JPH09245332A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH09245332A
JPH09245332A JP4877596A JP4877596A JPH09245332A JP H09245332 A JPH09245332 A JP H09245332A JP 4877596 A JP4877596 A JP 4877596A JP 4877596 A JP4877596 A JP 4877596A JP H09245332 A JPH09245332 A JP H09245332A
Authority
JP
Japan
Prior art keywords
intermediate layer
magnetic head
carbon
silicon
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4877596A
Other languages
Japanese (ja)
Inventor
Kenichi Shimura
健一 志村
Kazuhiro Baba
和宏 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4877596A priority Critical patent/JPH09245332A/en
Publication of JPH09245332A publication Critical patent/JPH09245332A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic head which exhibits excellent wear resistance and sliding resistance when used for recording and reproducing of a magnetic recording medium with a high-density magnetic storage device. SOLUTION: The surface of a magnetic head spider 1 is provided with protective films consisting of an intermediate layer 2 consisting essentially of silicon and contg. carbon, nitrogen, etc., and a head amorphous carbon film 3. The contents of the carbon, nitrogen, etc., of this intermediate layer 2 is confined to >=5 to <=30atm.% of the total elements constituting the intermediate layer 2. The thickness of the protective films consisting of the intermediate layer and the hard amorphous carbon film is confined to >=2 to <=6nm in such a manner that the gap between the magnetic head and the magnetic recording medium is made narrower and the sliding resistance is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高密度磁気記憶装置
における、磁気記録媒体の記録、再生に用いる磁気ヘッ
ドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head used for recording and reproducing on a magnetic recording medium in a high density magnetic storage device.

【0002】[0002]

【従来の技術】磁気記憶装置はコンピュータの外部記憶
装置として広く用いられている。現在、磁気記憶装置の
記録密度は1平方インチ当たり0.8〜1ギガビット
(Gb)が最大であるが、将来的には動画の記録再生も
想定され、1平方インチ当たり数十から百Gbの記録密
度が要求されつつある。
2. Description of the Related Art Magnetic storage devices are widely used as external storage devices for computers. Currently, the maximum recording density of a magnetic storage device is 0.8 to 1 gigabits (Gb) per square inch, but in the future, recording and reproduction of moving images are also expected, and several tens to 100 Gb per square inch is expected. Recording density is being demanded.

【0003】磁気ヘッドは磁気記憶装置において磁気記
録媒体への信号の書き込み、あるいは書き込まれた信号
の再生をするためのもので、アルミナと炭化チタンから
なるセラミックス(Al2 3 −TiC)等の非磁性の
スライダおよび記録・再生のための磁性材料からなる素
子から構成される。現在は半導体製造プロセスを利用し
た薄膜磁気ヘッド、さらには高密度記録に対応するため
に磁気抵抗効果(MR)素子を利用したMRヘッドなど
が用いられている。
A magnetic head is for writing a signal to a magnetic recording medium or reproducing a written signal in a magnetic storage device, and is made of ceramics (Al 2 O 3 —TiC) made of alumina and titanium carbide. It is composed of a non-magnetic slider and an element made of a magnetic material for recording / reproducing. Currently, a thin film magnetic head using a semiconductor manufacturing process, and an MR head using a magnetoresistive effect (MR) element for high density recording are used.

【0004】磁気ヘッドと磁気記録媒体は装置停止中は
接触しており、記録・再生時には磁気記録媒体が高速回
転し、磁気ヘッドは磁気記録媒体に対して一定の間隔で
浮上するという、いわゆるコンタクト・スタート・スト
ップ(CSS)動作が繰り返されている。またスライダ
には、磁気ヘッドの浮上姿勢を安定にし、常に磁気記録
媒体との間隔を一定に保持するために、空気浮上面(A
BS)が形成されており、磁気記録媒体はCSS動作の
開始時および停止時においてABSと接触・摺動する。
さらに磁気ヘッドが浮上中になんらかの擾乱を受け、磁
気記録媒体に高速で接触する場合もある。このように磁
気記録媒体は頻繁に磁気ヘッドと接触・摺動するので、
磨耗・損傷を防止するために、その表面には硬質炭素に
よる厚さ数十nmの保護膜が形成され、さらにその上に
は潤滑剤が厚さ数nmで塗布されているのが一般的であ
る。最近では磁気ヘッドのABSにも保護膜を設け、よ
り耐磨耗性を向上させるといった提案がなされている。
たとえば特開平4−364217号公報においてはスラ
イダ上にシリコンとアモルファス水素添加炭素からなる
保護膜を設けている。
The magnetic head and the magnetic recording medium are in contact with each other while the apparatus is stopped, the magnetic recording medium rotates at high speed during recording and reproduction, and the magnetic head floats above the magnetic recording medium at a constant interval. -Start / stop (CSS) operation is repeated. In addition, in order to stabilize the flying posture of the magnetic head and to keep the distance between the slider and the magnetic recording medium constant, the slider has an air bearing surface (A
BS) is formed, and the magnetic recording medium comes into contact with and slides on the ABS at the start and stop of the CSS operation.
Further, the magnetic head may be subjected to some disturbance while flying and may come into contact with the magnetic recording medium at high speed. In this way, the magnetic recording medium frequently contacts and slides with the magnetic head.
In order to prevent abrasion and damage, a protective film with a thickness of several tens of nm is formed on the surface by hard carbon, and a lubricant is generally applied on the surface with a thickness of several nm. is there. Recently, it has been proposed to provide a protective film on the ABS of the magnetic head to further improve wear resistance.
For example, in Japanese Patent Laid-Open No. 4-364217, a protective film made of silicon and amorphous hydrogenated carbon is provided on a slider.

