JPH0924436A - Method for forging forged parts with large deformation - Google Patents

Method for forging forged parts with large deformation

Info

Publication number
JPH0924436A
JPH0924436A JP17859495A JP17859495A JPH0924436A JP H0924436 A JPH0924436 A JP H0924436A JP 17859495 A JP17859495 A JP 17859495A JP 17859495 A JP17859495 A JP 17859495A JP H0924436 A JPH0924436 A JP H0924436A
Authority
JP
Japan
Prior art keywords
forging
carbon content
layer
deformation
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17859495A
Other languages
Japanese (ja)
Inventor
Takuma Saito
琢磨 斎藤
Takayoshi Kuchiki
孝良 朽木
Kuniyuki Tsuruta
国之 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP17859495A priority Critical patent/JPH0924436A/en
Publication of JPH0924436A publication Critical patent/JPH0924436A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent generation of defects such as cracks in a large deformation by achieving the forging after a layer with reduced carbon content is formed on a stock to be worked. SOLUTION: Carbon steel or structural alloy steel containing 0.3-1.6% carbon is forged with large deformation. The carbon content of the layer of 0.3-4mm in thickness on the surface of a stock to be worked is <=0.3%. The surface inside of the stock is decarburized to reduce the carbon content of the surface layer. Steel of <=0.3% carbon content is cladded by welding through the thermal spraying on the outside of the surface of the stock. The large deformation forging is achieved on a part which is largely deformed so that the deformation ratio is >=50% in the forging, and carburization is achieved after forging, or the layer with reduced carbon content is removed by machining. When the layer with reduced carbon content is formed by decarburization, the carbon powder or carburizing agent in paste condition is applied to prevent decarburization to a part of the stock whose deformation ratio is <=50% in the forging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は主として鋼材を冷間鍛造
によって高変形させる鍛造部品の鍛造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a method for forging a forged part in which a steel material is highly deformed by cold forging.

【0002】[0002]

【従来の技術】従来の高変形冷間鍛造部品は、金型寿命
の向上と高精度成形等を目的として、まず被加工素材を
軟化させる軟化焼きなましか、鋼中のセメンタイトを球
状化し軟化焼きなましよりも変形抵抗の低減及び延性の
増加を図る球状化焼きなましが施される。その後、鍛造
を行い所定の部品形状に成形するが、高変形させなけれ
ばならない部分がある場合、一工程では成形しきれない
ため数工程に分けて鍛造を行っていた。
2. Description of the Related Art Conventional high-deformation cold forged parts are manufactured by softening annealing for softening a material to be processed, spheroidizing cementite in steel, and softening annealing for the purpose of improving mold life and high-precision forming. Is subjected to spheroidizing annealing to reduce deformation resistance and increase ductility. After that, forging is performed to form a predetermined component shape. However, when there is a portion that needs to be highly deformed, the forging is performed in several steps because the forming cannot be completed in one step.

【0003】[0003]

【発明が解決しようとする課題】上記した従来の高変形
鍛造部品においては、以下のような問題があった。被加
工素材に施す軟化焼きなましあるいは球状化焼きなまし
は、素材を加熱することによって空気中の酸素により酸
化スケールが発生し、また素材表面近傍には脱炭が生ず
る。ここで脱炭は事後の焼入れ効果を低減させるため疲
労強度が低下するので素材鋼種によっては強度的に重要
な問題となる。しかし高炭素鋼を冷間鍛造させる場合、
高変形を伴う部品においては表面に割れ、亀裂等の欠陥
が発生しやすく、所定の成形品を得ることができないと
いう問題があった。
The above-mentioned conventional high deformation forged parts have the following problems. When softening annealing or spheroidizing annealing is performed on a material to be processed, when the material is heated, oxygen in the air causes oxide scale to be generated, and decarburization occurs near the surface of the material. Here, decarburization reduces the post-quenching effect and reduces the fatigue strength, which is an important strength problem depending on the type of material steel. However, when cold forging high carbon steel,
In parts with high deformation, defects such as cracks and cracks are likely to occur on the surface, and there is a problem in that a predetermined molded product cannot be obtained.

