JPH09243834A - Refractive index distribution type plastic optical fiber - Google Patents

Refractive index distribution type plastic optical fiber

Info

Publication number
JPH09243834A
JPH09243834A JP8073146A JP7314696A JPH09243834A JP H09243834 A JPH09243834 A JP H09243834A JP 8073146 A JP8073146 A JP 8073146A JP 7314696 A JP7314696 A JP 7314696A JP H09243834 A JPH09243834 A JP H09243834A
Authority
JP
Japan
Prior art keywords
optical fiber
refractive index
index distribution
fiber
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8073146A
Other languages
Japanese (ja)
Inventor
Yasuhiro Koike
康博 小池
Yasushi Kawarada
泰 川原田
Kikue Irie
菊枝 入江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Y K KENKYUSHO KK
Mitsubishi Rayon Co Ltd
Original Assignee
Y K KENKYUSHO KK
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Y K KENKYUSHO KK, Mitsubishi Rayon Co Ltd filed Critical Y K KENKYUSHO KK
Priority to JP8073146A priority Critical patent/JPH09243834A/en
Publication of JPH09243834A publication Critical patent/JPH09243834A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material
    • G02B6/02038Core or cladding made from organic material, e.g. polymeric material with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refractive index distribution type optical fiber having excellent stability against heat in the distribution of refractive index by using at least one kind selected from triphenyl phosphate, tricresyl phosphate and diphenyl phthalate as a nonpolymerizable compd. to give the density gradation. SOLUTION: This fiber consists of a polymer which forms a transparent matrix and a nonpolymerizable compd. and the fiber has distribution of refractive index obtd. by making density gradation of the nonpolymerizable compd. between the center to the peripheral part of the fiber. The polymer which constitutes the matrix is not limited as far as it can form a transparent matrix, and for example, methylmethacrylate and ethylmethacrylate can be used. As for the nonpolymerizable compd., at least one compd. selected from triphenyl phosphate, tricresyl phosphate and diphenyl phthalate is used. The nonpolymerizable compd. has solubility with the polymer of the matrix and gives the density gradation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、屈折率分布の耐熱
安定性に優れた屈折率分布型プラスチック光ファイバに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gradient index plastic optical fiber excellent in heat resistance stability of the gradient index.

【0002】[0002]

【従来の技術】プラスチック光ファイバにおいてファイ
バ断面に屈折率分布を有するためには、屈折率の異なる
2種以上の重合体で構成するか、重合体と非重合性低分
子物で構成する必要がある。しかしながら、屈折率の異
なる2種以上の重合体で構成されるプラスチック光ファ
イバにおいては、重合体間の相分離に基づく散乱損失が
大きくなってしまい、低損失の光ファイバを得ることが
極めて困難である。一方、重合体と非重合性低分子物で
構成されるプラスチック光ファイバにおいては、非重合
性低分子物の濃度勾配のある屈折率分布を有し、相分離
に基づく散乱損失がないため低損失の光ファイバを得る
ことができる(WO93/08488号公報、特開平6
−186441号公報、特開平6−186442号公
報、特開平7−27928号公報等)。
2. Description of the Related Art In order for a plastic optical fiber to have a refractive index distribution in the fiber cross section, it must be composed of two or more kinds of polymers having different refractive indexes or composed of a polymer and a non-polymerizable low molecular weight material. is there. However, in a plastic optical fiber composed of two or more polymers having different refractive indices, the scattering loss due to phase separation between the polymers becomes large, and it is extremely difficult to obtain an optical fiber with low loss. is there. On the other hand, a plastic optical fiber composed of a polymer and a non-polymerizable low molecular weight substance has a refractive index distribution with a concentration gradient of the non-polymerizable low molecular weight substance, and since there is no scattering loss due to phase separation, low loss Optical fiber can be obtained (WO93 / 08488 gazette, Japanese Patent Laid-Open No. Hei 6
-186441, JP-A-6-186442, JP-A-7-27928).

