JPH09243695A - Method for measuring leakage current of capacitor - Google Patents

Method for measuring leakage current of capacitor

Info

Publication number
JPH09243695A
JPH09243695A JP4985696A JP4985696A JPH09243695A JP H09243695 A JPH09243695 A JP H09243695A JP 4985696 A JP4985696 A JP 4985696A JP 4985696 A JP4985696 A JP 4985696A JP H09243695 A JPH09243695 A JP H09243695A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
measurement
current
leakage current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4985696A
Other languages
Japanese (ja)
Other versions
JP3663251B2 (en
Inventor
Hiroshi Niwa
寛 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP4985696A priority Critical patent/JP3663251B2/en
Publication of JPH09243695A publication Critical patent/JPH09243695A/en
Application granted granted Critical
Publication of JP3663251B2 publication Critical patent/JP3663251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable highly reliable measurement of leakage current by applying two kinds of voltage to a capacitor and continuously checking whether respective current values after predetermined time are in a predetermined range. SOLUTION: A capacitor 1 is connected in parallel with a long copper frame or the like, wherein while it is sequentially carried, measurement of leakage current of a number of capacitors is done by the number of probe terminals of a leakage current measuring device 5 at a time. The leakage current measuring device 5 is switched to two kinds of voltage by a controller 6. First, after a current value after predetermined time has elapsed with one kind of voltage, low voltage for example applied, voltage of the leakage current measuring device 5 is immediately switched by the controller 6 to high voltage, for measuring a current value after a predetermined time has elapsed. Thus once measurement is started, measurement is always done continuously without no intermission, and measured values of leakage current may not vary, thereby constantly enabling correct measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はコンデンサのリーク
電流の測定方法に関する。さらに詳しくは、少なくとも
2種類の電圧を印加し、それぞれの一定時間後の電流に
より検査をする場合に製造ラインの異常などに伴う測定
誤差を少なくしたコンデンサのリーク電流の測定方法に
関する。
TECHNICAL FIELD The present invention relates to a method for measuring a leakage current of a capacitor. More specifically, the present invention relates to a method for measuring a leak current of a capacitor, in which a measurement error caused by an abnormality in a manufacturing line is reduced when at least two types of voltages are applied and currents after a predetermined time are respectively inspected.

【0002】[0002]

【従来の技術】従来、たとえばタンタルコンデンサなど
のコンデンサは、図3(a)に示されるように、電流制
限抵抗Rを直列に接続し、一定電圧Vを印加し、一定時
間経過後の電流を電流計Aにより測定することにより、
リーク電流の良否の検査が行われる。一般にコンデンサ
の等価回路は、図3(b)に示されるように、リーク電
流の原因となる抵抗RISO と、誘電体吸収電流として抵
抗R0 およびキャパシタンスC0 とがコンデンサのキャ
パシタンスCと並列接続されたものに、直列等価抵抗E
SRおよびインダクタンスLを直列接続したものであ
る。タンタルコンデンサの場合のリーク電流の検査規格
としては、定格電圧より低い電圧V1 を印加した場合の
一定時間後の電流と定格電圧の2倍程度の高い電圧V2
を印加したときの一定時間後の電流が共に一定値以内に
入っているか否かにより判定されている。
2. Description of the Related Art Conventionally, for example, a capacitor such as a tantalum capacitor has a current limiting resistor R connected in series as shown in FIG. By measuring with ammeter A,
Inspection of the quality of the leak current is performed. Generally, in an equivalent circuit of a capacitor, as shown in FIG. 3B, a resistor R ISO that causes a leak current and a resistor R 0 and a capacitance C 0 as a dielectric absorption current are connected in parallel with the capacitance C of the capacitor. The equivalent series resistance E
The SR and the inductance L are connected in series. In the case of a tantalum capacitor, the leak current inspection standard is that the current after a certain time when a voltage V 1 lower than the rated voltage is applied and a voltage V 2 that is about twice as high as the rated voltage.
It is determined by whether or not the currents after a certain time when the voltage is applied are both within a certain value.

【0003】このようなリーク電流の測定方法は、たと
えば図4に模式図が示されるように、リードフレームな
どに多数個並列に連結されたコンデンサ1がフレームご
と搬送され、各測定器の前に送られてきたコンデンサ1
が数個ずつ測定され、その測定個数ごと矢印Aの方向に
間欠的に搬送される。
Such a leak current measuring method is performed, for example, as shown in the schematic view of FIG. 4, in which a plurality of capacitors 1 connected in parallel to a lead frame or the like are conveyed frame by frame, and are placed in front of each measuring instrument. Capacitor 1 sent
Are measured several times at a time, and the measured number is intermittently conveyed in the direction of arrow A.