【0004】また鍛造時に高変形させる部品は、通常数
工程に分けて鍛造されるが、これは、一工程の鍛造で行
うと高変形部が加工硬化を伴うことで応力が集中し、金
型の破損あるいは成形品の割れまたは金型と成形品のか
じり等の不具合が発生する。そのため、数工程に分けて
かつ中間に焼きなましを入れて成形品を軟化させながら
所定の形状に成形していく必要があった。本発明の目的
は、被加工素材の高変形時の欠陥を防止するようにした
鍛造方法を提供することである。
Further, a component which is highly deformed at the time of forging is usually forged in several steps. This is because when the forging in one step is performed, stress is concentrated due to work hardening of the highly deformed portion, and the die Or damage to the molded product or galling between the mold and the molded product may occur. Therefore, it is necessary to divide the process into several steps and insert annealing in the middle to soften the molded product to mold it into a predetermined shape. An object of the present invention is to provide a forging method that prevents defects when the material to be processed is highly deformed.

【0005】[0005]

【課題を解決するための手段】上記目的は、被加工素材
に炭素含有量を低下させた層を形成させた後鍛造するこ
とにより達成される。被加工素材は、炭素鋼または構造
用合金鋼を対象としその炭素含有量は0.3%〜1.6
%の鋼材が望ましい。被加工素材表面の炭素含有量を低
下させた層の厚さを、0.3mm〜4mmとすると共に
この層の炭素含有量を、0.3%以下とするとよい。炭
素含有量を低下させた層は、被加工素材の表面を酸化性
等の雰囲気により脱炭させるか、または被加工素材の表
面に炭素含有量が0.3%以下の低炭素鋼線を溶射によ
り肉盛りを施すことにより形成し、この場合肉盛した部
分と素材との密着性を高めるために加熱拡散処理を施す
とよい。
The above object can be achieved by forming a layer having a reduced carbon content on a material to be processed and then forging. The material to be processed is carbon steel or structural alloy steel, and the carbon content is 0.3% to 1.6.
% Steel is desirable. The thickness of the layer having a reduced carbon content on the surface of the material to be processed may be 0.3 mm to 4 mm, and the carbon content of this layer may be 0.3% or less. For the layer with reduced carbon content, decarburize the surface of the material to be processed in an atmosphere such as oxidizing, or spray low carbon steel wire with a carbon content of 0.3% or less on the surface of the material to be processed. It is preferably formed by applying a padding, and in this case, a heat diffusion treatment may be applied in order to enhance the adhesion between the padded part and the material.

【0006】更に被加工素材は、鍛造時の変形率が50
%以上の高変形させる部分があるものに対して適用さ
れ、50%以下の変形率しか持たない被加工素材には適
用されない。炭素含有量を低下させた層を脱炭により形
成させた場合、鍛造時の変形率が50%以下の被加工素
材部には、炭粉または浸炭剤等をペースト状にして塗布
して脱炭を防止することが必要である。鍛造後は浸炭処
理を施すかあるいは炭素含有量を低下させた層を機械加
工により取り除き調質処理を施すとよい。
Further, the material to be processed has a deformation rate of 50 during forging.
It is applied to a material having a high deformation ratio of not less than%, and is not applied to a work material having a deformation ratio of not more than 50%. When a layer with a reduced carbon content is formed by decarburization, decarburization is performed by applying charcoal powder or carburizing agent in a paste form to the work material part whose deformation rate during forging is 50% or less. It is necessary to prevent After forging, a carburizing treatment may be performed, or a layer having a reduced carbon content may be removed by machining to perform a tempering treatment.