【0003】かかる重合体と非重合性低分子化合物を用
いた屈折率分布型プラスチック光ファイバにおける非重
合性低分子化合物として、例えば特公昭55−1888
2号公報にてエチレンジアセテート、フタル酸ジメチ
ル、フタル酸ジブチルが、WO93/08488号公報
にてブロモベンゼン、安息香酸ベンジル、フタル酸ブチ
ルベンジルが、また特開平7−27928号公報にてセ
バシン酸ジブチルが示されている。しかしながら、これ
らに開示の非重合性低分子化合物を用いて得られる屈折
率分布型プラスチック光ファイバは、加熱を受けたとき
に屈折率分布が変化し易く屈折率分布の耐熱安定性に劣
るという問題点を有する。
As a non-polymerizable low molecular weight compound in a gradient index plastic optical fiber using such a polymer and a non-polymerizable low molecular weight compound, for example, Japanese Patent Publication No. 55-1888.
No. 2 discloses ethylene diacetate, dimethyl phthalate and dibutyl phthalate, WO 93/08488 discloses bromobenzene, benzyl benzoate and butyl benzyl phthalate, and JP 7-27928 discloses sebacic acid. Dibutyl is indicated. However, the refractive index distribution type plastic optical fiber obtained by using the non-polymerizable low molecular weight compound disclosed therein has a problem that the refractive index distribution is likely to change when heated, and the heat resistance stability of the refractive index distribution is poor. Have a point.

【0004】[0004]

【発明が解決しようとする課題】本発明は、選択された
特定の非重合性低分子化合物を用いることにより、かか
る従来の屈折率分布型プラスチック光ファイバの問題点
を解決するものであり、本発明の目的は、屈折率分布の
耐熱安定性に優れた屈折率分布型プラスチック光ファイ
バを提供することにある。
SUMMARY OF THE INVENTION The present invention solves the problems of the conventional gradient index plastic optical fiber by using a selected specific non-polymerizable low molecular weight compound. An object of the invention is to provide a gradient index plastic optical fiber having excellent heat resistance stability of the gradient index.

【0005】[0005]

【課題を解決するための手段】本発明は、透明なマトリ
ックスをなす重合体と非重合性化合物とから構成され、
ファイバの中心部と外周部間に非重合性化合物の濃度勾
配が形成された屈折率分布型光ファイバにおいて、非重
合性化合物がリン酸トリフェニル、リン酸トリクレジル
及びフタル酸ジフェニルの群から選ばれる少なくとも一
つであることを特徴とする屈折率分布型プラスチック光
ファイバにある。
The present invention comprises a transparent matrix polymer and a non-polymerizable compound,
In the gradient index optical fiber in which the concentration gradient of the non-polymerizable compound is formed between the central part and the outer peripheral part of the fiber, the non-polymerizable compound is selected from the group of triphenyl phosphate, tricresyl phosphate and diphenyl phthalate. A graded index plastic optical fiber characterized in that it is at least one.

【0006】[0006]

【発明の実施の形態】本発明の屈折率分布型プラスチッ
ク光ファイバは、透明なマトリックスをなす重合体と非
重合性化合物とから構成され、ファイバの中心部と外周
部間に非重合性化合物の濃度勾配が形成されたことによ
り屈折率分布を有する。
BEST MODE FOR CARRYING OUT THE INVENTION The gradient index plastic optical fiber of the present invention comprises a transparent matrix polymer and a non-polymerizable compound, and the non-polymerizable compound is provided between the central portion and the outer peripheral portion of the fiber. Since the concentration gradient is formed, it has a refractive index distribution.

