JPH0614127B2 - Method for manufacturing plastic optical transmission body - Google Patents

Method for manufacturing plastic optical transmission body

Info

Publication number
JPH0614127B2
JPH0614127B2 JP59156361A JP15636184A JPH0614127B2 JP H0614127 B2 JPH0614127 B2 JP H0614127B2 JP 59156361 A JP59156361 A JP 59156361A JP 15636184 A JP15636184 A JP 15636184A JP H0614127 B2 JPH0614127 B2 JP H0614127B2
Authority
JP
Japan
Prior art keywords
polymerization
purified
plastic optical
under reduced
reduced pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59156361A
Other languages
Japanese (ja)
Other versions
JPS6134503A (en
Inventor
貞夫 若月
行雄 島崎
政勝 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP59156361A priority Critical patent/JPH0614127B2/en
Publication of JPS6134503A publication Critical patent/JPS6134503A/en
Publication of JPH0614127B2 publication Critical patent/JPH0614127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はコアとクラッドからなる耐熱性の優れたプラス
チック光伝送体の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a plastic optical transmission body having a core and a clad and having excellent heat resistance.

〔従来技術と問題点〕[Conventional technology and problems]

従来より光伝送体は透明な石英ガラスやプラスチックを
利用して製造されている。石英ガラスを使用した光ファ
イバは優れた光伝送性をもっており、長距離通信用など
に実用化されている。プラスチック光ファイバは石英を
用いた光ファイバに比べると、光伝送性は劣るが、可撓
性の良いこと、軽いこと、加工しやすいことどの利点が
ありこれらを生かして短距離のデータリンク、ライトガ
イド、センサーなどへの応用が進められている。これら
の応用の中には耐熱性が要求される場合も多い。例え
ば、自動車用の光データリンクに用いる光ファイバは、
エンジンルームからの熱のために100〜120℃とい
った高温に耐えることが要望されている。しかし、従来
のプラスチック光ファイバは、ポリスチレンやポリメチ
ルメタクリレートをコアに使用しており、常用使用温度
は80℃どまりであった。ポリスチレンやポリメチルメ
タクリレートを用いた光ファイバは、80℃以上の高温
になると収縮を起こし、光伝送性が低下し、さらに10
0℃以上といった高温では大きな収縮が起こり、光伝送
性の低下だけでなくファイバ自体が断線し全く光を通さ
なくなってしまうものであった。
Conventionally, an optical transmission body is manufactured by using transparent quartz glass or plastic. An optical fiber using quartz glass has an excellent optical transmission property and has been put to practical use for long-distance communication. Plastic optical fibers are inferior in optical transmission to optical fibers using quartz, but they have the advantages of good flexibility, light weight, and easy processing. It is being applied to guides and sensors. In many of these applications, heat resistance is required. For example, an optical fiber used for an optical data link for automobiles is
It is required to endure high temperatures such as 100 to 120 ° C. due to heat from the engine room. However, the conventional plastic optical fiber uses polystyrene or polymethylmethacrylate in the core, and the temperature for normal use is only 80 ° C. An optical fiber made of polystyrene or polymethylmethacrylate shrinks at a high temperature of 80 ° C. or higher, resulting in a decrease in optical transmission property.
At a high temperature such as 0 ° C. or higher, a large shrinkage occurs, and not only the optical transmission property is deteriorated, but also the fiber itself is broken and no light is transmitted.

従来のプラスチック光ファイバのコアとクラッドに使用
されているポリメチルメタクリレートとフッ素含有重合
体の高温での使用性能を示す物理的性質としてガラス転
移点と融点がある。ポリメチルメタクリレートのガラス
転移点は約105℃であり、ガラス転移点以上の温度で
はポリマ分子のセグメント運動が激しくなってゆらぎが
増し、屈折率変化も大きくなるため光の散乱損失が顕著
となって実用性能を維持できなくなる。
The glass transition point and the melting point are physical properties that indicate the performance at high temperatures of the polymethylmethacrylate and fluorine-containing polymers used in the core and cladding of conventional plastic optical fibers. The glass transition point of polymethylmethacrylate is about 105 ° C, and at temperatures above the glass transition point, segmental motion of polymer molecules becomes vigorous and fluctuations increase, and the change in refractive index also increases, resulting in significant light scattering loss. Practical performance cannot be maintained.

このため、ガラス転移点の高いポリマをコアに使用する
ことが考えられ、付加重合系ポリマと縮合系ポリマが検
討された。縮合系ポリマで透明性の良いポリマにポリカ
ーボネートがあり、このガラス転移点は約145℃であ
る。ポリカーボネートをコアとして得られたファイバは
熱的特性は良好であったが、光伝送性はポリスチレン、
ポリメチルメタクリレートに比べかなり劣るものであっ
た。理由は縮合重合により得られたポリカーボネートは
NaClなど縮合副生物の除去工程が必要であり、不純
物の残渣や混入が避けられないためとみられる。縮合系
非昌性ポリマで高いガラス転移点を示すものとしてポリ
カーボネートと他にもポリスルホン、ポリアリールエス
テルなどのポリマが知られているが、ファイバ加工温度
が高く、ポリマの分解や不純物の残留、混入が避け得
ず、光伝送性の良いファイバを得ることができなかっ
た。
Therefore, it is considered to use a polymer having a high glass transition point in the core, and addition polymerization type polymers and condensation type polymers have been studied. Polycarbonate is a condensation polymer having good transparency, and its glass transition point is about 145 ° C. The fiber obtained by using the polycarbonate as the core had good thermal characteristics, but the optical transmission property was polystyrene,
It was considerably inferior to polymethylmethacrylate. The reason seems to be that the polycarbonate obtained by condensation polymerization requires a step of removing condensation by-products such as NaCl, and inevitably residual impurities and contamination. Polycarbonate and other polymers such as polysulfone and polyaryl ester are known as condensation type non-polymeric polymers showing a high glass transition point, but the fiber processing temperature is high, and the decomposition of the polymer and the residual and mixing of impurities are known. However, it was not possible to obtain a fiber with good optical transmission properties.