【0007】[0007]

【作用】上記のように、被加工素材表面に炭素含有量を
低下させた層を形成させるた後鍛造することにより、内
部よりも変形抵抗が低く延性もあり、高変形部における
変形は内部のひずみを表面層が緩和させる状態となり、
表面に発生する割れあるいは亀裂を防止することができ
る。被加工素材の炭素含有量は0.3%以下であると、
高変形させても欠陥の発生がなく、従って被加工素材に
形成させる層の炭素含有量は、通常0.3%以下にする
とよいが、例えば層をα−Fe(炭素含有量0.025
%以下)程度のより低めの炭素含有量にした方が高変形
鍛造に対応できる。
As described above, by forming a layer having a reduced carbon content on the surface of the material to be processed and then forging, the deformation resistance and ductility are lower than those in the inside, and the deformation in the highly deformed portion is The surface layer relaxes the strain,
It is possible to prevent cracks or cracks generated on the surface. If the carbon content of the material to be processed is 0.3% or less,
No defects are generated even when highly deformed, and therefore the carbon content of the layer formed on the material to be processed is usually 0.3% or less. For example, α-Fe (carbon content of 0.025
Higher deformation forging can be supported by using a lower carbon content of about (% or less).

【0008】また被加工素材の上限の炭素含有量は1.
6%であるが、この値を超えると鋳鉄となり、遊離炭素
である黒鉛が塊状に晶出した状態となっているため鍛造
時にはこの黒鉛が起点となり内部破壊を伴うこととな
る。そして、炭素含有量を低下させた層の厚さは、通常
鋼材メーカーから購入する黒皮材において、その表面層
は既に0.3mm程度の脱炭により炭素含有量が低下し
た素材であり、また上限は4mm以下に制御させること
で、事後の浸炭で容易に素材本来の炭素含有量に復帰さ
せることが可能である。
The upper limit carbon content of the material to be processed is 1.
Although it is 6%, when it exceeds this value, it becomes cast iron, and since graphite that is free carbon is crystallized in a lump form, this graphite becomes a starting point during forging and is accompanied by internal fracture. The thickness of the layer in which the carbon content has been reduced is that the surface layer of a black leather material that is usually purchased from a steel manufacturer is a material in which the carbon content has already been reduced by decarburization of about 0.3 mm. By controlling the upper limit to 4 mm or less, it is possible to easily restore the original carbon content of the material by post-carburizing.

【0009】更に被加工素材は、鍛造時の変形率が50
%以下の低変形率の場合は、通常表面に割れ、亀裂等の
欠陥は発生しにくい。
Further, the material to be processed has a deformation rate of 50 during forging.
When the deformation ratio is low, the defects such as cracks and cracks are not likely to occur on the surface.

【0010】[0010]

【実施例】以下実施例図面を参照して本発明を説明す
る。まず炭素含有量0.4%の構造用Cr−Mo鋼SC
M440材の円柱素材(φ40×40mm)を図1に示
す熱処理パターンにより大気中で加熱した。この熱処理
パターンは炭素含有量を低下させる層の深さを制御する
と同時に被加工素材内部の軟化を目的とした球状化焼き
なましを施すものである。図2には前記合金鋼の鉄−炭
素系状態図を示し、図3には前記合金鋼を図1の熱処理
を施した時に得られた素材表面からの炭素含有量を示
す。
The present invention will be described below with reference to the accompanying drawings. First, structural Cr-Mo steel SC with a carbon content of 0.4%
A cylindrical material (φ40 × 40 mm) of M440 material was heated in the atmosphere according to the heat treatment pattern shown in FIG. This heat treatment pattern controls the depth of the layer that lowers the carbon content, and at the same time, performs spheroidizing annealing for the purpose of softening the inside of the material to be processed. FIG. 2 shows the iron-carbon system phase diagram of the alloy steel, and FIG. 3 shows the carbon content from the surface of the material obtained when the alloy steel is subjected to the heat treatment of FIG.