【0004】図4において、第1のリーク電流測定器2
(LC1測定)により、図に示される例では4個のコン
デンサ1にプローブ21を接続し、一度に4個のコンデ
ンサに低い電圧V1 を印加し、たとえば20〜32秒程
度の時間放置し、その後の各々の電流I1 を測定する。
その間にすでに第1のリーク電流測定器2(LC1測
定)による測定を終り、第2のリーク電流測定器3(L
C2測定)の前に搬送されたコンデンサ1に第2のリー
ク電流測定器3のプローブ31を接続する。そして、一
度に4個のコンデンサ1に高い電圧V2 を印加し、たと
えば同じ時間の20〜32秒程度の時間放置し、その後
の各コンデンサの電流I2 を測定する。第1と第2のリ
ーク電流測定器2、3による測定の両方が終了後に、連
結されたコンデンサ1は測定された個数分搬送される。
In FIG. 4, the first leak current measuring device 2
According to (LC1 measurement), in the example shown in the figure, the probes 21 are connected to the four capacitors 1 , a low voltage V 1 is applied to the four capacitors at a time, and the capacitors are left for a time of, for example, about 20 to 32 seconds, Each subsequent current I 1 is measured.
In the meantime, the measurement by the first leak current measuring device 2 (LC1 measurement) has already been completed, and the second leak current measuring device 3 (L
The probe 31 of the second leak current measuring device 3 is connected to the capacitor 1 that has been conveyed before (C2 measurement). Then, a high voltage V 2 is applied to the four capacitors 1 at a time, the capacitors are left for a time of, for example, 20 to 32 seconds, which is the same time, and the current I 2 of each capacitor thereafter is measured. After both the measurements by the first and second leak current measuring devices 2, 3 are completed, the connected capacitors 1 are transported by the measured number.

【0005】この第1および第2のリーク電流測定によ
り印加された電圧とそのときの電流との関係を図5
(a)に示す。図5(a)において、時間t1 は第1の
リーク電流測定器2により測定されている時間で、電圧
1 が印加され、最初に多く流れた充電電流が指数関数
的に減少し、時間t1 の経過時の電流I1 を第1のリー
ク電流値として測定する。時間t0 は第1のリーク電流
測定器2による測定を終了して第2のリーク電流測定器
3に至るまでの搬送途中の時間で、その間は第1のリー
ク電流測定電圧V1 の残留電圧V0 がコンデンサに印加
されている。つぎの時間t2 は第2のリーク電流測定器
3による測定時間で、電圧V2 が印加されている。この
ときも電圧印加の最初に多くの充電電流が流れ、指数関
数的に減少し、時間t2 の経過時の電流値I2 が第2の
リーク電流値として測定される。時間t2 の経過後電圧
が0にされると、瞬間的に逆方向の電流Dが流れる。
FIG. 5 shows the relationship between the voltage applied by the first and second leak current measurements and the current at that time.
(A). In FIG. 5A, the time t 1 is the time measured by the first leak current measuring device 2, the voltage V 1 is applied, and the charging current that flows first at the beginning decreases exponentially. The current I 1 at the elapse of t 1 is measured as the first leak current value. The time t 0 is the time during which the first leak current measuring device 2 finishes the measurement and reaches the second leak current measuring device 3, during which time the residual voltage of the first leak current measuring voltage V 1 remains. V 0 is applied to the capacitor. The next time t 2 is the measurement time by the second leak current measuring device 3, and the voltage V 2 is applied. Also at this time, a large amount of charging current flows at the beginning of voltage application, exponentially decreases, and the current value I 2 at the elapse of time t 2 is measured as the second leakage current value. When the voltage is set to 0 after the lapse of time t 2 , a reverse current D instantaneously flows.

【0006】第2のリーク電流の測定も終って放電器4
の前に搬送されたコンデンサ1はコンデンサ1の両電極
間に抵抗器が接続されて放電される。この一連の作業が
たとえば4個づつ順次間欠的に行われる。また、放電が
終ったコンデンサ1は、さらにつぎの工程に搬送され、
リーク電流の測定結果により、不良品は切断されて除去
され良品はそのまま次工程に送られる。
After the measurement of the second leakage current is completed, the discharger 4
The capacitor 1 conveyed before is discharged by connecting a resistor between both electrodes of the capacitor 1. This series of operations is performed intermittently, for example, every four pieces. Also, the capacitor 1 which has been discharged is further transported to the next step,
According to the measurement result of the leakage current, the defective product is cut and removed, and the non-defective product is directly sent to the next step.

【0007】[0007]

【発明が解決しようとする課題】従来のコンデンサを連
結してコンデンサの製造工程の各ステーションを搬送し
ながらそのステーションの1つで前記リーク電流を測定
する方法においては、製造ラインのどこかで手動停止も
しくはアラーム異常停止が生じてフレームの搬送が中断
した場合に、第2のリーク電流測定器3による測定にお
いて、異常時はリーク電流値が少なめの値になるという
問題がある。
In the conventional method of measuring the leakage current at one of the stations while transporting each station in the process of manufacturing the capacitor by connecting the capacitors, the manual operation is performed somewhere on the manufacturing line. When the frame is stopped due to the stop or the alarm abnormal stop, the second leak current measuring device 3 has a problem that the leak current value becomes a small value at the time of abnormality.