プラスチック光伝送体のクラッド材としてはコアよりも
屈折率の小さい材料が使用される。従来のポリメチルメ
タクリレートをコアとしたプラスチック光ファイバに
は、クラッド材としてメタククリ酸フルオロアルキルの
重合体やフッ化ビニリデンとテトラフルオロエチレンの
共重合体でフッ化ビニリデンの含有量が例えば77モル
%の共重合体が使用されている。しかしながらメタクリ
ル酸フルオロアルキルの重合体は分解開始温度が低く、
ファイバ製造に問題があるばかりでなく重合体のガラス
転移温度は60〜90℃といった低い温度域にある。従
って、メタクリル酸フルオロアルキルをクラッドに用い
たファイバはそのガラス転移温度付近の温度にさらされ
ると伝送損失が増大し始め、100℃以上の温度では使
えない程損失が増大する。
A material having a smaller refractive index than the core is used as the clad material for the plastic optical transmission body. In a conventional plastic optical fiber having polymethylmethacrylate as a core, a fluoroalkyl methacrylate polymer or a copolymer of vinylidene fluoride and tetrafluoroethylene as a clad material has a vinylidene fluoride content of, for example, 77 mol%. Copolymers have been used. However, the fluoroalkyl methacrylate polymer has a low decomposition initiation temperature,
Not only is there a problem in fiber production, but the glass transition temperature of the polymer is in the low temperature range of 60 to 90 ° C. Therefore, the fiber using fluoroalkyl methacrylate as the cladding starts to increase the transmission loss when exposed to the temperature near the glass transition temperature, and the loss increases to the extent that it cannot be used at a temperature of 100 ° C. or higher.

一方、フッ化ビニリデンとテトラフルオロエチレンの共
重合体でフッ化ビニリデンの含有量が77モル%の共重
合体は融点が110℃である。従って、ファイバが融点
付近さらに融点を越える様な温度にさらされると伝送損
失が増加し、ひいてはコアが流動してしまい伝送特性が
大幅に低下してしまうものである。
On the other hand, a copolymer of vinylidene fluoride and tetrafluoroethylene having a vinylidene fluoride content of 77 mol% has a melting point of 110 ° C. Therefore, when the fiber is exposed to a temperature near the melting point or at a temperature exceeding the melting point, the transmission loss increases, which in turn causes the core to flow and significantly deteriorate the transmission characteristics.

付加重合系ポリマでガラス転移温度の高いポリマを与え
るものとしてメタクリル酸アリールヤP−フェニルスチ
レンの共重合体があるが、これらのモノマは工業的に製
造されていない特殊なものに属し、実用化に対してはモ
ノマの経済的量産法を確立することから始める必要があ
る。
As an addition polymerization type polymer which gives a polymer having a high glass transition temperature, there is a copolymer of arylmethacrylate P-phenylstyrene, but these monomers belong to a special one which has not been industrially produced and are put to practical use. On the other hand, it is necessary to start by establishing an economical mass production method for monomers.

〔発明の目的と概要〕[Object and Summary of Invention]

以上の従来技術の知見と基礎として、本発明者らはプラ
スチック光伝送体の耐熱性向上について鋭意検討を加て
本発明に到達したものである。
Based on the knowledge and the basis of the above-mentioned conventional techniques, the present inventors have arrived at the present invention through intensive studies on improvement of heat resistance of a plastic optical transmission body.

本発明は、減圧蒸溜によて重合禁止剤を除き精製した精
製β−メチルグリシジルメタクリレートと、市販の試薬
特級のメチルメタクリレート100mlに対して10g
のNaClを溶解させた5%NaOH水溶液200ml
で2回洗浄を行った後に無水硫酸ナトリウムを加えて乾
燥を行いその後に減圧蒸溜により精密精製を行った精製
メチルメタクリレートとを準備し、前記精製β−メチル
グリシジルメタクリレートが10〜50モル%となるよ
うに前記精製メチルメタクリレートと共に混合容器に投
入してマグネティックスターラーで撹拌混合し、混合開
始剤としてメタノール中で再結晶を行った2,2′−ア
ゾビス(イソブチロニトリル)を各モノマのモル数の和
の0.01%を混合容器に加えて撹拌溶解させ、次に連
鎖移動剤として減圧蒸溜精製を行ったn−ブチルメルカ
プタンを各モノマ1000mlあたり1.5×10-2
ル加えて撹拌混合させた後、当該撹拌されたモノマ溶液
を汚染されないように混合容器から上端が開放された重
合容器へ弗化エチレンプロピレン樹脂製チューブを通し
て移し、前記重合容器の上端から減圧排気して溶存空気
を除き減敦下で上端をバーナーで加熱溶封し、さらに、
液体窒素中に前記重合容器を侵してモノマ溶液の凍結と
昇温解凍を繰返して溶存ガスを除去し、減圧封管されて
いる前記重合容器を60〜140℃の温度で加熱して重
合させた後、上端を切って解封した前記重合容器をただ
ちに真空乾燥器に移し100〜140℃の温度で真空加
熱して共重合体中の揮発分を除去して気泡の全く存在し
ない透明のプリフォームを形成し、その後予め190〜
210℃に設定しておいた加熱炉中に下端を切り取り開
口部を設けた前記重合容器を取付け、上端からNガス
で1kg/cm加圧して前記重合容器の下端から重合体が
溶融押出されて所定のコア径になるように引取速度を調
整設定すると共に、クラッド材としてのフッ化ビニリデ
ン〜テトラフルオロエチレン共重合体の30%酢酸エチ
ル溶液の前記線引したコア重合体の外周に塗布し160
℃に保持された乾燥炉を通してプラスチック光ファイバ
に成形し、その後該プラスチック光ファイバにコバルト
60のガンマ線を用い6×10r/hrの線量率で、
総線量2.5メガラッドを25℃で照射することを特徴
とするプラスチック光伝送体の製造方法に関するもので
ある。
The present invention comprises purified β-methylglycidyl methacrylate purified by distillation under reduced pressure to remove the polymerization inhibitor, and 10 g per 100 ml of commercial grade reagent grade methyl methacrylate.
200 ml of 5% NaOH aqueous solution in which NaCl of
After washing twice with the above, anhydrous sodium sulfate was added and dried, and then purified methyl methacrylate prepared by precision purification by vacuum distillation was prepared, and the purified β-methylglycidyl methacrylate was 10 to 50 mol%. As described above, 2,2′-azobis (isobutyronitrile) recrystallized in methanol as a mixing initiator is charged into a mixing vessel together with the purified methyl methacrylate and stirred and mixed by a magnetic stirrer in the number of moles of each monomer. 0.01% of the sum of the above was added to a mixing vessel and dissolved by stirring, and then n-butyl mercaptan purified by distillation under reduced pressure as a chain transfer agent was added at a concentration of 1.5 × 10 -2 mol per 1000 ml of each monomer and mixed by stirring. After that, the stirred monomer solution is transferred from the mixing container to a polymerization container with an open upper end so as not to be contaminated. A propylene resin tube, and then vacuum-exhausted from the upper end of the polymerization container to remove dissolved air and heat-seal the upper end with a burner under reduced pressure.
Dissolve the dissolved gas by immersing the polymerization vessel in liquid nitrogen and repeating freezing and temperature thawing of the monomer solution, and heating the polymerization vessel sealed under reduced pressure at a temperature of 60 to 140 ° C. to polymerize the solution. After that, the polymerization container whose upper end was cut and unsealed was immediately transferred to a vacuum drier and vacuum-heated at a temperature of 100 to 140 ° C. to remove volatile components in the copolymer to obtain a transparent preform having no bubbles. Is formed, and then 190 to
The polymerization container having the opening cut out at the lower end was attached to a heating furnace set to 210 ° C., and 1 kg / cm 2 of N 2 gas was applied from the upper end to melt-extrude the polymer from the lower end of the polymerization container. Then, the take-up speed is adjusted and set so as to obtain a predetermined core diameter, and a 30% ethyl acetate solution of vinylidene fluoride-tetrafluoroethylene copolymer as a clad material is applied to the outer periphery of the drawn core polymer. S 160
Molded into a plastic optical fiber through a drying oven maintained at 0 ° C., and then using 60 gamma rays of cobalt 60 on the plastic optical fiber at a dose rate of 6 × 10 4 r / hr,
The present invention relates to a method for producing a plastic optical transmission body, which comprises irradiating a total dose of 2.5 megarads at 25 ° C.