【0011】図1の熱処理を施すことにより、素材がま
ず870℃で加熱保持され素材全体がオーステナイト
(γ−Fe)状態となる。次いで図3に示した(a)の
範囲は脱炭によりオーステナイトからα−Feに変態
し、これに続いて炭素濃度に濃淡がある拡散層(b)が
形成される。(a)と(b)の層の境は図2のCに相当
し、(b)の炭素含有量は漸増して鋼素地に達する。そ
の後A1変態点直下の720℃に冷却することで、拡散
層及び鋼内部素地のオーステナイト状態がα−Feとセ
メンタイト(Fe3C)に分解し、更にこの温度で保持
することによりセメンタイトが球状化する。
By performing the heat treatment shown in FIG. 1, the raw material is first heated and held at 870 ° C. and the entire raw material is brought into an austenite (γ-Fe) state. Next, in the range of (a) shown in FIG. 3, austenite is transformed into α-Fe by decarburization, and subsequently, a diffusion layer (b) having a carbon concentration is formed. The boundary between the layers of (a) and (b) corresponds to C of FIG. 2, and the carbon content of (b) gradually increases to reach the steel substrate. Then, by cooling to 720 ° C. just below the A1 transformation point, the austenite state of the diffusion layer and the steel internal base material is decomposed into α-Fe and cementite (Fe3C), and the cementite is spheroidized by holding at this temperature.

【0012】ここで高変形時の欠陥防止に効果を及ぼす
0.3%以下の炭素含有量を低下させた層は図3の
(c)の範囲に相当し、その層の深さは約3mmであっ
た。次に、この炭素含有量を低下させた層を有する円柱
素材を図4に示すように圧縮変形させて表面に発生する
欠陥の有無及び図5に示すように変形抵抗を測定した。
変形抵抗の測定は最大圧縮荷重400トンのプレスを用
い、常温中の円柱圧縮時の荷重と変形率(歪)から応力
(変形抵抗)を導き出した。尚、型との潤滑剤は円柱素
材にボンデ処理を行った。
The layer having a reduced carbon content of 0.3% or less, which has the effect of preventing defects during high deformation, corresponds to the range of FIG. 3C, and the depth of the layer is about 3 mm. Met. Next, the columnar material having the layer in which the carbon content was reduced was compressed and deformed as shown in FIG. 4, and the presence or absence of defects generated on the surface and the deformation resistance were measured as shown in FIG.
For the measurement of the deformation resistance, a press with a maximum compression load of 400 tons was used, and stress (deformation resistance) was derived from the load and the deformation rate (strain) when the column was compressed at room temperature. As a lubricant for the mold, a cylinder material was subjected to bonder treatment.

【0013】真空中で球状化焼きなましを施し素材表層
部に炭素含有量を低下させた層を持たない従来のSCM
440材(図5の2)においては、変形率約68%で図
4に示すような割れ1の欠陥が発生したが、本発明の炭
素含有量を低下させた層を有する円柱素材(図5の3)
は80%まで圧縮変形させても表面に割れ1の欠陥が発
生しなかった。また、この炭素含有量を低下させた層は
変形抵抗に僅かな効果を示し、従来のSCM440材
(図5の2)と比較して約5%変形抵抗が低かった。こ
の効果の検証するため、以下の実験を行った。本発明の
炭素含有量を低下させた層(図3(c)の範囲)の平均
炭素含有量は約0.1%であることから、炭素含有量が
0.1%の低炭素鋼S10C材の変形抵抗を測定したと
ころ(図5の4)、従来品(図5の2)と比較して約2
5%も変形抵抗が低い。そこで、本発明のように炭素含
有量を低下させた表層部を持たせることにより変形抵抗
を減少させる効果があり、高変形させても表面に割れ1
の欠陥が発生しない。
A conventional SCM which is spheroidized and annealed in a vacuum and has no layer with a reduced carbon content in the surface layer of the material.
In the No. 440 material (2 in FIG. 5), the defect of the crack 1 as shown in FIG. 4 occurred at the deformation rate of about 68%, but the columnar material having the layer with the reduced carbon content of the present invention (FIG. 5). 3)
No defect of crack 1 occurred on the surface even when compressed and deformed to 80%. Further, the layer having the reduced carbon content showed a slight effect on the deformation resistance, and the deformation resistance was about 5% lower than that of the conventional SCM440 material (2 in FIG. 5). The following experiment was conducted to verify this effect. Since the average carbon content of the layer of the present invention in which the carbon content is reduced (range of FIG. 3 (c)) is about 0.1%, the low carbon steel S10C material having a carbon content of 0.1%. The deformation resistance was measured (4 in Fig. 5), and it was about 2 compared with the conventional product (2 in Fig. 5).
Deformation resistance is as low as 5%. Therefore, it is effective to reduce the deformation resistance by providing a surface layer portion having a reduced carbon content as in the present invention, and even if highly deformed, the surface cracks 1
No defects occur.