【0005】磁気記憶装置における記録密度の向上の為
には、記録・再生時の磁気ヘッドと磁気記録媒体の磁気
的な距離を小さくすることが必要である。そのため、浮
上量の低減は必須の技術であり、将来的には20nm以
下の浮上量が要求されている。加えて、磁気的距離の低
減には磁気ヘッド保護膜についても更なる薄膜化が必須
であり、磁気ヘッド保護膜の厚さとしては10nm以
下、望ましくは5nm以下が要求されている。
In order to improve the recording density in the magnetic storage device, it is necessary to reduce the magnetic distance between the magnetic head and the magnetic recording medium during recording / reproduction. Therefore, reducing the flying height is an essential technique, and a flying height of 20 nm or less is required in the future. In addition, in order to reduce the magnetic distance, the magnetic head protective film must be further thinned, and the thickness of the magnetic head protective film is required to be 10 nm or less, preferably 5 nm or less.

【0006】[0006]

【発明が解決しようとする課題】硬質炭素あるいはダイ
ヤモンド状炭素と呼ばれている硬質非晶質炭素膜は硬度
が高く、耐磨耗性に優れているため磁気記録媒体や磁気
ヘッドの保護膜として用いられている。しかしながら、
このような炭素膜は下地との密着性が不十分なため、何
らかの方法で密着性を向上させる必要がある。例えば、
磁気記録媒体上の炭素膜の場合、特開平1−20182
0号公報においては磁気記録媒体と炭素膜との間にシリ
コン、水素化アモルファスシリコン、SiC、Si3
4 、TiC、TiNといった無機材膜を設けることで密
着性を確保している。また、特開平2−83816号公
報においては無機材膜としてSi1-x x で表され、か
つxが磁気記録媒体層側で小さく、炭素側で大きい炭化
物が提案されている。
A hard amorphous carbon film called hard carbon or diamond-like carbon has a high hardness and is excellent in abrasion resistance, and therefore is used as a protective film for a magnetic recording medium or a magnetic head. It is used. However,
Since such a carbon film has insufficient adhesion to the base, it is necessary to improve the adhesion by some method. For example,
In the case of a carbon film on a magnetic recording medium, JP-A-1-20182
In Japanese Patent Laid-Open No. 0,098, silicon, hydrogenated amorphous silicon, SiC, Si 3 N is provided between the magnetic recording medium and the carbon film.
Adhesion is secured by providing an inorganic material film such as 4 , TiC, and TiN. Further, Japanese Patent Laid-Open No. 2-83816 proposes a carbide represented by Si 1-x C x as an inorganic material film, in which x is small on the magnetic recording medium layer side and large on the carbon side.

【0007】しかしながら、前者においては無機材膜と
して少なくとも100オングストローム以上必要であ
り、10nm以下の保護膜を提供することはできない。
後者の場合、炭化物層の厚さは20〜1000オングス
トロームであるものの、その上の炭素膜は500〜50
00オングストロームであり、やはり前述した膜厚に対
する要求を満足することはできない。
However, in the former case, the inorganic material film needs to be at least 100 angstroms or more, and a protective film having a thickness of 10 nm or less cannot be provided.
In the latter case, the thickness of the carbide layer is 20-1000 angstroms, but the carbon film above it is 500-50 angstroms.
Since it is 00 angstrom, the above-mentioned requirement for the film thickness cannot be satisfied.

【0008】磁気ヘッドの保護膜においては、前述した
ようにシリコンとアモルファス水素添加炭素からなる保
護膜が公知である。この場合もシリコン層の厚さは10
〜50オングストロームであるものの、水素添加カーボ
ンは50オングストローム以上必要であり、6nm以下
の磁気ヘッド保護膜を提供することはできなかった。
As a protective film for a magnetic head, as described above, a protective film made of silicon and amorphous hydrogenated carbon is known. Also in this case, the thickness of the silicon layer is 10
Although it is ˜50 Å, hydrogenated carbon needs to be 50 Å or more, and a magnetic head protective film of 6 nm or less cannot be provided.

【0009】このように従来技術による中間層を用いた
磁気ヘッドでは、耐摺動性を損なうことなく保護膜を極
薄化することは困難であり、高密度磁気記録に要求され
る磁気記録媒体との狭ギャップ化を十分に行うことがで
きなかった。この理由は現在必ずしも明らかではない
が、以下のように推察している。すなわち上記中間層は
その上に形成される炭素膜との界面に何らかの結合を作
ることにより密着性を向上させるものと考えられ、この
ような密着性に寄与する界面の厚みは数nmと予想され
る。従って中間層の厚さを減じていくと、ある厚み以下
では結合に寄与する原子の数が不足し、十分な密着力が
得られなくなる。
As described above, in the magnetic head using the intermediate layer according to the conventional technique, it is difficult to make the protective film extremely thin without impairing the sliding resistance, and the magnetic recording medium required for high density magnetic recording. Could not be sufficiently narrowed. The reason for this is not clear at present, but it is speculated as follows. That is, it is considered that the intermediate layer improves adhesion by forming some bonds at the interface with the carbon film formed thereon, and the thickness of the interface contributing to such adhesion is expected to be several nm. It Therefore, if the thickness of the intermediate layer is reduced, the number of atoms contributing to the bond becomes insufficient below a certain thickness, and sufficient adhesion cannot be obtained.

