracy, and the master is temporarily fixed with a high-viscosity adhesive, and then a low-viscosity adhesive is applied. It is preferable to perform a backing process with a glass plate or the like. The small area master can be made of glass, metal or the like in addition to plastic. The laminating process of the master is performed by temporarily fixing a plurality of plastic small-area masters on an optically polished glass by using a good solvent for the plastic as an adhesive, and then using a glass plate or the like coated with a low-viscosity adhesive. You may go by lining.

【0006】超精密旋盤、露光装置、電子ビーム描画装
置、レーザービーム描画装置等で作製された原盤、また
は該原盤から複製された複製原盤を複数枚貼り合わせる
貼合せ原盤作製工程において、原盤または複製原盤の材
質と接着剤の種類との最適な組み合わせを選択すること
が好ましく、これによって貼合わせ端面のすき間および
段差を小さくすることができて貼合せ原盤における貼合
わせ端部の視認性が大きく低下する。ここで、貼合せ端
面の視認性をより低下させるため、貼合わされる複数の
原盤の各パターン面を下側にして光学研磨ガラスの表面
上に押し当てて真空吸着させることによって貼合せ面を
同一平面に維持すると共に、貼合わされる原盤を両側か
ら力を加えて端面同士を強く押し当てて貼合せ面のすき
間をできるだけ小さくすることが好ましい。
[0006] In a master manufacturing process for laminating a master manufactured by an ultra-precision lathe, an exposure device, an electron beam drawing device, a laser beam drawing device, or a plurality of duplicate masters duplicated from the master, It is preferable to select the optimum combination of the material of the master and the type of adhesive, which makes it possible to reduce the gaps and steps on the bonding end face, and the visibility of the bonding end on the bonding master will be greatly reduced. To do. Here, in order to further reduce the visibility of the bonded end faces, the pattern surfaces of a plurality of masters to be bonded are placed on the lower side and pressed against the surface of the optical polishing glass to be vacuum-adsorbed so that the bonding surfaces are the same. It is preferable to maintain a flat surface and to apply a force from both sides to the laminated master to strongly press the end faces against each other to minimize the gap between the laminated faces.

【0007】貼り合わされた原盤を用いてパターン転写
を行い、次いで、端面加工および端面貼合わせを行うこ
とによって、さらに大きな原盤を作製することができ
る。この方法によると1枚の原盤から理論的には無制限
の大きさの原盤を作製することが可能である。そして、
この原盤により、超微細な繰り返しパターンを持つ光学
部品を製造するための大面積原盤を作製することができ
る。なお、貼合わせ面でのパターンのずれを小さくする
ため、貼合わせ端面のすき間は10μm以下であること
が好ましい。
A larger master can be manufactured by performing pattern transfer using the bonded masters, and then performing end face processing and end face bonding. According to this method, theoretically unlimited size masters can be produced from one master. And
With this master, a large-area master for manufacturing an optical component having an ultrafine repeating pattern can be manufactured. In addition, in order to reduce the deviation of the pattern on the bonding surface, the gap between the bonding end surfaces is preferably 10 μm or less.

【0008】[0008]

【実施例】以下、実施例により本発明を具体的に説明す
る。 実施例1 5インチ径で厚さが1mmのガラス基板上に感光性樹脂
をコートし、フォトマスクと露光装置とを用いて格子パ
ターンを露光した。格子パターンを現像後、ダイシング
・ソーを用いて縦横55mmにカットし、超精密端面研
磨装置で端面のチッピングがなくなるまで研磨し、平行
度および平面度を整えた。同様に処理した縦横55mm
のガラス原盤4枚を、縦横300mmで厚さが1mmの
光学研磨加工したガラス基板上でパターン面を下側にし
て端面同士を高粘度のエポキシ樹脂で仮固定し、その後
低粘度のエポキシ樹脂をガラス基板面に均一にコートし
た。次いで、縦横110mmで厚さが1mmのガラス基
板を接着して裏打ち加工を行い、縦横110mmの原盤
を作製した。なお、ガラス原盤の接着端面のすき間は最
大10μmであった。
The present invention will be described below in detail with reference to examples. Example 1 A glass substrate having a diameter of 5 inches and a thickness of 1 mm was coated with a photosensitive resin, and a grid pattern was exposed using a photomask and an exposure device. After the lattice pattern was developed, it was cut into 55 mm in length and width using a dicing saw, and was polished by an ultra-precision end face polishing device until chipping of the end face was eliminated, and parallelism and flatness were adjusted. 55mm vertically and horizontally processed
The four glass masters of No. 3 were vertically fixed on the optically polished glass substrate of 300 mm in length and width and 1 mm in thickness with the pattern side facing down, and the end faces were temporarily fixed with high-viscosity epoxy resin. The surface of the glass substrate was uniformly coated. Next, a glass substrate having a length of 110 mm in length and width and a thickness of 1 mm was adhered and subjected to a lining process to produce a master plate of 110 mm in length and width. The maximum gap between the bonded end faces of the glass master was 10 μm.