【0014】尚、従来のSCM440材(図5の2)を
約50%まで圧縮変形させた後、図1に示す熱処理パタ
ーンで真空中により中間焼きなましを行い、更に80%
まで圧縮変形させた(図5の5)。この場合は表面に割
れ1や亀裂等の欠陥は発生しなかった。そこで従来品も
中間に焼なましを含めて工程を増やせば所定の成形品を
得ることができるが、本発明では一工程で所定の成形品
を得ることができる。以上の炭素含有量を低下させた層
を有する成形品は、図3の(c)の炭素含有量を低下さ
せた層が圧縮され1/3(1mm)に薄くなっている。
そこでCo+Co2等の混合ガスにより850〜900
℃、3時間の浸炭処理と3時間の拡散処理によりほぼ素
材内部の炭素濃度まで復炭させることができ、そのまま
焼入れを行った。あるいは鍛造前の円柱素材外寸を3m
m多くしておくことにより鍛造後の圧縮された炭素含有
量を低下させた層1mmを機械加工により取り除き、そ
の後全体調質を行った。
After compressing and deforming the conventional SCM440 material (2 in FIG. 5) to about 50%, an intermediate annealing is performed in vacuum according to the heat treatment pattern shown in FIG. 1 and further 80%.
Was compressed and deformed (5 in FIG. 5). In this case, defects such as crack 1 and cracks did not occur on the surface. Therefore, a conventional molded product can be obtained by increasing the number of steps including annealing in the middle, but in the present invention, the predetermined molded product can be obtained in one step. In the molded article having the layer with the reduced carbon content described above, the layer with the reduced carbon content in FIG. 3C is compressed to be 1/3 (1 mm) thin.
Therefore, using mixed gas of Co + Co2, etc., 850-900
By carburizing at 3 ° C. for 3 hours and diffusing for 3 hours, the carbon concentration in the material could be almost restored, and the material was quenched. Alternatively, the outer diameter of the cylindrical material before forging is 3 m
The layer 1 mm in which the compressed carbon content after forging was reduced by increasing m was removed by machining, and then the entire tempering was performed.

【0015】また他の実施例として、上記と同じ素材に
純鉄線により素材表面に肉盛溶射する。素材寸法はφ3
4×40mmの円柱状で外周部のみに肉盛溶射を施し、
その層は3mmとした。その後、図1に示した熱処理パ
ターンを真空中で行うことにより、溶射部と素材の密着
性を完全にするための拡散処理と内部の球状化焼きなま
しを同時に行うことができた。ここで得られた炭素濃度
分布はほぼ図3に示したものとほぼ等くなり、変形率8
0%までの圧縮まで表面に割れ1の発生はなく、変形抵
抗も図5の3に示すものと同等であった。
As another embodiment, the same material as described above is subjected to overlay thermal spraying on the surface of the material with a pure iron wire. Material size is φ3
It is a 4 x 40 mm cylinder and has a built-in thermal spray coating only on the outer periphery.
The layer was 3 mm. After that, by performing the heat treatment pattern shown in FIG. 1 in a vacuum, it was possible to simultaneously perform the diffusion treatment for perfecting the adhesion between the sprayed portion and the material and the internal spheroidizing annealing. The carbon concentration distribution obtained here is almost the same as that shown in FIG.
No crack 1 was generated on the surface until compression to 0%, and the deformation resistance was similar to that shown in 3 of FIG.