【0010】本発明の目的は、従来不可能であった6n
m以下の膜厚においても耐摺動性に優れた保護膜を摺動
面に有する、超高密度磁気記憶装置に適用可能な磁気ヘ
ッドを提供することにある。
The object of the present invention is 6n which has heretofore been impossible.
It is an object of the present invention to provide a magnetic head applicable to an ultra high density magnetic storage device having a sliding surface having a protective film having excellent sliding resistance even with a film thickness of m or less.

【0011】[0011]

【課題を解決するための手段】本発明は、スライダ上に
中間層と硬質非晶質炭素層からなる保護膜を設けること
を特徴とする磁気ヘッドにおいて、中間層が珪素を主成
分として、炭素もしくは炭素および珪素と化学結合を形
成する元素を含有することを特徴としている。
According to the present invention, in a magnetic head characterized in that a protective film consisting of an intermediate layer and a hard amorphous carbon layer is provided on a slider, the intermediate layer contains silicon as a main component and carbon. Alternatively, it is characterized by containing an element that forms a chemical bond with carbon and silicon.

【0012】ここで、中間層に含まれる珪素以外の元素
は該中間層を構成する全元素に対して5原子%以上30
原子%以下であることが望ましい。また、珪素を主成分
とする中間層と硬質非晶質炭素膜からなる保護膜の厚さ
は、磁気ヘッドと磁気記録媒体間が狭ギャップ化され、
かつ耐磨耗性、耐摺動性が得られるよう、2nm以上6
nm以下である。
Here, the elements other than silicon contained in the intermediate layer are 5 atomic% or more and 30% or more with respect to all the elements constituting the intermediate layer.
It is preferably at most atomic%. Further, the thickness of the protective film formed of the hard amorphous carbon film and the intermediate layer containing silicon as a main component is such that the gap between the magnetic head and the magnetic recording medium is narrowed,
2 nm or more 6 to obtain abrasion resistance and sliding resistance.
nm or less.

【0013】珪素を主成分として炭素を含有する中間層
内では珪素と炭素は化学結合している。この中間層と非
晶質硬質炭素膜は、界面で中間層内の珪素および炭素が
硬質非晶質炭素膜中の炭素と結合を形成して付着する。
この結果、中間層と硬質非晶質炭素膜との密着性は、珪
素のみの場合と比べて増大する。また、珪素を主成分と
する中間層が炭素を含有すると、中間層と硬質非晶質炭
素膜の界面に珪素と炭素の化合物が形成されることによ
って生じるひずみが抑制されるので、密着力低下の要因
となる界面応力が小さくなる。したがって、珪素を主成
分とする中間層が炭素を含有すると中間層と硬質非晶質
炭素膜間の密着力が増大する。
In the intermediate layer containing silicon as a main component and carbon, silicon and carbon are chemically bonded. At the interface between the intermediate layer and the amorphous hard carbon film, silicon and carbon in the intermediate layer form a bond with carbon in the hard amorphous carbon film and are attached.
As a result, the adhesiveness between the intermediate layer and the hard amorphous carbon film is increased as compared with the case where only silicon is used. Further, when the intermediate layer containing silicon as a main component contains carbon, the strain caused by the formation of the compound of silicon and carbon at the interface between the intermediate layer and the hard amorphous carbon film is suppressed, so that the adhesive strength is reduced. The interfacial stress, which causes Therefore, when the intermediate layer containing silicon as the main component contains carbon, the adhesion between the intermediate layer and the hard amorphous carbon film increases.

【0014】珪素および炭素と化学結合する元素とし
て、例えば窒素がある。珪素を主成分として窒素を含有
する中間層内では、窒素は珪素と化学結合している。硬
質非晶質炭素膜との界面では、中間層内の珪素と窒素は
硬質非晶質炭素膜中の炭素と化学結合を形成する。窒素
と炭素の結合は解離エネルギーが約750kJ/mol
と大きく、この結合は強固である。また、窒素を含有す
る中間層と硬質非晶質炭素膜の界面では、珪素と炭素の
化合物が形成されることによるひずみが小さくなり、界
面応力の発生が抑制される。以上のような理由により、
珪素を主成分とし窒素を含有する中間層と硬質非晶質炭
素膜は強固に付着する。
An element that chemically bonds with silicon and carbon is, for example, nitrogen. Nitrogen is chemically bonded to silicon in the intermediate layer containing nitrogen as a main component of silicon. At the interface with the hard amorphous carbon film, silicon and nitrogen in the intermediate layer form a chemical bond with carbon in the hard amorphous carbon film. The dissociation energy of the bond between nitrogen and carbon is approximately 750 kJ / mol.
And the bond is strong. Further, at the interface between the intermediate layer containing nitrogen and the hard amorphous carbon film, the strain due to the formation of the compound of silicon and carbon becomes small, and the occurrence of interface stress is suppressed. For the above reasons,
The hard amorphous carbon film and the intermediate layer containing silicon as the main component and containing nitrogen are firmly attached.