〔発明の効果と詳細な説明〕[Effects and Detailed Description of Invention]

本発明によれば効率的な放射線照射架橋により耐熱性の
向上が可能となり、また製造工程中にコア重合体が汚染
されないよう配慮したことにより、従来のポリメチルメ
タクリレートやポリスチレンをコアとするプラスチック
光伝送体では使用不可能であった100℃以上でも使用
できる低損失のプラスチック光伝送体を得ることができ
る。
According to the present invention, it is possible to improve heat resistance by efficient radiation cross-linking, and by taking care so that the core polymer is not contaminated during the manufacturing process, it is possible to use plastic light with conventional polymethylmethacrylate or polystyrene as the core. It is possible to obtain a low-loss plastic optical transmission body that can be used even at 100 ° C. or higher, which was not possible with a transmission body.

ポリメチルメタクリレートは放射線によって効率良く架
橋するよりもむしろ分解しやすく照射線量が大きい場合
にはCO,CO,Hなどの分解ガスを生成しポリマ
中に気泡を生ずることもある。従って、メチルメタクリ
レートの単独重合体であるポリメチルメタクリレートを
照射架橋して耐熱性を向上させることは実現困難であ
る。しかしながら、放射線によって容易に架橋できる基
をポリマの構造単位に導入した場合には比較的少ない線
量でも効果的に架橋できる可能性があり、本発明者らは
この点に着眼して研究を進め、分子中にエポキシ基を導
入したポリマが照射架橋に適していることを見出した。
Polymethylmethacrylate is easily decomposed rather than efficiently crosslinked by radiation, and when the irradiation dose is large, decomposed gases such as CO, CO 2 and H 2 are generated and bubbles may be generated in the polymer. Therefore, it is difficult to improve the heat resistance by irradiation crosslinking of polymethylmethacrylate, which is a homopolymer of methylmethacrylate. However, when a group that can be easily crosslinked by radiation is introduced into the structural unit of the polymer, it may be possible to effectively crosslink even at a relatively small dose, and the present inventors have focused their attention on this point and proceeded with research, We have found that polymers with epoxy groups introduced into the molecule are suitable for irradiation crosslinking.

本発明はまず単量体モル%に換算して10〜50モル%
のβ−メチルグリシジルメタクリレートの構造単位を含
む重合体を使用する。共重合体とする場合には、β−メ
チルグリシジルメタクリレートと共重合させるモノマと
してはメチルメタクリレート、スチレン、メチルアクリ
ルレートをあげることができる。
The present invention firstly converts 10 to 50 mol% in terms of monomer mol%.
The polymer containing the structural unit of β-methylglycidylmethacrylate is used. When a copolymer is used, examples of the monomer to be copolymerized with β-methylglycidyl methacrylate include methyl methacrylate, styrene, and methyl acrylate.

一般にモノマM,Mを共重合させるとモノマ反応性
比r,rによって得られる共重合体は、ラダム、ブ
ロック、交互等の異なる主鎖構造を有するものである。
ブロック共重合体の様な主鎖中の組成の異なりは密度の
ゆらぎやミクロ相分離などによる光散乱要因となり光伝
送性を低下させるので好ましくない。従って、β−メチ
ルグリシジルメタクリレートと他の任意のモノマと単に
組合せて重合させ共重合体を得ても必ずしも低損失の光
伝送性とすることはできないが、前記したメチルメタク
リレート、スチレン、メチルアクリレートから選択して
組合せる場合には実用性のある共重合体を得ることがで
きる。
Generally, the copolymer obtained by copolymerizing the monomers M 1 and M 2 with the monomer reactivity ratios r 1 and r 2 has different main chain structures such as radam, block, and alternation.
Differences in the composition of the main chain, such as block copolymers, are undesirable because they cause light scattering due to density fluctuations, microphase separation, and the like, and reduce light transmission properties. Therefore, even if the copolymer is obtained by simply combining β-methylglycidyl methacrylate with any other monomer and polymerizing the copolymer, it is not always possible to obtain a low-loss optical transmission property. However, from the above-mentioned methyl methacrylate, styrene, and methyl acrylate, When selected and combined, a practical copolymer can be obtained.