【0016】更に、SCM440材の円柱素材の上下端
面に、炭粉または浸炭剤(木炭:60〜70%、BaC
o3:20〜30%、NaCo3:10〜20%、コーク
ス:10〜20%)をメタノール、イソプロパノールあ
るいは水ガラス(けい酸ナトリウム溶液)によりペース
ト状にして塗布する。その後円柱素材を図1の熱処理パ
ターンを用い大気中で焼なまし行うと、素材側面のみが
図3のような炭素分布となるが、上下端面の炭素濃度は
変化せず素材内部の炭素分布と同じであった。この素材
を図6に示めすような鍛造を行うと、側面は約70%以
上の高変形部であるが炭素含有量を低下させた層を有す
るため割れ1の欠陥がなく、上下端面も50%以下の低
変形部であるため勿論割れ1の欠陥がない。この部品は
上下端面のみ硬度を持たせる部品で、鍛造後高周波によ
り上下端面を焼入れした。
Further, carbon powder or carburizing agent (charcoal: 60 to 70%, BaC) is formed on the upper and lower end surfaces of the SCM440 cylindrical material.
o3: 20 to 30%, NaCo3: 10 to 20%, coke: 10 to 20%) is applied as a paste with methanol, isopropanol or water glass (sodium silicate solution). Then, when the columnar material is annealed in the atmosphere using the heat treatment pattern of FIG. 1, only the side surface of the material has a carbon distribution as shown in FIG. 3, but the carbon concentration on the upper and lower end surfaces does not change and the carbon distribution inside the material It was the same. When this material is forged as shown in FIG. 6, the side surface is a highly deformed portion of about 70% or more, but since it has a layer with a reduced carbon content, there is no defect of crack 1 and the upper and lower end surfaces are 50 Since it is a low deformation portion of less than or equal to%, of course, there is no defect of crack 1. This part is a part that has hardness only on the upper and lower end faces, and the upper and lower end faces were quenched by high frequency after forging.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、高
炭素鋼のような被加工素材の表面に炭素含有量を低下さ
せた層を形成した後鍛造することで、高変形時における
割れ、亀裂等の欠陥を防止することが可能となった。更
に炭素含有量を低下させた層を持たない従来材よりも、
割れ、亀裂等の欠陥を防止できるため、従来材では所定
の鍛造品を得るために中間に焼きなましを入れて数工程
の鍛造成形を本発明品では一工程で成形することがで
き、工程を短縮できる。
As described above, according to the present invention, cracking during high deformation is achieved by forming a layer having a reduced carbon content on the surface of a material to be processed such as high carbon steel and then forging. It has become possible to prevent defects such as cracks. Furthermore, compared to conventional materials that do not have a layer with a reduced carbon content,
Since it is possible to prevent defects such as cracks and cracks, conventional materials can be annealed in the middle to obtain a predetermined forged product, and forging of several steps can be molded in one step with the product of the present invention, shortening the process it can.

【0018】また、変形抵抗が減少するため、鍛造時の
型摩耗の度合いを低減でき、更に型寿命の向上に寄与す
ることができる。
Further, since the deformation resistance is reduced, it is possible to reduce the degree of die wear during forging, and further contribute to the improvement of die life.

【図面の簡単な説明】[Brief description of drawings]

【図1】 球状化焼きなましと炭素含有量を低下させる
層の深さを制御する熱処理パターンを示すグラフ。
FIG. 1 is a graph showing a spheroidizing annealing and a heat treatment pattern for controlling the depth of a layer for lowering the carbon content.

【図2】 鉄−炭素系状態を示すグラフ。FIG. 2 is a graph showing an iron-carbon system state.