【0009】次に、格子パターン面に紫外線硬化型のハ
ードコート剤を塗布した後、縦横110mmで厚さが1
mmのガラス基板にパターンを転写し、図1に示す子原
盤1aを作製した。その後ダイシング・ソーを用いて縦
横100mmにカットし、超精密端面研磨装置で端面の
チッピングがなくなるまで研磨し、平行度および平面度
を整えた。同様に処理した縦横100mmの子原盤(1
a〜1i)9枚の端面同士を、縦横300mmで厚さが
1mmの光学研磨加工したガラス基板上にパターン面を
下側にして高粘度のエポキシ樹脂で仮固定し、その後低
粘度のエポキシ樹脂を均一にコートした後、縦横300
mmで厚さが1mmのガラス基板を接着し裏打ち加工を
行って、図1に示す縦横300mmの孫原盤2を作製し
た。
Next, an ultraviolet curable hard coat agent is applied to the lattice pattern surface, and then 110 mm in length and width and 1 in thickness.
The pattern was transferred to a mm glass substrate to prepare a child master 1a shown in FIG. After that, it was cut into 100 mm in length and width by using a dicing saw, and polished by an ultra-precision end face polishing device until chipping of the end face disappeared, and parallelism and flatness were adjusted. A 100 mm-long child master (1
a to 1i) 9 end faces are temporarily fixed with a high-viscosity epoxy resin with the pattern surface facing downward on an optically polished glass substrate having a length and width of 300 mm and a thickness of 1 mm, and then a low-viscosity epoxy resin After uniformly coating,
A glass substrate having a thickness of 1 mm and a thickness of 1 mm was adhered and subjected to a lining process to produce a grand master 2 having a length and width of 300 mm shown in FIG.

【0010】この孫原盤を用いて、電鋳処理により縦横
300mmのNiスタンパを作製した。このNiスタン
パから転写した光学部品の目視検査では貼合わせ部は認
識できなかった。このNiスタンパを用いることによっ
て、大面積の格子パターンを持つ光学部品を容易に作製
することが可能となる。
Using this grand master, an Ni stamper having a length and width of 300 mm was produced by electroforming. The bonded portion could not be recognized by visual inspection of the optical component transferred from the Ni stamper. By using this Ni stamper, it becomes possible to easily manufacture an optical component having a large-area lattice pattern.

【0011】実施例2 5インチ径で厚さが1mmのガラス基板上に感光性樹脂
をコートし、フォトマスクと露光装置とを用いて格子パ
ターンを露光した。格子パターンを現像後、それぞれの
厚さが150μmと1mmのダミーガラスをガラス基板
の表裏にワックスを用いて貼り合わせ、ダイシング・ソ
ーを用いて縦横55mmにカットした。チッピングは最
大3μmであった。同様に処理した縦横55mmのガラ
ス原盤4枚の端面同士を、縦横300mmで厚さが1m
mの光学研磨加工したガラス基板上にパターン面を下側
にして高粘度のエポキシ樹脂で仮固定し、その後低粘度
のエポキシ樹脂をガラス基板面に均一にコートした後、
縦横110mmで厚さが1mmのガラス基板を接着して
裏打ち加工を行い、縦横110mmの原盤を作製した。
なお、端面のすき間は最大10μmであった。
Example 2 A glass substrate having a diameter of 5 inches and a thickness of 1 mm was coated with a photosensitive resin, and a grating pattern was exposed using a photomask and an exposure device. After development of the grid pattern, dummy glass having a thickness of 150 μm and a thickness of 1 mm were attached to the front and back of the glass substrate using wax, and cut into 55 mm in length and width using a dicing saw. The maximum chipping was 3 μm. The end faces of four glass masters 55 mm in length and width, which were similarly processed, were 300 mm in length and width and 1 m in thickness.
After temporarily fixing with a high-viscosity epoxy resin with the pattern surface facing downward on the glass substrate subjected to optical polishing of m, and then uniformly coating the low-viscosity epoxy resin on the glass substrate surface,
A glass substrate having a length and width of 110 mm and a thickness of 1 mm was adhered and subjected to a lining process to prepare a master plate having a length and width of 110 mm.
The gap between the end faces was 10 μm at maximum.