β−メチルグリシジルメタクリレートと共重合させる前
記したモノマは単量体モル%に換算して90モル%以下
の範囲で使用することが好ましい。もし、これらが90
モル%より多く共重合体中に含まれると、共重合体中の
エポキシ基の含量が低くなりすぎ電子線照射に架橋が不
十分となり耐熱性向上の目的を達せられなくなる。
The above-mentioned monomer copolymerized with β-methylglycidyl methacrylate is preferably used in the range of 90 mol% or less in terms of monomer mol%. If these are 90
If it is contained in the copolymer in an amount of more than mol%, the content of the epoxy group in the copolymer becomes too low and the crosslinking is insufficient for electron beam irradiation, so that the purpose of improving heat resistance cannot be achieved.

重合方式としてはモノマに反応性に富むエポキシ基を持
つメチルメタクリレートを使用するため、不純物の混入
の虞のない塊状重合方式が望ましい。
As a polymerization method, since methyl methacrylate having an epoxy group which is highly reactive with a monomer is used, it is desirable to use a bulk polymerization method in which impurities are not likely to be mixed.

本発明に使用するクラッド材料としてはフッ化ビニリデ
ン単位を主成分とする共重合体が適しており、重合体の
融点は120℃以上であることが好ましい。融点が12
0℃未満であると100〜120℃といった温度にさら
された場合伝送損失が増大し使用に耐えなくなるからで
ある。本発明ではフッ化ビニリデンとテトラフルオロエ
チレンとの共重合体を用いる。なお、フッ化ビニリデン
とテトラフルオロエチレンとの組成比率は80/20モ
ル比であり、その融点は132℃である。
As the clad material used in the present invention, a copolymer containing a vinylidene fluoride unit as a main component is suitable, and the melting point of the polymer is preferably 120 ° C. or higher. Melting point 12
This is because if the temperature is less than 0 ° C., the transmission loss increases when exposed to a temperature of 100 to 120 ° C., making it unusable. In the present invention, a copolymer of vinylidene fluoride and tetrafluoroethylene is used. The composition ratio of vinylidene fluoride and tetrafluoroethylene is 80/20 molar ratio, and the melting point thereof is 132 ° C.

コアに対してクラッドを被覆する手段としては、コアを
線引きした後前記クラッド材の30%酢酸エチル溶液が
入ったポットを通過させて塗布し、160℃に設定した
加熱炉を通過させて被覆する方法を採用する。
As a means for coating the clad on the core, after drawing the core, the core is passed through a pot containing a 30% ethyl acetate solution of the clad material to apply the coating, and the core is passed through a heating furnace set at 160 ° C. for coating. Adopt the method.

コアに使用する重合体の製造方法は塊状重合が好ましく
低損失の光伝送体を得るためにはつぎのようにして異物
の混入しないプリフォームを作成し、これを溶融成形す
ることが好ましい。
As the method for producing the polymer used for the core, bulk polymerization is preferable, and in order to obtain a low loss optical transmission medium, it is preferable to prepare a preform in which no foreign matter is mixed and melt-mold the preform as follows.

本発明に使用するコア材料は各々のモノマ中に含まれる
不純物と重合禁止剤をミクロフィルタによる濾過、蒸
溜、再結晶などの方法で精製したモノマを密閉系である
いは塵埃のないクリーン雰囲気中で混合し、重合体の分
子量調節のための連鎖移動剤n−ブチルメルカプタンと
重合開始材2,2′−アゾビス(イソブチロニトリル)
を添加し、密閉系あるいはクリーン雰囲気中で重合容器
に導入し熱重合させることにより得られる。プリフォー
ムのサイズは重合容器と使用モノマの量により決まる
が、例えば10mmないし30mmの直径、200mmないし
1000mmの長さのものが容易に作成できる。光散乱要
因となる気泡のないプリフォームを得るために、重合前
にモノマ中に溶存している空気を凍結脱気により除いて
おくことおよび減圧封管中の重合または重合容器にピス
トンをもうけ自由表面のない様に重合中のモノマ溶液を
加圧しながら重合を行うことが好ましい。
The core material used in the present invention is a mixture of impurities and polymerization inhibitors contained in each monomer, which are purified by a method such as filtration with a microfilter, distillation, recrystallization, etc. in a closed system or in a dust-free clean atmosphere. And a chain transfer agent n-butyl mercaptan for controlling the molecular weight of the polymer and a polymerization initiator 2,2'-azobis (isobutyronitrile)
Is added to a polymerization vessel in a closed system or in a clean atmosphere to carry out thermal polymerization. The size of the preform is determined by the polymerization container and the amount of monomers used, but for example, a preform having a diameter of 10 mm to 30 mm and a length of 200 mm to 1000 mm can be easily prepared. In order to obtain a preform free from bubbles that cause light scattering, the air dissolved in the monomer should be removed by freezing and degassing before polymerization, and the polymerization in the vacuum sealed tube or the piston should be placed in the polymerization container. It is preferable to carry out the polymerization while pressurizing the monomer solution during the polymerization so that there is no surface.

重合温度は通常の熱重合温度、例えば60℃以上の温度
で行い得るが、なるべく高温度で重合を行う方が重合時
間も短く、そして生成する共重合体の構造、組成がより
不規則なものとなり、より低損失の光伝送体を得ること
ができる。好ましくは60℃ないし140℃の温度が選
ばれる。60〜80℃といった比較的低温で重合を開始
した場合は重合終期に昇温を行い最終的に生成する重合
体のガラス転移温度以上の温度に到達させ、この温度で
重合を完結させ、プリフォームとすることが好ましい。
The polymerization temperature may be a normal thermal polymerization temperature, for example, a temperature of 60 ° C. or higher, but the higher the temperature, the shorter the polymerization time, and the more irregular the structure and composition of the resulting copolymer. Therefore, it is possible to obtain an optical transmission body with lower loss. Preferably a temperature of 60 ° C. to 140 ° C. is chosen. When the polymerization is started at a relatively low temperature of 60 to 80 ° C., the temperature is raised at the final stage of the polymerization to reach a temperature not lower than the glass transition temperature of the polymer to be finally produced, and the polymerization is completed at this temperature to obtain a preform. It is preferable that

なお、プラスチック光ファイバのような単純形状の光伝
送体はプリフォームを加熱溶融して線引することが適し
ている。
In addition, it is suitable to heat and melt a preform to draw a simple optical transmission body such as a plastic optical fiber.