【図3】 図1の熱処理パターンで得られた炭素濃度を
示すグラフ。
FIG. 3 is a graph showing the carbon concentration obtained by the heat treatment pattern of FIG.

【図4】 円柱素材の圧縮変形前後を示す説明用斜視
図。
FIG. 4 is an explanatory perspective view showing a cylindrical material before and after compression deformation.

【図5】 変形抵抗の測定結果及び表面に発生する欠陥
の有無を示すグラフ。
FIG. 5 is a graph showing the measurement results of deformation resistance and the presence or absence of defects occurring on the surface.

【図6】 円柱素材の圧縮変形前後を示す正面図。FIG. 6 is a front view showing a cylindrical material before and after compression deformation.

【符号の説明】[Explanation of symbols]

1は成形品表面に発生した割れ、2は従来のSCM44
0材の変形抵抗曲線、3は本発明の変形抵抗曲線、4は
S10C材の変形抵抗曲線、5は従来のSCM440材
に中間焼なましを施し50%から鍛造した場合の変形抵
抗曲線。
1 is a crack generated on the surface of the molded product, 2 is a conventional SCM44
Deformation resistance curve of 0 material, 3 is deformation resistance curve of the present invention, 4 is deformation resistance curve of S10C material, and 5 is a deformation resistance curve when conventional SCM440 material is subjected to intermediate annealing and forged from 50%.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 被加工素材に炭素含有量を低下させた層
を形成させた後鍛造することを特徴とした高変形鍛造部
品の鍛造方法。
1. A method for forging a high deformation forged part, which comprises forming a layer having a reduced carbon content on a material to be processed and then forging.
【請求項2】 前記被加工素材を、0.3%〜1.6%
の炭素を含有した炭素鋼または構造用合金鋼としたこと
を特徴とする請求項1記載の高変形鍛造部品の鍛造方
法。
2. The material to be processed is 0.3% to 1.6%
2. The method for forging a high deformation forged part according to claim 1, wherein the carbon steel containing the above carbon or a structural alloy steel is used.
【請求項3】 前記被加工素材表面の炭素含有量を低下
させた層の厚さを、0.3mm〜4mmとしたことを特
徴とする請求項1記載の高変形鍛造部品の鍛造方法。
3. The method for forging a high deformation forged part according to claim 1, wherein the thickness of the layer having a reduced carbon content on the surface of the material to be processed is 0.3 mm to 4 mm.
【請求項4】 前記被加工素材表面の炭素含有量を低下
させた層の炭素含有量を、0.3%以下としたことを特
徴とする請求項1記載の高変形鍛造部品の鍛造方法。
4. The method for forging a high deformation forged part according to claim 1, wherein the carbon content of the layer having a reduced carbon content on the surface of the material to be processed is 0.3% or less.
【請求項5】 前記炭素含有量を低下させた層を、被加
工素材の表面内部を脱炭させるか、または被加工素材の
表面外部に0.3%以下の炭素含有量の鋼材を溶射によ
り密着性の優れた肉盛りを施すことによって形成したこ
とを特徴とする請求項1記載の高変形鍛造部品の鍛造方
法。
5. The carbon content-reduced layer is decarburized on the inside of the surface of the material to be processed or by spraying a steel material having a carbon content of 0.3% or less on the outside of the surface of the material to be processed. The method for forging a high deformation forged part according to claim 1, wherein the forging is performed by forming a padding having excellent adhesion.
【請求項6】 前記被加工素材は、鍛造時の変形率が5
0%以上の高変形させる部分があることを特徴とする請
求項1記載の高変形鍛造部品の鍛造方法。
6. The work material has a deformation ratio of 5 during forging.
The method for forging a high deformation forged part according to claim 1, wherein there is a portion that is highly deformed by 0% or more.
【請求項7】 前記鍛造後は、浸炭処理を施すかあるい
は炭素含有量を低下させた層を機械加工により取り除い
て調質処理を施すことを特徴とした請求項1記載の高変
形鍛造部品の鍛造方法。
7. The highly deformed forged part according to claim 1, wherein after the forging, a carburizing process is performed or a layer having a reduced carbon content is removed by machining to perform a tempering process. Forging method.
【請求項8】 前記炭素含有量を低下させた層を脱炭に
より形成させる場合、鍛造時の変形率が50%以下の被
加工素材部には、炭粉または浸炭剤等をペ−スト状にし
て塗布して脱炭を防止するようにしたことを特徴とする
請求項1記載の高変形鍛造部品の鍛造方法。
8. When forming the layer having a reduced carbon content by decarburization, carbon powder or a carburizing agent is applied in a paste form to the work material portion having a deformation rate of 50% or less during forging. The method for forging highly deformed forged parts according to claim 1, wherein the forging is applied to prevent decarburization.
JP17859495A 1995-07-14 1995-07-14 Method for forging forged parts with large deformation Withdrawn JPH0924436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17859495A JPH0924436A (en) 1995-07-14 1995-07-14 Method for forging forged parts with large deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17859495A JPH0924436A (en) 1995-07-14 1995-07-14 Method for forging forged parts with large deformation