【0015】珪素を主成分とする中間層に添加すること
によって珪素および硬質非晶質炭素膜と結合し密着力を
増加させる元素としては、上記の炭素ならびに窒素以外
には例えばホウ素(B)、酸素(O)、チタン(T
i)、バナジウム(V)、クロム(Cr)、ジルコニウ
ム(Zr)、ニオブ(Nb)、モリブデン(Mo)、ハ
フニウム(Hf)、タンタル(Ta)、タングステン
(W)などが挙げられる。
Elements other than the above-mentioned carbon and nitrogen, such as boron (B), may be used as the element which is added to the intermediate layer containing silicon as a main component to combine with silicon and the hard amorphous carbon film to increase the adhesion. Oxygen (O), titanium (T
i), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), molybdenum (Mo), hafnium (Hf), tantalum (Ta), tungsten (W), and the like.

【0016】本発明による磁気ヘッドは、このように硬
質非晶質炭素膜と極薄で高い密着力を有する中間層から
なる極薄化された保護膜を有するので、磁気記録媒体と
の磁気的なギャップを小さくして用いることができる。
Since the magnetic head according to the present invention has the extremely thin protective film composed of the hard amorphous carbon film and the intermediate layer having the extremely thin and high adhesiveness as described above, it is magnetically compatible with the magnetic recording medium. It is possible to use with a small gap.

【0017】[0017]

【発明の実施の形態】発明の実施の形態について、磁気
ヘッドの断面模式図である図1を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIG. 1, which is a schematic sectional view of a magnetic head.

【0018】Al2 3 −TiC焼結体を用いた磁気ヘ
ッドスライダ1に珪素を主成分として炭素または窒素を
含有する中間層2を形成した。炭素を含有する中間層
は、高周波(rf)マグネトロンスパッタ法を用いて珪
素と炭素を同時にアルゴンガスでスパッタリングして形
成した。また、珪素を主成分として窒素を含有する中間
層は、珪素をアルゴンと窒素の混合ガスでスパッタする
ことで形成した。これらの中間層の厚さは形成時間によ
って制御した。オージェ電子分光法による分析の結果、
このようにして形成された中間層が含有する炭素、窒素
の量は、珪素ターゲットと炭素ターゲットの配置や、ア
ルゴンガスと窒素ガスの混合比によって制御されること
が確認された。珪素を主成分として炭素を含有する中間
層は、珪素をアルゴンガスとメタン等の炭素を含むガス
の混合ガスでスパッタすることでも形成することがで
き、この場合には中間層の炭素含有量はメタンガス等と
アルゴンの混合比によって制御される。
An intermediate layer 2 containing silicon or silicon as a main component and containing carbon or nitrogen was formed on a magnetic head slider 1 using an Al 2 O 3 -TiC sintered body. The carbon-containing intermediate layer was formed by simultaneously sputtering silicon and carbon with an argon gas using a high frequency (rf) magnetron sputtering method. The intermediate layer containing silicon as a main component and nitrogen was formed by sputtering silicon with a mixed gas of argon and nitrogen. The thickness of these intermediate layers was controlled by the time of formation. As a result of analysis by Auger electron spectroscopy,
It was confirmed that the amounts of carbon and nitrogen contained in the intermediate layer thus formed were controlled by the arrangement of the silicon target and the carbon target and the mixing ratio of the argon gas and the nitrogen gas. The intermediate layer containing silicon as a main component and carbon can also be formed by sputtering silicon with a mixed gas of a gas containing carbon such as argon gas and methane. In this case, the carbon content of the intermediate layer is It is controlled by the mixing ratio of methane gas and argon.

【0019】次に中間層2の上に硬質非晶質炭素膜3を
水素ガスとメタンガスの混合ガスを原料としたrfプラ
ズマCVDによって形成した。硬質非晶質炭素膜の成膜
法には、rfプラズマCVDの他に、直流スパッタ、交
流スパッタ、イオンビームスパッタ、電子サイクロトロ
ン共鳴(ECR)スパッタ、ECRプラズマCVD等が
あるが、いずれの手法を用いてもよい。
Next, a hard amorphous carbon film 3 was formed on the intermediate layer 2 by rf plasma CVD using a mixed gas of hydrogen gas and methane gas as a raw material. In addition to rf plasma CVD, DC sputtering, AC sputtering, ion beam sputtering, electron cyclotron resonance (ECR) sputtering, ECR plasma CVD, and the like can be used for forming the hard amorphous carbon film. You may use.

【0020】図2に、窒素を含有する中間層と硬質非晶
質炭素膜の界面からの、X線光電子分光分析法(XP
S)による窒素1sピークの強度変化を示す。中間層の
窒素含有量が増加すると炭素と結合した窒素からのピー
ク強度が増大し、窒素含有量が約25原子%を越えると
ピーク強度の変化は小さくなり、ピーク強度はほぼ一定
となる。炭素と結合した窒素からのピークの強度変化が
小さくなると同時に、窒素原子同士の結合によるピーク
が現れ、中間層の窒素含有量の増加に伴って増大してい
く。このXPSの窒素1sピークの強度変化は、中間層
の窒素含有量が零から増加していくと、それに伴って中
間層と硬質非晶質炭素膜の界面で窒素と炭素の結合が増
加していき、窒素含有量が約25原子%以上になると結
合に寄与しない単体の窒素が現れることを示している。
FIG. 2 shows the X-ray photoelectron spectroscopy (XP) from the interface between the nitrogen-containing intermediate layer and the hard amorphous carbon film.
The change in intensity of the nitrogen 1s peak due to S) is shown. When the nitrogen content of the intermediate layer increases, the peak intensity from nitrogen bound to carbon increases, and when the nitrogen content exceeds about 25 atom%, the change in peak intensity becomes small and the peak intensity becomes almost constant. At the same time that the intensity change of the peak from nitrogen bonded to carbon becomes smaller, the peak due to the bonding of nitrogen atoms appears, and increases with the increase of the nitrogen content of the intermediate layer. This change in the intensity of the nitrogen 1s peak of XPS shows that as the nitrogen content of the intermediate layer increases from zero, the bond between nitrogen and carbon increases at the interface between the intermediate layer and the hard amorphous carbon film. It is shown that, when the nitrogen content is about 25 atomic% or more, simple nitrogen which does not contribute to the bonding appears.