【0007】本発明のプラスチック光ファイバのマトリ
ックスを構成する重合体は、透明なマトリックスを形成
しうるものであれば特に限定はないが、例えば、メタク
リル酸メチル、メタクリル酸エチル、メタクリル酸(n
−、i−)プロピル、メタクリル酸(n−、i−、s
−、t−)ブチル、メタクリル酸シクロヘキシル、メタ
クリル酸ベンジル、メタクリル酸フェニル、メタクリル
酸ボルニル、メタクリル酸アダマンチル、メタクリル酸
トリシクロデシル、メタクリル酸ジシクロペンタニル、
メタクリル酸2,2,2−トリフルオロエチル、メタク
リル酸2,2,3,3−テトラフルオロプロピル、メタ
クリル酸2,2,3,3、3−ペンタフルオロプロピ
ル、メタクリル酸2,2,3,4,4,4−ヘキサフル
オロブチル、メタクリル酸1−トリフルオロメチル−
2,2,2−トリフルオロエチル、メタクリル酸1H,
1H,5H−オクタフルオルペンチル等のメタクリル酸
エステル類の単独重合体或いは共重合体若しくはこれら
のブレンド重合体、置換基としてメチル基、エチル基、
(n−、i−)プロピル基、(n−、i−、s−、t
−)ブチル基、シクロヘキシル基等を有する脂肪族のN
−置換マレイミド単量体類の単独重合体或いは共重合体
若しくはこれらのブレンド重合体、スチレン及びその誘
導体の単独重合体或いは共重合体若しくはこれらのブレ
ンド重合体等が挙げられる。
The polymer constituting the matrix of the plastic optical fiber of the present invention is not particularly limited as long as it can form a transparent matrix. For example, methyl methacrylate, ethyl methacrylate, methacrylic acid (n
-, I-) propyl, methacrylic acid (n-, i-, s
-, T-) butyl, cyclohexyl methacrylate, benzyl methacrylate, phenyl methacrylate, bornyl methacrylate, adamantyl methacrylate, tricyclodecyl methacrylate, dicyclopentanyl methacrylate,
2,2,2-Trifluoroethyl methacrylate, 2,2,3,3-tetrafluoropropyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 2,2,3,3 methacrylate 4,4,4-hexafluorobutyl, 1-trifluoromethyl methacrylate
2,2,2-trifluoroethyl, methacrylic acid 1H,
Homopolymers or copolymers of methacrylic acid esters such as 1H, 5H-octafluoropentyl or blend polymers thereof, methyl group as a substituent, ethyl group,
(N-, i-) propyl group, (n-, i-, s-, t
-) Aliphatic N having a butyl group, a cyclohexyl group, etc.
Examples thereof include homopolymers or copolymers of substituted maleimide monomers or blend polymers thereof, homopolymers or copolymers of styrene and its derivatives, or blend polymers thereof.

【0008】本発明のプラスチック光ファイバにおける
非重合性化合物は、リン酸トリフェニル、リン酸トリク
レジル及びフタル酸ジフェニルの群から選ばれる少なく
一つであることが必要である。本発明におけるこれら非
重合性化合物は、マトリックスとなる重合体と相溶性を
有し、濃度勾配を与えることができる。
The non-polymerizable compound in the plastic optical fiber of the present invention must be at least one selected from the group consisting of triphenyl phosphate, tricresyl phosphate and diphenyl phthalate. These non-polymerizable compounds in the present invention are compatible with the matrix polymer and can provide a concentration gradient.

【0009】また、本発明のプラスチック光ファイバに
おける非重合性化合物は、屈折率が大きいことから、光
ファイバの中心部にて非重合性化合物を高濃度にし、光
ファイバの中心部から外周部に向かって非重合性化合物
の含有量が順次減少する濃度勾配が形成されることが特
に好ましい。
Further, since the non-polymerizable compound in the plastic optical fiber of the present invention has a large refractive index, the concentration of the non-polymerizable compound is increased in the central portion of the optical fiber, and the non-polymerizable compound is introduced from the central portion to the outer peripheral portion of the optical fiber. It is particularly preferred that a concentration gradient is formed which progressively decreases towards the content of non-polymerizable compounds.

【0010】本発明の前記非重合性化合物を含んで構成
されたプラスチック光ファイバは、マトリックスの重合
体のガラス転移温度に近い温度に長時間曝されたときで
も、屈折率分布の平坦化がなく、屈折率分布の耐熱安定
性に優れるものである。
The plastic optical fiber containing the non-polymerizable compound of the present invention does not have a flat refractive index distribution even when it is exposed to a temperature close to the glass transition temperature of the polymer of the matrix for a long time. The heat resistance stability of the refractive index distribution is excellent.

【0011】本発明の光ファイバは、以下に例示される
バッチ方式や連続方式を始めとして公知の方法にて製造
することができる。即ち、バッチ方式としては重合体の
円筒状容器に、容器を構成する重合体の単量体と非重合
性化合物を充填し、水平に保持して回転させながら容器
外部からの加熱または光照射により単量体を順次外側か
ら重合させ容器を構成する重合体と一体化させると共に
非重合性化合物を中心部に拡散移動させてロッドを形成
し、得られたロッドを延伸する方法が採用できる。ま
た、連続方式としては非重合性化合物を含有する低重合
度重合体と非重合性化合物を含まぬ高重合度重合体を、
非重合性化合物を含まぬ高重合度重合体を外側にして、
複合紡糸し、内部の非重合性化合物を加熱拡散する方法
も採用できる。
The optical fiber of the present invention can be manufactured by a known method including a batch method and a continuous method exemplified below. That is, as a batch method, a cylindrical container of polymer is filled with a monomer and a non-polymerizable compound of the polymer constituting the container, and while being held horizontally and rotated, by heating or light irradiation from the outside of the container. It is possible to employ a method in which the monomers are sequentially polymerized from the outside to be integrated with the polymer constituting the container, and at the same time, the non-polymerizable compound is diffused and moved to the central portion to form a rod, and the obtained rod is stretched. Further, as a continuous system, a low polymerization polymer containing a non-polymerizable compound and a high polymerization polymer not containing a non-polymerizable compound,
With a high degree of polymerization polymer containing no non-polymerizable compound on the outside,
A method in which composite spinning is performed and a non-polymerizable compound inside is heated and diffused can also be adopted.