Publications (1)

Publication Number Publication Date
JPH0924436A true JPH0924436A (en) 1997-01-28

Family

ID=16051195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17859495A Withdrawn JPH0924436A (en) 1995-07-14 1995-07-14 Method for forging forged parts with large deformation

Country Status (1)

Country Link
JP (1) JPH0924436A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384893B2 (en) 2017-03-22 2019-08-20 Canon Finetech Nisca Inc. Sheet conveying apparatus, image reading apparatus, and image forming apparatus
CN113843382A (en) * 2021-07-14 2021-12-28 攀枝花市仁通钒业有限公司 Production process of vanadium-titanium carbide alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10384893B2 (en) 2017-03-22 2019-08-20 Canon Finetech Nisca Inc. Sheet conveying apparatus, image reading apparatus, and image forming apparatus
CN113843382A (en) * 2021-07-14 2021-12-28 攀枝花市仁通钒业有限公司 Production process of vanadium-titanium carbide alloy
CN113843382B (en) * 2021-07-14 2024-04-26 攀枝花市仁通钒业有限公司 Production process of vanadium titanium carbide alloy

Similar Documents

Publication Publication Date Title
CN113862610B (en) Pretreatment method for improving corrosion resistance of carburized layer
US6153030A (en) Method for the manufacture of hollow shafts
JPH07112231A (en) Manufacture of sintered gear
JPH08225851A (en) Quenching distortion straightening of annular body
JPH0924436A (en) Method for forging forged parts with large deformation
JP3093123B2 (en) Manufacturing method of cast iron gear
JPS5967365A (en) Production of machine parts
JP3395252B2 (en) Manufacturing method of steel with excellent fatigue strength
JP2723150B2 (en) Surface treatment method for steel members
JP2001131688A (en) Air-hardened low or medium carbon steel for improving heat treatment
JP4416861B2 (en) Gear surface hardening method
JP2007270345A (en) Method for producing member for transport equipment
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
KR100259983B1 (en) Method for minimizing thermal deformation of metal
JPH0680164B2 (en) Sintered forged product manufacturing method
JP2001131610A (en) Manufacturing method of sintered metal
KR102560881B1 (en) Local heat treatment method of work roll
TWI779686B (en) Steel material for hot-stamping and method of manufacturing steel material
JPH0130913B2 (en)
KR100240043B1 (en) Heat treatment of die material
JPS63210236A (en) Manufacture of high-collapse oil well pipe having sour resistance
JP4184147B2 (en) NITRIDED TOOL, DIE AND ITS MANUFACTURING METHOD
JPH04183820A (en) Production of steel pipe for cylinder tube having superior resistance to fatigue due to internal pressure
JPS6314816A (en) Production of work roll for cold rolling mill
CN117604203A (en) Bearing ring processing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001