【0021】図3に、極薄のAl2 3 −TiC基板上
に保護膜を形成し基板の反り量から評価した、窒素を含
有する中間層と硬質非晶質炭素膜の界面応力を示す。窒
素含有量の増加に伴って界面応力は減少し、窒素含有量
が約25原子%になると界面応力は増加に転じる。この
界面応力の増加の原因は明確ではないが、図2のXPS
の結果から中間層内に結合に寄与しない単体の窒素が含
有されることに関連があるものと推測される。
FIG. 3 shows the interfacial stress between the nitrogen-containing intermediate layer and the hard amorphous carbon film, which was evaluated by forming a protective film on an extremely thin Al 2 O 3 —TiC substrate and evaluating the amount of warpage of the substrate. . The interfacial stress decreases as the nitrogen content increases, and the interfacial stress starts to increase when the nitrogen content becomes about 25 atomic%. Although the cause of this increase in interfacial stress is not clear, the XPS of FIG.
From the above results, it is presumed that it is related to the fact that the intermediate layer contains nitrogen as a simple substance that does not contribute to the bonding.

【0022】炭素あるいは窒素を含有する中間層と硬質
非晶質炭素膜から形成された保護膜の耐摺動性の、中間
層が含有する炭素、窒素の量による変化をコンタクトス
タートストップ(CSS)サイクルを繰り返しながら摩
擦係数μを測定するCSS−μ試験法によって評価し
た。本実施例においては、CSS−μ試験には直径3.
5インチの磁気ディスクを用い、磁気記録媒体にかかる
磁気ヘッドの接触荷重を8g、磁気ディスクの回転数を
毎分3600回転とした。
Contact start stop (CSS) changes in the sliding resistance of an intermediate layer containing carbon or nitrogen and a protective film formed of a hard amorphous carbon film depending on the amounts of carbon and nitrogen contained in the intermediate layer. It was evaluated by the CSS-μ test method in which the friction coefficient μ was measured while repeating the cycle. In this example, the CSS-μ test has a diameter of 3.
A 5-inch magnetic disk was used, the contact load of the magnetic head applied to the magnetic recording medium was 8 g, and the rotation speed of the magnetic disk was 3600 rpm.

【0023】図4に、磁気ヘッドスライダ上に厚さ2n
mの珪素の中間層と厚さ3nmの硬質非晶質炭素膜から
なる保護膜を設けたときの、CSSサイクルによる磁気
ヘッドスライダと磁気記録媒体の摩擦係数の変化を示
す。CSS回数が1000回を越えた付近から摩擦係数
μは急激に増加し、CSS2万回後にはCSS開始時の
約6倍にまで増加している。試験後の試料表面を金属顕
微鏡で観察すると、磁気ヘッドには保護膜の剥離が見ら
れ、磁気記録媒体には磨耗痕と保護膜の剥離が見られ
た。磁気ヘッド表面の保護膜が剥離した箇所をマイクロ
オージェ電子分光法で分析した結果、珪素が露出してお
り、膜の剥離は中間層と硬質非晶質炭素膜の間で生じて
いる。
FIG. 4 shows a magnetic head slider with a thickness of 2n.
7 shows a change in friction coefficient between a magnetic head slider and a magnetic recording medium due to a CSS cycle when a protective film made of a silicon intermediate layer of m and a hard amorphous carbon film having a thickness of 3 nm is provided. The friction coefficient μ sharply increases in the vicinity of the number of CSS times exceeding 1000 times, and after 20,000 times CSS, increases to about 6 times as much as the CSS start time. When the surface of the sample after the test was observed with a metallographic microscope, peeling of the protective film was seen on the magnetic head, and abrasion marks and peeling of the protective film were seen on the magnetic recording medium. As a result of analyzing the portion of the magnetic head surface where the protective film has peeled off by micro-Auger electron spectroscopy, silicon is exposed, and peeling of the film occurs between the intermediate layer and the hard amorphous carbon film.

【0024】図5に、磁気ヘッドスライダ上に、厚さ2
nmで炭素を5原子%含有する珪素の中間層と厚さ3n
mの硬質非晶質炭素膜からなる保護膜を設けたときのC
SSサイクルによる磁気ヘッドスライダと磁気記録媒体
の間の摩擦係数の変化を示す。CSS2万回後の摩擦係
数はCSS開始時の約1.5倍に増加した。試験後の試
料表面を金属顕微鏡で観察した結果、磁気ヘッドと磁気
記録媒体のいずれの表面にも保護膜の剥離や損傷は認め
られなかった。
FIG. 5 shows a magnetic head slider with a thickness of 2 mm.
Silicon intermediate layer containing 5 atomic% of carbon in nm and thickness 3n
m when a protective film made of a hard amorphous carbon film of m is provided.
4 shows changes in the friction coefficient between the magnetic head slider and the magnetic recording medium due to the SS cycle. The friction coefficient after CSS 20,000 times increased to about 1.5 times that at the start of CSS. As a result of observing the surface of the sample after the test with a metallographic microscope, neither peeling nor damage of the protective film was observed on either the magnetic head surface or the magnetic recording medium surface.