【0012】[0012]

【実施例】以下、本発明を実施例により具体的に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0013】(実施例1)長さ600mm、内径17.
6mmのガラス管にメタクリル酸メチル112g、過酸
化ベンゾイル0.56g、n−ブチルメルカプタン35
0μリットルを充填し、上端を封じた後、水平に保持
し、3000rpmで回転させながら70℃で4時間加
熱し、その後回転を止め90℃で20時間加熱し重合し
てポリメタクリル酸メチルからなる円筒状容器を作製し
た。このポリメタクリル酸メチル製容器の片端を封じ、
メタクリル酸メチル48g、非重合性化合物のリン酸ト
リフェニル12g、ジ−t−ブチルパーオキサイド54
μリットル、n−ラウリルメルカプタン160μリット
ルを充填し、他端を封じた後、水平に保持し、10rp
mで回転させながら95℃で24時間加熱、その後回転
を止め110℃で48時間加熱し重合して外径17.6
mmのロッドを得た。
(Embodiment 1) Length 600 mm, inner diameter 17.
Methyl methacrylate 112 g, benzoyl peroxide 0.56 g, n-butyl mercaptan 35 in a 6 mm glass tube.
After filling with 0 μl and sealing the upper end, it was kept horizontal, heated at 70 ° C. for 4 hours while rotating at 3000 rpm, then stopped rotating and heated at 90 ° C. for 20 hours to polymerize and consist of polymethylmethacrylate. A cylindrical container was produced. Seal one end of this polymethylmethacrylate container,
Methyl methacrylate 48 g, non-polymerizable compound triphenyl phosphate 12 g, di-t-butyl peroxide 54
After filling up with μL and 160 μL of n-lauryl mercaptan and sealing the other end, hold horizontally and hold at 10 rp.
While rotating at m, heat at 95 ° C for 24 hours, then stop rotation and heat at 110 ° C for 48 hours to polymerize to give an outer diameter of 17.6.
A mm rod was obtained.

【0014】このロッドをロッドフィード装置に垂直に
取り付け、220℃の円筒状加熱炉で加熱溶融しつつ一
定速度で引き取り、捲き取ることにより溶融紡糸し、直
径0.75mmの光ファイバを得た。得られた光ファイ
バのファイバ断面の屈折率分布を測定したところ、図1
に示すように、屈折率が中心部から外周部方向になだら
かに減少していた。得られた光ファイバの100m長に
おける伝送特性を評価したところ、伝送損失が波長65
0nmにおいて15.6dB、伝送帯域が3.7GHz
であり、屈折率分布型プラスチック光ファイバとして良
好な性能を有していた。また、得られた光ファイバを8
5℃のオーブンに入れて加熱試験を行い、3000時間
後における屈折率分布を測定したところ、図2に示すよ
うに、初期の屈折率分布を保持していた。
This rod was attached vertically to a rod feed apparatus, and was heated and melted in a cylindrical heating furnace at 220 ° C. while being drawn at a constant speed and wound and melt-spun to obtain an optical fiber having a diameter of 0.75 mm. The refractive index distribution of the fiber cross section of the obtained optical fiber was measured, and FIG.
As shown in, the refractive index gradually decreased from the central portion toward the outer peripheral portion. When the transmission characteristics of the obtained optical fiber at 100 m length were evaluated, the transmission loss was found to be 65 nm.
15.6 dB at 0 nm, transmission band 3.7 GHz
And had good performance as a gradient index plastic optical fiber. In addition, the obtained optical fiber is
A heating test was carried out by placing it in an oven at 5 ° C. and the refractive index distribution after 3000 hours was measured. As a result, as shown in FIG. 2, the initial refractive index distribution was retained.