プリフォームは溶融紡糸法によりファイバとすることが
できる。プリフォームを190〜210℃に設定した加
熱炉中で溶融させNガスを用い1kg/cm2で加圧する
ことによりコア重合体を紡糸する。プリフォームは重合
容器から取り出さずに重合完結後に重合容器の下短に孔
を設け、引き続き不活性ガスで加圧し加熱溶融して線引
する。
The preform can be made into a fiber by a melt spinning method. The preform is melted in a heating furnace set at 190 to 210 ° C. and pressurized with N 2 gas at 1 kg / cm 2 to spin the core polymer. The preform is not taken out of the polymerization container, and after completion of the polymerization, a hole is formed in the lower part of the polymerization container, followed by pressurizing with an inert gas, heating and melting, and drawing.

本発明のプラスチック光伝送体は少なくともコアは放射
線照射によって架橋される。放射線はコバルト−60に
よるr線が用いられる。照射は6×10r/hrの線
量率で、総線量2.5メガラッドを25℃で照射する。
At least the core of the plastic optical transmission article of the present invention is crosslinked by irradiation with radiation. As the radiation, r-ray by cobalt-60 is used. Irradiation is performed at a dose rate of 6 × 10 4 r / hr and a total dose of 2.5 megarads at 25 ° C.

〔発明の実施例〕Example of Invention

以下実施例により本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.

(実施例1) β−メチルグリシジルメタクリレートを減圧蒸溜によっ
て重合禁止剤を除き精製した市販の試薬特級のメチルメ
タクリレート100mlに対して10gのNaClを溶
解させた5%NaOH水溶液200mlで2回洗浄を行
った後、無水硫酸ナトリウムを加え、乾燥を行い、減圧
蒸溜により精密精製を行った。
(Example 1) 100 ml of commercially available reagent grade methyl methacrylate obtained by removing β-methylglycidyl methacrylate from a polymerization inhibitor by distillation under reduced pressure was purified, and washed twice with 200 ml of a 5% NaOH aqueous solution in which 10 g of NaCl was dissolved. After that, anhydrous sodium sulfate was added and dried, and precision purification was performed by distillation under reduced pressure.

メチルメタクリレートの精密精製受器は秤量線入りのも
のを用い、必要量のモノマを混合容器に外気にふれるこ
となく移送できる様に配管を行ったものを用いた。混合
容器は撹拌用のPTFE製回転子、重合開始剤と連鎖移
動剤添加用の投入口、PTFE製ストッパを用いた重合
容器への取出し口をそなえている。
The precision purification receiver for methyl methacrylate used had a weighing line, and the pipe was used so that the required amount of monomer could be transferred to the mixing container without being exposed to the outside air. The mixing vessel is equipped with a PTFE rotor for stirring, an inlet for adding a polymerization initiator and a chain transfer agent, and an outlet for the polymerization vessel using a PTFE stopper.

精製β−メチルグリシジルメタクリレート146ml
(1.0モル)をクリーンベンチ上で秤量し混合容器中
に投入した。精製メチルメタクリレート107ml
(1.0モル)を混合容器に移し、マグネティックスタ
ーラーで撹拌混合した。重合開始剤として、メタノール
中で2回再結晶を行った2,2′−アゾビス(イソブチ
ロニトリル)を各モノマのモル数の和の0.01%を混
合容器に加え、撹拌溶解させ、次に連鎖移動剤として減
圧蒸溜精製を行ったn−ブチルメルカプタンを0.40
ml(1.5×10−2mol/モノマ100ml)を
加え、更に良く撹拌混合させた。モノマ溶液は汚染され
ないように混合容器から重合容器への取り出し口から弗
化エチレンプロピレン樹脂(テフロン)製チューブを通
して重合容器に移された。重合容器は石英ガラス製の3
0mmの内径をもつパイプ状で上端と下端は内径6mmに細
く絞ってあり、下端は溶封されている。
Purified β-methylglycidyl methacrylate 146 ml
(1.0 mol) was weighed on a clean bench and put into a mixing container. Purified methyl methacrylate 107 ml
(1.0 mol) was transferred to a mixing vessel and mixed by stirring with a magnetic stirrer. As a polymerization initiator, 2,2′-azobis (isobutyronitrile) recrystallized twice in methanol was added to a mixing vessel in an amount of 0.01% of the total number of moles of each monomer, and dissolved by stirring. Next, 0.40 of n-butyl mercaptan purified by distillation under reduced pressure was used as a chain transfer agent.
ml (1.5 × 10 −2 mol / 100 ml of monomer) was added, and the mixture was further stirred and mixed. The monomer solution was transferred from the mixing container to the polymerization container through a tube made of fluoroethylene propylene resin (Teflon) so as not to be contaminated, and transferred to the polymerization container. Polymerization container is made of quartz glass 3
It has a pipe shape with an inner diameter of 0 mm, the upper and lower ends are narrowed to an inner diameter of 6 mm, and the lower end is sealed.