【0025】珪素層の炭素あるいは窒素の含有量を変え
た中間層と硬質非晶質炭素膜からなる保護膜を磁気ヘッ
ドスライダ上に設けて、CSSサイクルによる摩擦係数
の変化と磁気ヘッドや磁気記録媒体表面の損傷を調べ
た。その結果、CSS2万回後の摩擦係数がCSS開始
時の1.5倍以下の時には光学顕微鏡観察で損傷が見ら
れなかった。このことから、CSSサイクルによる摩擦
係数の変化は磁気ヘッド保護膜の耐摺動性に依存し、C
SS2万回後の摩擦係数がCSS開始時の1.5倍以下
の保護膜は耐摺動性に優れていると判断される。
A protective film consisting of a hard amorphous carbon film and an intermediate layer in which the silicon layer has a different carbon or nitrogen content is provided on the magnetic head slider to change the friction coefficient due to the CSS cycle and the magnetic head and magnetic recording. The damage on the medium surface was examined. As a result, no damage was observed by optical microscope observation when the friction coefficient after CSS 20,000 times was 1.5 times or less of that at the start of CSS. From this, the change in the friction coefficient due to the CSS cycle depends on the sliding resistance of the magnetic head protective film, and C
A protective film having a friction coefficient after SS 20,000 times of 1.5 times or less of that at the start of CSS is judged to have excellent sliding resistance.

【0026】図6に、炭素を含有する厚さ2nmの珪素
層と厚さ3nmの硬質非晶質炭素膜からなる磁気ヘッド
保護膜を設けた場合の、磁気ヘッドと磁気記録媒体の間
の摩擦係数のCSS試験による変化を示す。摩擦係数の
変化は、CSS2万回後の摩擦係数と試験開始時の摩擦
係数の比(試験後の摩擦係数を試験開始時の摩擦係数で
除した値)で表してある。中間層が含有する炭素の量が
増えるとCSS試験による摩擦係数の変化は小さくな
り、炭素含有量が5原子%以上30原子%以下のとき、
CSS2万回後の摩擦係数はCSS開始時の摩擦係数の
1.5倍以下となる。
FIG. 6 shows the friction between the magnetic head and the magnetic recording medium when a magnetic head protective film consisting of a silicon layer containing carbon and having a thickness of 2 nm and a hard amorphous carbon film having a thickness of 3 nm is provided. The change of the coefficient by the CSS test is shown. The change in the friction coefficient is represented by the ratio of the friction coefficient after CSS 20,000 times and the friction coefficient at the start of the test (a value obtained by dividing the friction coefficient after the test by the friction coefficient at the start of the test). When the amount of carbon contained in the intermediate layer increases, the change in the friction coefficient by the CSS test becomes small, and when the carbon content is 5 atom% or more and 30 atom% or less,
The friction coefficient after CSS 20,000 times is 1.5 times or less than the friction coefficient at the start of CSS.

【0027】図7に、窒素を含有する厚さ2nmの珪素
層と厚さ3nmの硬質非晶質炭素膜からなる磁気ヘッド
保護膜を設けた場合の、磁気ヘッドと磁気記録媒体の間
の摩擦係数のCSS試験による変化を示す。摩擦係数の
変化は、CSS2万回後の摩擦係数と試験開始時の摩擦
係数の比(試験後の摩擦係数を試験開始時の摩擦係数で
除した値)で表してある。中間層が含有する窒素の量が
増えるとCSS試験による摩擦係数の変化は小さくな
り、炭素を含有させたときと同様に、窒素含有量が5原
子%以上30原子%以下のとき、CSS2万回後の摩擦
係数はCSS開始時の摩擦係数の1.5倍以下となる。
FIG. 7 shows the friction between the magnetic head and the magnetic recording medium when a magnetic head protective film consisting of a silicon layer containing nitrogen and having a thickness of 2 nm and a hard amorphous carbon film having a thickness of 3 nm is provided. The change of the coefficient by the CSS test is shown. The change in the friction coefficient is represented by the ratio of the friction coefficient after CSS 20,000 times and the friction coefficient at the start of the test (a value obtained by dividing the friction coefficient after the test by the friction coefficient at the start of the test). When the amount of nitrogen contained in the intermediate layer increases, the change in the friction coefficient by the CSS test becomes small, and when the nitrogen content is 5 atom% or more and 30 atom% or less, CSS 20,000 times as in the case of containing carbon. The subsequent friction coefficient is 1.5 times or less than the friction coefficient at the start of CSS.

【0028】以上から、珪素を主成分とする中間層が含
有する炭素、窒素の含有量は5原子%以上30原子%以
下が望ましい。
From the above, it is desirable that the content of carbon and nitrogen contained in the intermediate layer containing silicon as the main component is 5 atom% or more and 30 atom% or less.