【0012】次に、格子パターン面に紫外線硬化型のハ
ードコート剤を塗布した後、縦横110mmで厚さが1
mmのガラス基板にパターンを転写し、子原盤を作製し
た。その後、それぞれの厚さが150μmと1mmのダ
ミーガラスをガラス基板の表裏にワックスを用いて貼り
合わせ、ダイシング・ソーを用いて縦横100mmにカ
ットした。チッピングは最大3μmであった。同様に処
理した縦横100mmの子原盤9枚の端面同士を、縦横
300mmで厚さが1mmの光学研磨加工したガラス基
板上でパターン面を下側にして高粘度のエポキシ樹脂で
仮固定し、その後低粘度のエポキシ樹脂を均一にコート
した後、縦横300mmで厚さが1mmのガラス基板を
接着し裏打ち加工を行って、縦横300mmの孫原盤を
作製した。
Next, an ultraviolet-curable hard coating agent is applied to the lattice pattern surface, and then 110 mm in length and width and 1 in thickness.
The pattern was transferred to a glass substrate having a size of mm to prepare a child master. Then, dummy glass having a thickness of 150 μm and a thickness of 1 mm were attached to the front and back of the glass substrate using wax, and cut into 100 mm in length and width using a dicing saw. The maximum chipping was 3 μm. The end faces of nine child masters of 100 mm in length and width treated in the same manner were temporarily fixed with a high-viscosity epoxy resin with the pattern surface facing down on an optically polished glass substrate of 300 mm in length and width and 1 mm in thickness, and then After uniformly coating a low-viscosity epoxy resin, a glass substrate having a length and width of 300 mm and a thickness of 1 mm was adhered and subjected to a backing process to produce a grand master of length and width of 300 mm.

【0013】この孫原盤を用いて、電鋳処理により縦横
300mmのNiスタンパを作製した。このNiスタン
パから転写した光学部品の目視検査では貼合わせ部は認
識できなかった。このNiスタンパを用いることによっ
て、大面積の格子パターンを持つ光学部品を容易に作製
することが可能となる。
Using this master disc, an Ni stamper having a length and width of 300 mm was produced by electroforming. The bonded portion could not be recognized by visual inspection of the optical component transferred from the Ni stamper. By using this Ni stamper, it becomes possible to easily manufacture an optical component having a large-area lattice pattern.