モノマ溶液を重合容器に移した後上端から減圧排気して
溶存空気を除き減圧下で上端の内径6mmの石英ガラス管
部をバーナーで加熱溶封した。さらに、液体窒素中に重
合容器を侵し、モノマ溶液の凍結と昇温解凍を繰返して
溶存ガスを除去した。減圧封管されている重合容器を1
30℃,16時間加熱して重合させた。上端のガラス管
を切って解封してからただちに真空乾燥器に移し100
℃,48時間真空加熱して共重合体中の揮発分を除去
し、気泡の全く存在しない透明のプリフォームを得た。
After the monomer solution was transferred to the polymerization vessel, the upper end was evacuated under reduced pressure to remove dissolved air, and the quartz glass tube portion having an inner diameter of 6 mm at the upper end was heat-sealed with a burner under reduced pressure. Further, the polymerization vessel was immersed in liquid nitrogen, and the dissolved gas was removed by repeating freezing and temperature thawing of the monomer solution. 1 polymerization vessel sealed under reduced pressure
Polymerization was carried out by heating at 30 ° C. for 16 hours. Cut the glass tube at the top and unseal it, then immediately transfer to a vacuum dryer.
The copolymer was heated in vacuum at 48 ° C. for 48 hours to remove the volatile components in the copolymer to obtain a transparent preform having no bubbles.

重合容器の加熱炉、クラッド被覆ダイ、クラッド乾燥
炉、巻取機を備えた線引装置を使用し、予め加熱炉の温
度を190〜210℃に設定しておき、石英ガラス製重
合容器の下端のガラス管を切り、加熱炉中に取付け、上
端からNガスで1kg/cm2加圧した。プリフォームの
温度が上昇すると重合容器の下端のノズルから重合体が
溶融押出されてくるので、コア径が約1.0mmになるよ
うに引取速度を調整設定した。一方、クラッド材として
フッ化ビニリデン〜テトラフルオロエチレン共重合体
(融点132℃,組成80/20モル比)の30%酢酸
エチル溶液を使用し、クラッドコーティング用ポットに
充填し、上記の線引したコアをポットとダイおよび16
0℃に保持された乾燥炉を通して酢酸エチルを除き外径
1.0mm、クラッド膜厚20μmのプラスチック光ファ
イバに成形した。
Using a wire drawing device equipped with a heating furnace for a polymerization container, a clad coating die, a clad drying furnace, and a winder, the temperature of the heating furnace is set to 190 to 210 ° C. in advance, and the lower end of the quartz glass polymerization container is used. The glass tube of No. 2 was cut, mounted in a heating furnace, and pressurized with 1 kg / cm 2 of N 2 gas from the upper end. When the temperature of the preform rises, the polymer is melt-extruded from the nozzle at the lower end of the polymerization container, so the take-up speed was adjusted and set so that the core diameter was about 1.0 mm. On the other hand, a 30% ethyl acetate solution of vinylidene fluoride-tetrafluoroethylene copolymer (melting point 132 ° C., composition 80/20 molar ratio) was used as a clad material, filled in a clad coating pot, and drawn as described above. Core pots and dies and 16
It was molded into a plastic optical fiber having an outer diameter of 1.0 mm and a clad film thickness of 20 μm by removing ethyl acetate through a drying furnace kept at 0 ° C.

つぎに、200mm径に巻取った上記のプラスチック光フ
ァイバにコバルト60のガンマ線を用い6×10r/
hrの線量率で、総線量2.5メガラッドを25℃で照
射した。得られたプラスチック光ファイバの性質を表1
に示した。
Next, gamma rays of cobalt 60 were applied to the above plastic optical fiber wound to a diameter of 200 mm to obtain 6 × 10 4 r /
A total dose of 2.5 megarads was irradiated at 25 ° C. with a dose rate of hr. The properties of the obtained plastic optical fiber are shown in Table 1.
It was shown to.

照射後のコアのアセトン抽出減量は8.5%で、キシレ
ンとメタクレゾールの混合溶剤(1:1)に100℃で
膨潤するだけであった。
The acetone extraction weight loss of the core after irradiation was 8.5%, and it was only swollen at 100 ° C. in a mixed solvent of xylene and metacresol (1: 1).

(実施例2) β−メチルグリシジルメタクリレートを20モル%、精
製メチルメタクリレート30モル%、減圧蒸溜精製した
スチレン50モル%、2,2′−アゾビス(イソブチロ
ニトリル)を各モノマのモル数の和の0.01%、n−
ブチルメルカプタンを1.5×10-2mol/モノマの
和1000mlの割合に混合したモノマ溶液を用いる以
外は実施例1と同様にプラスチック光ファイバを製造
し、ガンマ線を照射した。得られたプラスチック光ファ
イバの性質を表1に示した。照射後のコアのアセトン抽
出減量は1.4%で、キシレンとメタクレゾールとの混
合溶剤に対しては100℃でわずかに膨潤するのみであ
った。
(Example 2) 20 mol% of β-methylglycidyl methacrylate, 30 mol% of purified methyl methacrylate, 50 mol% of styrene purified by distillation under reduced pressure, and 2,2′-azobis (isobutyronitrile) were added in a molar ratio of each monomer. 0.01% of sum, n-
A plastic optical fiber was manufactured in the same manner as in Example 1 except that a monomer solution in which butyl mercaptan was mixed at a ratio of 1.5 × 10 -2 mol / sum of monomers and 1000 ml was used, and gamma rays were irradiated. The properties of the obtained plastic optical fiber are shown in Table 1. The acetone extraction weight loss of the core after irradiation was 1.4%, and it slightly swelled at 100 ° C. in a mixed solvent of xylene and metacresol.

(実施例3) β−メチルグリシジルメタクリレートを10モル%、蒸
溜精製したメチルアクリレート25モル%精製メチルメ
タクリレート65モル%、2,2′−アゾビス(イソブ
チロニトリル)を各モノマのモル数の和の0.01%、
n−ブチルメルカプタンを1.5×10-2mol/モノ
マの和1000mlの割合に混合したモノマ溶液を用い
る以外は実施例1と同様にプラスチック光ファイバを製
造し、ガンマ線を照射した。ただし、減圧封管した重合
容器は100℃,16時間加熱後140℃,2時間加熱
してモノマ溶液を重合させた。得られたプラスチック光
ファイバの性質を表1に示した。照射後のコアのアセト
ン抽出減量は12.4%であり、キシレンとメタクレゾ
ールとの混合溶剤に100℃で膨潤するだけであった。
(Example 3) 10 mol% of β-methylglycidyl methacrylate, 25 mol% of distilled and purified methyl acrylate, 65 mol% of purified methyl methacrylate, and 2,2′-azobis (isobutyronitrile) were added in the sum of the number of moles of each monomer. 0.01% of
A plastic optical fiber was manufactured in the same manner as in Example 1 except that a monomer solution in which n-butyl mercaptan was mixed at a ratio of 1.5 × 10 −2 mol / sum of monomers of 1000 ml was used, and gamma rays were irradiated. However, the polymerization vessel sealed under reduced pressure was heated at 100 ° C. for 16 hours and then at 140 ° C. for 2 hours to polymerize the monomer solution. The properties of the obtained plastic optical fiber are shown in Table 1. The acetone extraction weight loss of the core after irradiation was 12.4%, and it only swelled in a mixed solvent of xylene and metacresol at 100 ° C.