【0029】[0029]

【実施例】磁気ヘッドスライダ上に形成した、厚さ2n
mで炭素または窒素を含有する珪素を主成分とした中間
層と厚さ3nmの硬質非晶質炭素膜からなる保護膜の密
着力測定とCSS試験の結果を表1に示す。CSS試験
の判定は、摩擦係数がCSSサイクル2万回によってC
SS開始時の1.5倍を越えた試料を不合格とした。C
SS試験後の顕微鏡観察から、CSS試験で不合格にな
った比較例1、比較例2、比較例3、比較例4の磁気ヘ
ッドでは保護膜の剥離が確認された。
EXAMPLE A thickness of 2n formed on a magnetic head slider
Table 1 shows the results of the measurement of the adhesive force and the CSS test of the protective film formed of the intermediate layer mainly containing silicon containing carbon or nitrogen at m and the hard amorphous carbon film having a thickness of 3 nm. In the CSS test, the friction coefficient is C when the CSS cycle is 20,000 times.
Samples that exceeded 1.5 times the SS start were rejected. C
From the microscope observation after the SS test, peeling of the protective film was confirmed in the magnetic heads of Comparative Example 1, Comparative Example 2, Comparative Example 3, and Comparative Example 4 that failed the CSS test.

【0030】ここでは、磁気ヘッドスライダの空気浮上
面の保護膜として、厚さ2nmで珪素を主成分とした中
間層と厚さ3nmで水素を含有する硬質非晶質炭素膜か
らなる膜を用いたが、中間層と硬質非晶質炭素膜の厚さ
をそれぞれ1nmとした場合にも同様の耐摺動性が得ら
れた。また、2種以上の元素を組み合わせて添加した場
合にも、添加元素が1種類の場合と同様の結果が得られ
た。
Here, as the protective film on the air bearing surface of the magnetic head slider, a film composed of an intermediate layer having a thickness of 2 nm and containing silicon as a main component and a hard amorphous carbon film having a thickness of 3 nm and containing hydrogen is used. However, similar sliding resistance was obtained when the thickness of the intermediate layer and the hard amorphous carbon film were each 1 nm. Further, when two or more kinds of elements were added in combination, the same result as in the case where the added element was one kind was obtained.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
6nm以下の厚さにおいても密着性および耐摺動性に優
れた保護膜を備えた磁気ヘッドを提供することができ、
マルチメディアにおいて要求される超高密度磁気記憶装
置を実現することが可能となる。
As described above, according to the present invention,
It is possible to provide a magnetic head provided with a protective film having excellent adhesion and sliding resistance even at a thickness of 6 nm or less,
It is possible to realize an ultrahigh density magnetic storage device required for multimedia.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気ヘッドの断面を模式的に表し
た図である。
FIG. 1 is a diagram schematically showing a cross section of a magnetic head according to the present invention.

【図2】窒素を含有する珪素の中間層と非晶質硬質炭素
膜の界面での、X線光電子分光による窒素1sピークの
強度変化を示す図である。
FIG. 2 is a diagram showing a change in intensity of nitrogen 1s peak by X-ray photoelectron spectroscopy at an interface between an intermediate layer of silicon containing nitrogen and an amorphous hard carbon film.

【図3】窒素を含有する珪素の中間層と非晶質硬質炭素
膜の接合界面に生じる界面応力の値を示す図である。
FIG. 3 is a diagram showing a value of interfacial stress generated at a bonding interface between a silicon-containing intermediate layer containing nitrogen and an amorphous hard carbon film.

【図4】厚さ2nmの珪素の中間層と厚さ3nmの硬質
非晶質炭素膜からなる磁気ヘッドスライダ保護膜を設け
たときの、磁気ヘッドスライダと磁気記録媒体間の摩擦
係数のCSSサイクルによる変化を示す図である。
FIG. 4 is a CSS cycle of a friction coefficient between a magnetic head slider and a magnetic recording medium when a magnetic head slider protective film including a silicon intermediate layer having a thickness of 2 nm and a hard amorphous carbon film having a thickness of 3 nm is provided. It is a figure which shows the change by.

【図5】炭素を5原子%含有した厚さ2nmの珪素の中
間層と厚さ3nmの硬質非晶質炭素膜からなる磁気ヘッ
ドスライダ保護膜を設けたときの、磁気ヘッドスライダ
と磁気記録媒体間の摩擦係数のCSSサイクルによる変
化を示す図である。
FIG. 5 is a magnetic head slider and a magnetic recording medium in which a magnetic head slider protective film including an intermediate layer of silicon having a thickness of 2 nm containing 5 atomic% of carbon and a hard amorphous carbon film having a thickness of 3 nm is provided. It is a figure which shows the change by the CSS cycle of the friction coefficient between.

【図6】炭素を含有した厚さ2nmの珪素の中間層と厚
さ3nmの硬質非晶質炭素膜からなる磁気ヘッドスライ
ダ保護膜を設けたときの、磁気ヘッドスライダと磁気記
録媒体間の摩擦係数のCSS2万回による変化量を示す
図である。
FIG. 6 shows friction between a magnetic head slider and a magnetic recording medium when a magnetic head slider protective film including a carbon-containing silicon intermediate layer having a thickness of 2 nm and a hard amorphous carbon film having a thickness of 3 nm is provided. It is a figure which shows the amount of change by CSS20,000 times of a coefficient.