【0014】実施例3 5インチ径で厚さが1mmのガラス基板上に光感光性樹
脂をコートし、フォトマスクと露光装置とを用いて80
μmピッチの格子パターンを露光した。格子パターンを
現像後、このガラス基板上に作製した格子パターンを紫
外線硬化樹脂が塗布された厚さが1mmのPMMA基板
4枚に転写し、この格子パターンが転写されたPMMA
基板をダイシング・ソーを用いて縦横55mmにカット
した。次に光学研磨加工された縦横300mmの貼合せ
治具上にパターン面を下側にして載置し、PMMA基板
の両側から端面同士を押し合わせながら真空引きを行
い、基板の端面をPMMAの良溶媒であるクロロホルム
で溶解させて仮固定した。その後低粘度のエポキシ樹脂
をPMMA基板面に均一にコートした。次いで、縦横1
10mmで厚さが1mmのガラスで接着して裏打ち加工
を行い、縦横110mmの原盤を作製した。なお、貼合
せ端面のすき間は5μm以下で、各貼合せ原盤の高さの
ばらつきも5μm以下であった。この貼合せ原盤から紫
外線硬化樹脂が塗布されたTACフィルムに転写された
格子パターンのピッチおよび段差は原盤と同一であり、
貼合せ部は目視で認識できなかった。貼合せ端面のすき
間が小さくなった要因は、良溶媒によるPMMA基板の
溶解接着により真直性が向上したものと思われる。な
お、PMMA基板をメチルメタクリレート−スチレン共
重合体からなる基板に代えた場合にも同様の良好な結果
が得られた。
Example 3 A glass substrate having a diameter of 5 inches and a thickness of 1 mm was coated with a photo-sensitive resin, and a photo mask and an exposure device were used to make a coating 80.
A grid pattern with a μm pitch was exposed. After developing the grid pattern, the grid pattern produced on this glass substrate was transferred to four PMMA substrates with a thickness of 1 mm coated with an ultraviolet curable resin, and the grid pattern was transferred.
The substrate was cut into 55 mm in length and width using a dicing saw. Next, the pattern surface is placed on an optical polishing machined 300 mm vertical and horizontal bonding jig, and the PMMA substrate is evacuated while pressing the end faces against each other from both sides. It was dissolved in chloroform as a solvent and temporarily fixed. Then, a low-viscosity epoxy resin was uniformly coated on the PMMA substrate surface. Next, vertical and horizontal 1
Adhesion was performed with glass having a thickness of 10 mm and a thickness of 1 mm, and backing was performed to produce a master plate having a length and width of 110 mm. The gap between the bonded end faces was 5 μm or less, and the variation in height of each bonding master was 5 μm or less. The pitch and steps of the lattice pattern transferred from this laminated master to the TAC film coated with the ultraviolet curable resin are the same as those of the master,
The bonded portion could not be visually recognized. It is considered that the cause of the decrease in the gap between the bonded end faces is that the straightness is improved by the melt adhesion of the PMMA substrate with the good solvent. Similar good results were obtained when the PMMA substrate was replaced with a substrate made of a methyl methacrylate-styrene copolymer.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
一般的な露光装置等で作製した原盤から大面積原盤を容
易に作製することができ、該原盤から作製したスタンパ
を用いることによって大面積の光学部品を効率的に作製
することができる。
As described above, according to the present invention,
A large-area master can be easily manufactured from a master manufactured by a general exposure apparatus, and a large-area optical component can be efficiently manufactured by using a stamper manufactured from the master.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により作製されるスタンパの平面図であ
る。
FIG. 1 is a plan view of a stamper manufactured according to the present invention.

【符号の説明】[Explanation of symbols]

1a〜1i 子原盤 2 孫原盤 1a-1i child master 2 grandchild master

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀野 紘一郎 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 林 克彦 岡山県倉敷市酒津1621番地 株式会社クラ レ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichiro Horino, Kobayashi Horino, 1621 Sakazu, Kurashiki, Okayama Prefecture, Kuraray Co., Ltd. (72) Katsuhiko Hayashi, 1621, Satsuki, Kurashiki, Okayama, Kuraray

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 小面積原盤の端面を複数枚貼合わせてな
る大面積原盤を用いて電鋳処理を行うことによって作製
されたスタンパを用いてパターンの転写成形を行うこと
を特徴とする光学部品の作製方法。
1. An optical component characterized by performing pattern transfer molding using a stamper produced by performing electroforming processing using a large area master formed by laminating a plurality of end surfaces of a small area master. Of manufacturing.
【請求項2】 貼合わせ端面における各小面積原盤のす
き間が10μm以下である請求項1記載の光学部品の作
製方法。
2. The method for producing an optical component according to claim 1, wherein a gap between the small area masters on the bonded end face is 10 μm or less.
【請求項3】 複数板の小面積原盤を光学研磨された板
上で高粘度の接着剤を用いて仮固定した後、低粘度の接
着剤で裏打ち処理を行うことによって小面積原盤の端面
を貼合わせる請求項1または2記載の光学部品の作製方
法。
3. An end face of a small area master is prepared by temporarily fixing a plurality of small area masters on an optically polished plate with a high viscosity adhesive and then performing a lining process with a low viscosity adhesive. The method for producing an optical component according to claim 1, wherein the optical components are attached.
【請求項4】 複数板のプラスチック製小面積原盤を光
学研磨された板上で当該プラスチックの良溶媒からなる
接着剤を用いて仮固定した後、低粘度の接着剤で裏打ち
処理を行うことによって小面積原盤の端面を貼合わせる
請求項1または2記載の光学部品の作製方法。
4. A plurality of plastic small-area masters are temporarily fixed on an optically polished plate with an adhesive made of a good solvent for the plastic, and then backed with a low-viscosity adhesive. The method for producing an optical component according to claim 1, wherein the end faces of the small area master are pasted together.
JP11604796A 1995-05-11 1996-05-10 Manufacture of optical component Pending JPH0924557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11604796A JPH0924557A (en) 1995-05-11 1996-05-10 Manufacture of optical component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-112200 1995-05-11
JP11220095 1995-05-11
JP11604796A JPH0924557A (en) 1995-05-11 1996-05-10 Manufacture of optical component