【0015】(実施例2)実施例1におけると同様に作
製したポリメタクリル酸メチル製容器を用い、このポリ
メタクリル酸メチル製容器にメタクリル酸メチル48
g、非重合性化合物のリン酸トリクレジル12g、ジ−
t−ブチルパーオキサイド54μリットル、n−ラウリ
ルメルカプタン160μリットルを充填し、入口端部を
封じた後、水平に保持し、10rpmで回転させながら
95℃で24時間加熱、その後回転を止め110℃で4
8時間加熱し重合して外径17.6mmのロッドを得
た。
Example 2 A polymethylmethacrylate container manufactured in the same manner as in Example 1 was used, and methylmethacrylate 48 was added to the polymethylmethacrylate container.
g, 12 g of non-polymerizable compound tricresyl phosphate, di-
After filling 54 μl of t-butyl peroxide and 160 μl of n-lauryl mercaptan and sealing the inlet end, it was kept horizontal, heated at 95 ° C. for 24 hours while rotating at 10 rpm, and then stopped rotating at 110 ° C. Four
Polymerization was carried out by heating for 8 hours to obtain a rod having an outer diameter of 17.6 mm.

【0016】このロッドをロッドフィード装置に垂直に
取り付け、220℃の円筒状加熱炉で加熱溶融しつつ一
定速度で引き取り、捲き取ることにより溶融紡糸し、直
径0.75mmの光ファイバを得た。得られた光ファイ
バのファイバ断面の屈折率分布を測定したところ、図3
に示すように、屈折率が中心部から外周部方向になだら
かに減少していた。得られた光ファイバの100m長に
おける伝送特性を評価したところ、伝送損失が波長65
0nmにおいて16.3dB、伝送帯域が3.1GHz
であり、屈折率分布型プラスチック光ファイバとして良
好な性能を有していた。また、得られた光ファイバを8
5℃のオーブンに入れて加熱試験を行い、3000時間
後における屈折率分布を測定したところ、図4に示すよ
うに、初期の屈折率分布を保持していた。
This rod was attached vertically to a rod feed device, and was melted by spinning at a constant speed while being heated and melted in a cylindrical heating furnace at 220 ° C., and was melt-spun to obtain an optical fiber having a diameter of 0.75 mm. The refractive index distribution of the fiber cross section of the obtained optical fiber was measured, and FIG.
As shown in, the refractive index gradually decreased from the central portion toward the outer peripheral portion. When the transmission characteristics of the obtained optical fiber at 100 m length were evaluated, the transmission loss was found to be 65 nm.
16.3 dB at 0 nm, transmission band 3.1 GHz
And had good performance as a gradient index plastic optical fiber. In addition, the obtained optical fiber is
A heating test was carried out by placing it in an oven at 5 ° C., and the refractive index distribution after 3000 hours was measured. As a result, as shown in FIG. 4, the initial refractive index distribution was retained.

【0017】(実施例3)実施例1におけると同様に作
製したポリメタクリル酸メチル製容器を用い、このポリ
メタクリル酸メチル製容器にメタクリル酸メチル48
g、非重合性化合物のフタル酸ジフェニル12g、ジ−
t−ブチルパーオキサイド54μリットル、n−ラウリ
ルメルカプタン160μリットルを充填し、入口端部を
封じた後、水平に保持し、10rpmで回転させながら
95℃で24時間加熱、その後回転を止め110℃で4
8時間加熱し重合して外径17.6mmのロッドを得
た。
(Example 3) A polymethylmethacrylate container manufactured in the same manner as in Example 1 was used, and methylmethacrylate 48 was added to the polymethylmethacrylate container.
g, non-polymerizable compound diphenyl phthalate 12 g, di-
After filling 54 μl of t-butyl peroxide and 160 μl of n-lauryl mercaptan and sealing the inlet end, it was kept horizontal, heated at 95 ° C. for 24 hours while rotating at 10 rpm, and then stopped rotating at 110 ° C. Four
Polymerization was carried out by heating for 8 hours to obtain a rod having an outer diameter of 17.6 mm.