【図7】窒素を含有した厚さ2nmの珪素の中間層と厚
さ3nmの硬質非晶質炭素膜からなる磁気ヘッドスライ
ダ保護膜を設けたときの、磁気ヘッドスライダと磁気記
録媒体間の摩擦係数のCSS2万回による変化量を示す
図である。
FIG. 7 shows friction between a magnetic head slider and a magnetic recording medium when a magnetic head slider protective film including a nitrogen-containing silicon intermediate layer having a thickness of 2 nm and a hard amorphous carbon film having a thickness of 3 nm is provided. It is a figure which shows the amount of change by CSS20,000 times of a coefficient.

【符号の説明】[Explanation of symbols]

1 磁気ヘッドスライダ 2 珪素を主成分とする厚さ1nm以上5nm以下の
中間層 3 硬質非晶質炭素膜
1 magnetic head slider 2 intermediate layer containing silicon as a main component and having a thickness of 1 nm or more and 5 nm or less 3 hard amorphous carbon film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁気ヘッドスライダの少なくとも空気浮
上面上に保護膜を有する磁気ヘッドにおいて、該保護膜
は珪素を主成分とする中間層と該中間層上に形成した硬
質非晶質炭素膜とからなり、珪素を主成分とする中間層
は炭素もしくは炭素および珪素と化学結合する元素のう
ち少なくとも1種以上を含有することを特徴とする磁気
ヘッド。
1. A magnetic head having a protective film on at least the air bearing surface of a magnetic head slider, wherein the protective film comprises an intermediate layer containing silicon as a main component and a hard amorphous carbon film formed on the intermediate layer. The magnetic head is characterized in that the intermediate layer containing silicon as a main component contains carbon or at least one kind of element chemically bonded to carbon and silicon.
【請求項2】 珪素を主成分とする中間層の珪素以外の
元素の含有量が、該中間層を構成する全元素に対して5
原子%以上30原子%以下であることを特徴とする、請
求項1に記載の磁気ヘッド。
2. The content of elements other than silicon in the intermediate layer containing silicon as a main component is 5 with respect to all the elements constituting the intermediate layer.
The magnetic head according to claim 1, wherein the content is at least 30 atomic% and at least 30 atomic%.
【請求項3】 珪素を主成分とする中間層の厚さが1n
m以上5nm以下、中間層と硬質非晶質炭素膜からなる
保護膜の厚さが2nm以上6nm以下であることを特徴
とする、請求項1または2に記載の磁気ヘッド。
3. The thickness of the intermediate layer containing silicon as a main component is 1 n.
The magnetic head according to claim 1 or 2, wherein the thickness of the protective film including the intermediate layer and the hard amorphous carbon film is 2 nm or more and 6 nm or less, and m is 5 nm or less and 5 nm or less.
JP4877596A 1996-03-06 1996-03-06 Magnetic head Pending JPH09245332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4877596A JPH09245332A (en) 1996-03-06 1996-03-06 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4877596A JPH09245332A (en) 1996-03-06 1996-03-06 Magnetic head

Publications (1)

Publication Number Publication Date
JPH09245332A true JPH09245332A (en) 1997-09-19

Family

ID=12812647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4877596A Pending JPH09245332A (en) 1996-03-06 1996-03-06 Magnetic head

Country Status (1)

Country Link
JP (1) JPH09245332A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385013B1 (en) 1998-06-09 2002-05-07 Nec Corporation Contact type magnetic disc apparatus
CN100369115C (en) * 2004-05-27 2008-02-13 日立环球储存科技荷兰有限公司 Magnetic head
EP2597717A1 (en) 2007-04-05 2013-05-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385013B1 (en) 1998-06-09 2002-05-07 Nec Corporation Contact type magnetic disc apparatus
US6671129B2 (en) 1998-06-09 2003-12-30 Nec Corporation Contact type magnetic disc apparatus
CN100369115C (en) * 2004-05-27 2008-02-13 日立环球储存科技荷兰有限公司 Magnetic head
EP2597717A1 (en) 2007-04-05 2013-05-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same

Similar Documents

Publication Publication Date Title
TW561462B (en) Magnetic recording medium, method for producing the same, and magnetic storage apparatus
Bhushan et al. Tribological studies of chromium oxide films for magnetic recording applications
US4833031A (en) Magnetic recording medium
US20050255337A1 (en) Perpendicular magnetic recording medium, method of producing the same, and magnetic storage device
KR19990062769A (en) Ultra thin film nucleation layer for magnetic thin film media and method for manufacturing the same
US20050255336A1 (en) Perpendicular magnetic recording medium, method of producing the same, and magnetic storage device
JP2002025032A (en) Magnetic recording medium
US9190095B2 (en) Interlayer comprising chromium-containing alloy
JPH09245332A (en) Magnetic head
US7280312B2 (en) Method for producing a protective thin film for a magnetic head
JP2005196885A (en) Magnetic recording medium
JP2001134927A (en) Magnetic recording medium
JP2956570B2 (en) Magnetic head
JP3564707B2 (en) Magnetic recording media
JP3705474B2 (en) Magnetic recording medium
JP2005174531A (en) Magnetic body for non-reactive treatment for use in granular perpendicular recording
JP2002312923A (en) Magnetic recording medium
KR100374794B1 (en) Perpendicular magnetic recording media
JP2002008217A (en) Head slider
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP2006012319A (en) Magnetic recording medium
JP4944471B2 (en) Magnetic disk and manufacturing method thereof
JPS62283413A (en) Protective film for magnetic recording medium
US20040061976A1 (en) Thin-film magnetic head, method for producing the same and magnetic disk device having a slider using the same
JP2001176059A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19981104