(比較例1) 精製メチルメタクリレート107ml(1.0モル)、
精製2,2′−アゾビス(イソブチロニトリル)0.0
1%、n−ブチルメルカプタン0.17ml(1.5×
10-2mol/モノマ100ml)からなるモノマ溶液
組成とする以外は実施例1と全く同様にしてプラスチッ
ク光ファイバを製造し、ガンマ線を照射した。得られた
ファイバの性質を表1に示した。照射後のコアのアセト
ン抽出減量は96%であり、キシレンとメタクレゾール
の混合溶剤に100℃で形体をとどめることなく溶解し
た。
(Comparative Example 1) 107 ml (1.0 mol) of purified methyl methacrylate,
Purified 2,2'-azobis (isobutyronitrile) 0.0
1%, 0.17 ml of n-butyl mercaptan (1.5 x
A plastic optical fiber was manufactured in the same manner as in Example 1 except that the composition of the monomer solution was 10 −2 mol / 100 ml of the monomer), and gamma rays were irradiated. The properties of the obtained fiber are shown in Table 1. The acetone extraction weight loss of the core after irradiation was 96%, and the core was dissolved in a mixed solvent of xylene and metacresol at 100 ° C. without stopping the form.

(比較例2) 精製β−メチルグリシジルメタクリレート5.8ml
(0.04モル)、精製メチルメタクリレート103m
l(0.96モル)、精製2,2′−アゾビス(イソブ
チロニトリル)0.01%、n−ブチルメルカプタン
0.17mlからなるモノマ溶液組成とする以外は実施
例1と全く同様にしてプラスチック光ファイバを製造
し、ガンマ線を照射した。得られたファイバの性質を表
1に示した。照射後のコアのアセトン抽出減量は74%
であり、キシレンとメタクレゾールの混合溶剤に100
℃で著しく膨潤し崩壊した。
(Comparative Example 2) Purified β-methylglycidyl methacrylate 5.8 ml
(0.04 mol), purified methyl methacrylate 103 m
1 (0.96 mol), purified 2,2'-azobis (isobutyronitrile) 0.01%, and n-butyl mercaptan 0.17 ml in the same manner as in Example 1 except that a monomer solution composition was prepared. A plastic optical fiber was manufactured and irradiated with gamma rays. The properties of the obtained fiber are shown in Table 1. Acetone extraction weight loss of core after irradiation is 74%
And a mixed solvent of xylene and meta-cresol is 100
It swelled and collapsed remarkably at ℃.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】減圧蒸溜によって重合禁止剤を除き精製し
た精製β−メチルグリシジルメタクリレートと、市販の
試薬特級のメチルメタクリレート100mlに対して1
0gのNaClを溶解させた5%NaOH水溶液200
mlで2回洗浄を行った後に無水硫酸ナトリウムを加え
て乾燥を行いその後に減圧蒸溜により精密精製を行った
精製メチルメタクリレートとを準備し、前記精製β−メ
チルグリシジルメタクリレートが10〜50モル%とな
るように前記精製メチルメタクリレートと共に混合容器
に投入してマグネティックスターラーで撹拌混合し、重
合開始剤としてメタノール中で再結晶を行った2,2′
−アゾビス(イソブチロニトリル)を各モノマのモル数
の和の0.01%を混合容器に加えて撹拌溶解させ、次
に連鎖移動剤として減圧蒸溜精製を行ったn−ブチルメ
ルカプタンを各モノマ1000mlあたり1.5×10
-2モル加えて撹拌混合させた後、当該撹拌されたモノマ
溶液を汚染されないように混合容器から上端が開放され
た重合容器へ弗化エチレンプロピレン樹脂製チューブを
通して移し、前記重合容器の上端から減圧排気して溶存
空気を除き減圧下で上端をバーナーで加熱溶封し、さら
に、液体窒素中に前記重合容器を浸してモノマ溶液の凍
結と昇温解凍を繰返して溶存ガスを除去し、減圧封管さ
れている前記重合容器を60〜140℃の温度で加熱し
て重合させた後、上端を切って解封した前記重合容器を
ただちに真空乾燥器に移し100〜140℃の温度で真
空加熱して共重合体中の揮発分を除去して気泡の全く存
在しない透明のプリフォームを形成し、その後予め19
0〜210℃に設定しておいた加熱炉中に下端を切り取
り開口部を設けた前記重合容器を取付け、上端からN
ガスで1kg/cm2加圧して前記重合容器の下端から重合
体が溶融押出されて所定のコア径になるように引取速度
を調整設定すると共に、クラッド材としてのフッ化ビニ
リデン〜テトラフルオロエチレン共重合体の30%酢酸
エチル溶液を前記線引したコア重合体の外周に塗布し1
60℃に保持された乾燥炉を通してプラスチック光ファ
イバに成形し、その後該プラスチック光ファイバにコバ
ルト60のガンマ線を用い6×10r/hrの線量率
で、総線量2.5メガラッドを25℃で照射することを
特徴とするプラスチック光伝送体の製造方法。
1. Purified β-methylglycidyl methacrylate purified by distillation under reduced pressure to remove the polymerization inhibitor, and 1 to 100 ml of commercial grade reagent grade methyl methacrylate.
5% NaOH aqueous solution 200 in which 0 g of NaCl was dissolved 200
After washing twice with ml, anhydrous sodium sulfate was added and dried, and then purified methyl methacrylate prepared by precision purification by vacuum distillation was prepared, and the purified β-methylglycidyl methacrylate was 10 to 50 mol%. As described above, the purified methyl methacrylate was charged into a mixing vessel, stirred and mixed with a magnetic stirrer, and recrystallized in methanol as a polymerization initiator.
-Azobis (isobutyronitrile) was added to a mixing vessel in an amount of 0.01% of the total number of moles of each monomer and dissolved by stirring, and then n-butyl mercaptan purified by distillation under reduced pressure was used as a chain transfer agent for each monomer. 1.5 x 10 per 1000 ml
-After adding 2 mol and stirring and mixing, transfer the stirred monomer solution from the mixing container to a polymerization container with an open top through a tube made of fluorinated ethylene propylene resin so as not to be contaminated, and reduce the pressure from the top of the polymerization container. Exhaust to remove dissolved air, heat and seal the upper end with a burner under reduced pressure, and further immerse the polymerization vessel in liquid nitrogen to freeze and thaw the monomer solution repeatedly to remove dissolved gas, and then seal under reduced pressure. After heating the tubed polymerization vessel at a temperature of 60 to 140 ° C. for polymerization, the polymerization vessel opened by cutting the upper end is immediately transferred to a vacuum dryer and heated at a temperature of 100 to 140 ° C. under vacuum. To remove volatiles in the copolymer to form a transparent preform with no bubbles at all,
The polymerization container having the opening cut out at the lower end was attached to a heating furnace set to 0 to 210 ° C., and N 2 was added from the upper end.
A pressure of 1 kg / cm 2 was applied with a gas, and the take-up speed was adjusted and set so that the polymer was melt-extruded from the lower end of the polymerization vessel to a predetermined core diameter, and at the same time, vinylidene fluoride-tetrafluoroethylene as a clad material was used. A 30% solution of the polymer in ethyl acetate was applied to the outer periphery of the drawn core polymer 1
A plastic optical fiber was molded through a drying oven maintained at 60 ° C., and then a gamma ray of cobalt 60 was applied to the plastic optical fiber at a dose rate of 6 × 10 4 r / hr and a total dose of 2.5 megarads at 25 ° C. A method of manufacturing a plastic optical transmission body, which comprises irradiating.
【請求項2】減圧蒸留精製したスチレンまたは蒸溜精製
したメチルアクリレートのいずれか一方を前記精製β−
メチルグリシジルメタクリレート及び前記精製メチルメ
タクリレートと共に前記混合容器に投入することを特徴
とする第1項に記載のプラスチック光伝送体の製造方
法。
2. Either of styrene purified by distillation under reduced pressure or methyl acrylate purified by distillation is purified β-
The method for producing a plastic optical transmission article according to item 1, wherein the mixing container is charged with methyl glycidyl methacrylate and the purified methyl methacrylate.
JP59156361A 1984-07-26 1984-07-26 Method for manufacturing plastic optical transmission body Expired - Lifetime JPH0614127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59156361A JPH0614127B2 (en) 1984-07-26 1984-07-26 Method for manufacturing plastic optical transmission body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59156361A JPH0614127B2 (en) 1984-07-26 1984-07-26 Method for manufacturing plastic optical transmission body