【0018】このロッドをロッドフィード装置に垂直に
取り付け、220℃の円筒状加熱炉で加熱溶融しつつ一
定速度で引き取り、捲き取ることにより溶融紡糸し、直
径0.75mmの光ファイバを得た。得られた光ファイ
バのファイバ断面の屈折率分布を測定したところ、図5
に示すように、屈折率が中心部から外周部方向になだら
かに減少していた。得られた光ファイバの100m長に
おける伝送特性を評価したところ、伝送損失が波長65
0nmにおいて14.5dB、伝送帯域が2.3GHz
であり、屈折率分布型プラスチック光ファイバとして良
好な性能を有していた。また、得られた光ファイバを8
5℃のオーブンに入れて加熱試験を行い、3000時間
後における屈折率分布を測定したところ、図6に示すよ
うに、初期の屈折率分布の変化は僅かであった。
This rod was attached vertically to a rod feed apparatus, was melted by heating at 220 ° C. in a cylindrical heating furnace at a constant speed while being melted by heating, and was melt-spun by winding to obtain an optical fiber having a diameter of 0.75 mm. When the refractive index distribution in the fiber cross section of the obtained optical fiber was measured,
As shown in, the refractive index gradually decreased from the central portion toward the outer peripheral portion. When the transmission characteristics of the obtained optical fiber at 100 m length were evaluated, the transmission loss was found to be 65 nm.
14.5 dB at 0 nm, transmission band 2.3 GHz
And had good performance as a gradient index plastic optical fiber. In addition, the obtained optical fiber is
When it was placed in an oven at 5 ° C., a heating test was performed, and the refractive index distribution after 3000 hours was measured, the change in the initial refractive index distribution was slight, as shown in FIG.

【0019】(比較例1)実施例1におけると同様に作
製したポリメタクリル酸メチル製容器を用い、このポリ
メタクリル酸メチル製容器にメタクリル酸メチル48
g、非重合性化合物の安息香酸ベンジル12g、ジ−t
−ブチルパーオキサイド54μリットル、n−ラウリル
メルカプタン160μリットルを充填し、入口端部を封
じた後、水平に保持し、10rpmで回転させながら9
5℃で24時間加熱、その後回転を止め110℃で48
時間加熱し重合して外径17.6mmのロッドを得た。
(Comparative Example 1) A polymethylmethacrylate container manufactured in the same manner as in Example 1 was used, and methylmethacrylate 48 was added to the polymethylmethacrylate container.
g, non-polymerizable compound benzyl benzoate 12 g, di-t
-Butyl peroxide (54 μl) and n-lauryl mercaptan (160 μl) were charged, the inlet end was sealed, and then held horizontally, while rotating at 10 rpm.
Heat at 5 ° C for 24 hours, then stop spinning and 110 ° C for 48 hours.
Polymerization was carried out by heating for a time to obtain a rod having an outer diameter of 17.6 mm.

【0020】このロッドをロッドフィード装置に垂直に
取り付け、220℃の円筒状加熱炉で加熱溶融しつつ一
定速度で引き取り、捲き取ることにより溶融紡糸し、直
径0.75mmの光ファイバを得た。得られた光ファイ
バのファイバ断面の屈折率分布を測定したところ、図7
に示すように、屈折率が中心部から外周部方向になだら
かに減少していた。得られた光ファイバの100m長に
おける伝送特性を評価したところ、伝送損失が波長65
0nmにおいて13.7dB、伝送帯域が1.9GHz
であり、屈折率分布型プラスチック光ファイバとして良
好な性能を有していた。しかしながら、得られた光ファ
イバを85℃のオーブンに入れて加熱試験を行い、10
00時間後における屈折率分布を測定したところ、図8
に示すように、初期の屈折率分布が大きく変化してい
た。
This rod was attached vertically to a rod feed device, was melted by heating at 220 ° C. in a cylindrical heating furnace while being melted and drawn at a constant speed, and was melt-spun to obtain an optical fiber having a diameter of 0.75 mm. When the refractive index distribution of the fiber cross section of the obtained optical fiber was measured,
As shown in, the refractive index gradually decreased from the central portion toward the outer peripheral portion. When the transmission characteristics of the obtained optical fiber at 100 m length were evaluated, the transmission loss was found to be 65 nm.
13.7 dB at 0 nm, transmission band 1.9 GHz
And had good performance as a gradient index plastic optical fiber. However, the obtained optical fiber was put in an oven at 85 ° C. and subjected to a heating test.
When the refractive index distribution after 00 hours was measured,
As shown in, the initial refractive index distribution changed greatly.