Publications (1)

Publication Number Publication Date
JPH0924557A true JPH0924557A (en) 1997-01-28

Family

ID=26451429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11604796A Pending JPH0924557A (en) 1995-05-11 1996-05-10 Manufacture of optical component

Country Status (1)

Country Link
JP (1) JPH0924557A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006233A (en) * 2010-06-24 2012-01-12 Toshiba Mach Co Ltd Method for manufacturing mold
JP2012113280A (en) * 2010-11-05 2012-06-14 Asahi Kasei E-Materials Corp Wire grid polarizer and optical sensor
CN103981544A (en) * 2014-05-22 2014-08-13 山西南洋包装材料有限公司 Seamless splicing method for circular metal mould tape with optical micro structure aggregate on surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006233A (en) * 2010-06-24 2012-01-12 Toshiba Mach Co Ltd Method for manufacturing mold
JP2012113280A (en) * 2010-11-05 2012-06-14 Asahi Kasei E-Materials Corp Wire grid polarizer and optical sensor
CN103981544A (en) * 2014-05-22 2014-08-13 山西南洋包装材料有限公司 Seamless splicing method for circular metal mould tape with optical micro structure aggregate on surface
CN103981544B (en) * 2014-05-22 2016-08-24 田武学 A kind of seamless joint method of the circular ring metal die strip of surface tool optical microstructures aggregation

Similar Documents

Publication Publication Date Title
CA2198132C (en) Method for making surface relief profilers
US20100255139A1 (en) Micropattern transfer stamper and micropattern transfer device
JP2006337985A (en) Method of manufacturing high sag lens and lens manufactured by using the same method
EP1542074A1 (en) Manufacturing a replication tool, sub-master or replica
EP2225096B1 (en) Manufacturing optical elements
EP2033050B1 (en) Manufacturing a replication tool
JPH0924557A (en) Manufacture of optical component
JP2007025090A (en) Diffuse reflecting plate, laminated body for transfer molding, processing method of metallic mold for transfer molding and processing apparatus therefor
CN114966929A (en) Imposition work template, manufacturing method thereof and method for manufacturing diffraction gratings in batches
JPH0836151A (en) Laminating method of planer substrate
JP3975444B2 (en) Manufacturing method of replica mold for microlens array
CN113490883A (en) Large area seamless master and imprint stamp manufacturing method
JP4239245B2 (en) Manufacturing method of lattice lens array
JP2001310340A (en) Roll molding die
JPH11311711A (en) Manufacture of optical element and manufactured optical element
JPH03200106A (en) Optical waveguide lens
JPH01251449A (en) Manufacture of optical disk substrate
WO2020185162A1 (en) Method of manufacturing a plurality of optical elements and product thereof
US20220040941A1 (en) Yard control
JPH03227208A (en) Matrix transferring method
JP4500421B2 (en) Multi-plane hologram master with improved warpage and method for producing the same
JPH03227209A (en) Manufacture of grooved base plate for optical disk
JPH04195742A (en) Manufacture of substrate for optical disk
JP3367985B2 (en) How to duplicate relief patterns
JP2005084319A (en) Manufacturing method for polarizing beam splitter and polarizing beam splitter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Effective date: 20050816

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051220