Publications (2)

Publication Number Publication Date
JPS6134503A JPS6134503A (en) 1986-02-18
JPH0614127B2 true JPH0614127B2 (en) 1994-02-23

Family

ID=15626074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59156361A Expired - Lifetime JPH0614127B2 (en) 1984-07-26 1984-07-26 Method for manufacturing plastic optical transmission body

Country Status (1)

Country Link
JP (1) JPH0614127B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814298A1 (en) * 1988-04-28 1989-11-09 Hoechst Ag OPTICAL FIBER
SE508067C2 (en) * 1996-10-18 1998-08-24 Ericsson Telefon Ab L M Optical conductor made of a polymeric material comprising glycidyl acrylate and pentafluorostyrene
JP4506006B2 (en) * 2001-03-05 2010-07-21 日立電線株式会社 Manufacturing method of polymer optical waveguide

Also Published As

Publication number Publication date
JPS6134503A (en) 1986-02-18

Similar Documents

Publication Publication Date Title
JPH0445802B2 (en)
US4528325A (en) Copolymers of poly(vinyl trifluoroacetate) or poly(vinyl alcohol)
JPS5834404A (en) Plastic optical fiber
US4568146A (en) Plastic optical fiber and production thereof
JPH0614127B2 (en) Method for manufacturing plastic optical transmission body
JPS62215905A (en) Resinous optical fiber having heat resistance and its preparation
CN1017831B (en) Opitcal waveguide
EP0835744B1 (en) Process for gradient refractive index optical objects
GB2171219A (en) Optical fiber having glass core and fluoro-copolymer cladding
EP0250996A2 (en) Optical fibers
JPH0646243B2 (en) Method for manufacturing plastic optical transmission body
JPS6134504A (en) Plastic optical transmission body
EP0548992B1 (en) Synthetic resin optical transmission medium and its preparation method
JPH01106001A (en) Resin composition for optical fiber sheath
Barkalov et al. Post‐irradiation grafting of tetrafluoroethylene at low temperatures
JP3981355B2 (en) Manufacturing method of plastic optical member
JP2005509912A (en) Method for producing plastic optical fiber, and plastic optical fiber obtained by the method
US4780514A (en) Copolymers of poly(vinyl trifluoroacetate) or poly(vinyl alcohol)
JPS58215410A (en) Production of fluoroalkyl methacrylate polymer excellent in heat resistance
WO1991011489A1 (en) Endless objects from acrylates
Dvořánek et al. Effects of composition and plastifier on the light scattering of polymer glasses and properties of polymeric optical fibers made from styrene‐methyl methacrylate copolymers
CA1222854A (en) Process and apparatus for production of plastic optical fiber
US20040021236A1 (en) Process for producing plastic optical member and plastic optical member obtained by said process
JPS6299720A (en) Contact lens material
JPH0644085B2 (en) Plastic optical fiber and its manufacturing method