【0021】(比較例2)実施例1におけると同様に作
製したポリメタクリル酸メチル製容器を用い、このポリ
メタクリル酸メチル製容器にメタクリル酸メチル48
g、非重合性化合物のフタル酸ベンジル−n−ブチル1
2g、ジ−t−ブチルパーオキサイド54μリットル、
n−ラウリルメルカプタン160μリットルを充填し、
入口端部を封じた後、水平に保持し、10rpmで回転
させながら95℃で24時間加熱、その後回転を止め1
10℃で48時間加熱し重合して外径17.6mmのロ
ッドを得た。
(Comparative Example 2) A container made of polymethylmethacrylate prepared in the same manner as in Example 1 was used, and methylmethacrylate 48 was placed in the container made of polymethylmethacrylate.
g, non-polymerizable compound benzyl-n-butyl phthalate 1
2 g, 54 μl of di-t-butyl peroxide,
Fill 160 μl of n-lauryl mercaptan,
After sealing the inlet end, keep it horizontal, rotate at 10 rpm and heat at 95 ° C for 24 hours, then stop rotation 1
Polymerization was carried out by heating at 10 ° C. for 48 hours to obtain a rod having an outer diameter of 17.6 mm.

【0022】このロッドをロッドフィード装置に垂直に
取り付け、220℃の円筒状加熱炉で加熱溶融しつつ一
定速度で引き取り、捲き取ることにより溶融紡糸し、直
径0.75mmの光ファイバを得た。得られた光ファイ
バのファイバ断面の屈折率分布を測定したところ、図9
に示すように、屈折率が中心部から外周部方向になだら
かに減少していた。得られた光ファイバの100m長に
おける伝送特性を評価したところ、伝送損失が波長65
0nmにおいて17.2dB、伝送帯域が2.4GHz
であり、屈折率分布型プラスチック光ファイバとして良
好な性能を有していた。しかしながら、得られた光ファ
イバを85℃のオーブンに入れて加熱試験を行い、10
00時間後における屈折率分布を測定したところ、図1
0に示すように、初期の屈折率分布が大きく変化してい
た。
This rod was attached vertically to a rod feed device, was melted by heating at 220 ° C. in a cylindrical heating furnace at a constant speed while being melted by heating, and was melt-spun to obtain an optical fiber having a diameter of 0.75 mm. When the refractive index distribution of the fiber cross section of the obtained optical fiber was measured, FIG.
As shown in, the refractive index gradually decreased from the central portion toward the outer peripheral portion. When the transmission characteristics of the obtained optical fiber at 100 m length were evaluated, the transmission loss was found to be 65 nm.
17.2 dB at 0 nm, transmission band 2.4 GHz
And had good performance as a gradient index plastic optical fiber. However, the obtained optical fiber was put in an oven at 85 ° C. and subjected to a heating test.
When the refractive index distribution after 00 hours was measured, the results are shown in FIG.
As shown in 0, the initial refractive index distribution was largely changed.

【0023】[0023]

【発明の効果】本発明の光ファイバは、従来知られてい
た屈折率分布型プラスチック光ファイバに比べ、屈折率
分布の耐熱安定性に優れたもであり、光ファイバとして
の伝送特性の信頼性をより向上させたものである。
The optical fiber of the present invention is superior in the heat resistance stability of the refractive index distribution to the conventionally known refractive index distribution type plastic optical fiber, and the reliability of the transmission characteristics of the optical fiber is high. Is more improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた光ファイバのファイバ断面
の屈折率分布図である。
FIG. 1 is a refractive index distribution diagram of a fiber cross section of an optical fiber obtained in Example 1.

【図2】実施例1で得られた光ファイバの加熱試験後の
ファイバ断面の屈折率分布図である。
FIG. 2 is a refractive index distribution diagram of a cross section of the optical fiber obtained in Example 1 after a heating test.

【図3】実施例2で得られた光ファイバのファイバ断面
の屈折率分布図である。
3 is a refractive index distribution diagram of a fiber cross section of the optical fiber obtained in Example 2. FIG.

【図4】実施例2で得られた光ファイバの加熱試験後の
ファイバ断面の屈折率分布図である。
FIG. 4 is a refractive index distribution diagram of a cross section of a fiber after a heating test of the optical fiber obtained in Example 2.

【図5】実施例3で得られた光ファイバのファイバ断面
の屈折率分布図である。
5 is a refractive index distribution diagram of a fiber cross section of the optical fiber obtained in Example 3. FIG.

【図6】実施例3で得られた光ファイバの加熱試験後の
ファイバ断面の屈折率分布図である。
FIG. 6 is a refractive index distribution chart of a cross section of the optical fiber obtained in Example 3 after a heating test.

【図7】比較例1で得られた光ファイバのファイバ断面
の屈折率分布図である。
7 is a refractive index distribution diagram of a fiber cross section of the optical fiber obtained in Comparative Example 1. FIG.

【図8】比較例1で得られた光ファイバの加熱試験後の
ファイバ断面の屈折率分布図である。
FIG. 8 is a refractive index distribution diagram of a cross section of the optical fiber obtained in Comparative Example 1 after a heating test.

【図9】比較例2で得られた光ファイバのファイバ断面
の屈折率分布図である。
9 is a refractive index distribution diagram of a fiber cross section of the optical fiber obtained in Comparative Example 2. FIG.

【図10】比較例2で得られた光ファイバの加熱試験後
のファイバ断面の屈折率分布図である。
FIG. 10 is a refractive index distribution diagram of a cross section of the optical fiber obtained in Comparative Example 2 after a heating test.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/18 G02B 6/18 (72)発明者 入江 菊枝 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社中央技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location G02B 6/18 G02B 6/18 (72) Inventor Kikue Irie 20-1 Miyukicho, Otake City, Hiroshima Prefecture Central Research Laboratory, Mitsubishi Rayon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透明なマトリックスをなす重合体と非重
合性化合物とから構成され、ファイバの中心部と外周部
間に非重合性化合物の濃度勾配が形成された屈折率分布
型光ファイバにおいて、非重合性化合物がリン酸トリフ
ェニル、リン酸トリクレジル及びフタル酸ジフェニルの
群から選ばれる少なくとも一つであることを特徴とする
屈折率分布型プラスチック光ファイバ。
1. A gradient index optical fiber comprising a transparent matrix polymer and a non-polymerizable compound, wherein a concentration gradient of the non-polymerizable compound is formed between the central part and the outer peripheral part of the fiber, A gradient index plastic optical fiber, wherein the non-polymerizable compound is at least one selected from the group consisting of triphenyl phosphate, tricresyl phosphate and diphenyl phthalate.
JP8073146A 1996-03-05 1996-03-05 Refractive index distribution type plastic optical fiber Pending JPH09243834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073146A JPH09243834A (en) 1996-03-05 1996-03-05 Refractive index distribution type plastic optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073146A JPH09243834A (en) 1996-03-05 1996-03-05 Refractive index distribution type plastic optical fiber

Publications (1)

Publication Number Publication Date
JPH09243834A true JPH09243834A (en) 1997-09-19

Family

ID=13509777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073146A Pending JPH09243834A (en) 1996-03-05 1996-03-05 Refractive index distribution type plastic optical fiber

Country Status (1)

Country Link
JP (1) JPH09243834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140559A (en) * 2011-01-06 2012-07-26 Sekisui Chem Co Ltd Resin composition, molded body, and optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140559A (en) * 2011-01-06 2012-07-26 Sekisui Chem Co Ltd Resin composition, molded body, and optical fiber

Similar Documents

Publication Publication Date Title
CA2098604C (en) Optical resin materials with distributed refractive index, process for producing the materials, and optical conductors using the materials
US6086999A (en) Method for producing a graded index plastic optical material
EP0301912B1 (en) Cladding material for optical fiber
NL1002317C2 (en) A method of manufacturing optical rod-shaped polymeric moldings having a gradient for the refractive index, moldings obtained by this method and optical lens and optical fiber using them.
JPH09243834A (en) Refractive index distribution type plastic optical fiber
JPH08510763A (en) Molded articles with progressive refractive index and low dispersibility
JPH0225162B2 (en)
JPH0727928A (en) Production of plastic optical transmission body
JPH09218312A (en) Production of preform for graded index plastic optical fiber
JPH10245410A (en) Production of plastic optical fiber, and plastic optical fiber produced thereby
JPH05181022A (en) Light transmission body made of synthetic resin and production thereof
JPH09218311A (en) Production of preform for graded index plastic optical fiber and apparatus therefor
JPH04366115A (en) Optical plastic having low refractive index and enhanced dispersion
JP4755010B2 (en) Plastic optical product and rod lens manufacturing method
JP3612350B2 (en) Manufacturing method of plastic optical fiber preform
JPH09230145A (en) Plastic optical fiber preform and its production
KR100543531B1 (en) Graded index polymer optical fiber preform and fabrication method thereof
JPH06186442A (en) Distributed refractive index type plastic optical transmission body
EP1264200B1 (en) Optical fiber
JPH09258041A (en) Distributed refractive index type plastic optical fiber and its production
JPH02228610A (en) Plastic optical fiber
JPH09243835A (en) Distributed refractive index plastic optical fiber and its production
JPH0614127B2 (en) Method for manufacturing plastic optical transmission body
CN100368826C (en) Optical members and compositions for producing them
JPH0646243B2 (en) Method for manufacturing plastic optical transmission body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524