【0008】本発明者はフレームの搬送が中断した場合
に第2のリーク電流測定器によるリーク電流の測定値が
低めになる原因を鋭意検討して調べた結果、以下の点に
原因があることを見出した。すなわち、従来のリーク電
流測定は、前述のように、第1のリーク電流測定と第2
のリーク電流測定とが別の測定器で、別のステーション
で行われている。そのため、第1および第2のリーク電
流測定器2、3の間などに搬送途中のコンデンサ1が存
在し、時間t0 の間残留電圧V0 が印加されている。製
造ラインにトラブルがなく、常に一定個数ごとに搬送さ
れておれば第1のリーク電流測定と第2のリーク電流測
定との間の時間は一定で、測定条件が同じであれば問題
はないが、製造ラインにたとえば不良品カットのトラブ
ルなどの故障が発生するとその時間tf (図5(b)参
照)が異常に長くなる。第2のリーク電流の測定までの
時間が長くなると、残留電圧V0 によりコンデンサの誘
電体吸収が多く進行し、図5(b)に示されるように、
第2のリーク電流の測定値が低くなる(破線が正常の場
合の電流変化を示す)。その結果、第1のリーク電流の
測定値とかけ離れた測定値になる場合が生じ、測定器と
して確度(信頼性)が低下することを見出した。
The present inventor diligently investigated the cause of the measured value of the leakage current by the second leakage current measuring device being low when the frame conveyance is interrupted. Found. That is, the conventional leak current measurement includes the first leak current measurement and the second leak current measurement as described above.
Leakage current measurement is done at a different station and at a different station. Therefore, the capacitor 1 being transferred is present between the first and second leak current measuring devices 2 and 3, and the residual voltage V 0 is applied during the time t 0 . If there is no trouble in the production line and the products are always transported in a fixed number, the time between the first leak current measurement and the second leak current measurement is constant, and there is no problem if the measurement conditions are the same. , a failure such as a trouble of the production line e.g. defective cutting occurs that time t f (see FIG. 5 (b)) is abnormally long. When the time until the measurement of the second leak current becomes long, the dielectric absorption of the capacitor progresses a lot due to the residual voltage V 0 , and as shown in FIG. 5B,
The measured value of the second leak current becomes low (the broken line shows the change in current when normal). As a result, the measured value of the first leak current may be far from the measured value, and the accuracy (reliability) of the measuring device is reduced.

【0009】一方、第1のリーク電流の測定後放電して
測定電圧V1 の残留電圧をなくすることも考えられる
が、数十秒程度の放電では完全に放電をすることができ
ず、一度電圧を印加したコンデンサを電圧印加前の状態
に戻すことは、長時間の放電時間を必要とし、実用的で
ない。
On the other hand, it may be possible to eliminate the residual voltage of the measurement voltage V 1 by discharging after the measurement of the first leak current, but it is impossible to completely discharge the discharge for several tens of seconds, and Returning the capacitor to which the voltage has been applied to the state before the voltage application requires a long discharge time and is not practical.

【0010】本発明はこのような問題を解決するために
なされたもので、製造ラインが何らかの異常でストップ
した場合でもコンデンサのリーク電流の測定に影響を及
ぼさない、信頼性の高いコンデンサのリーク電流の測定
方法を提供することを目的とする。
The present invention has been made to solve such a problem and has a highly reliable leakage current of a capacitor which does not affect the measurement of the leakage current of the capacitor even when the manufacturing line is stopped due to some abnormality. It is intended to provide a measuring method of.

【0011】[0011]

【課題を解決するための手段】本発明によるコンデンサ
のリーク電流の測定方法は、コンデンサに2種類の電圧
を印加してそれぞれの一定時間後の電流値が所定範囲に
入っているか否かを検査するコンデンサのリーク電流の
測定方法であって、前記2種類の電圧による測定を連続
して行うことを特徴とするものである。
According to the method for measuring the leakage current of a capacitor according to the present invention, two kinds of voltages are applied to the capacitor and it is checked whether or not the current value after a predetermined time is within a predetermined range. The method for measuring the leakage current of a capacitor is characterized in that the measurement using the two types of voltages is continuously performed.

【0012】複数個のコンデンサペレットを長尺のフレ
ームに並列に連結し、該フレームをコンデンサの各製造
工程のステーションを通過するように搬送し、前記ステ
ーションの1つで前記リーク電流の測定を行う場合にと
くに本発明の効果が現れる。
A plurality of capacitor pellets are connected in parallel to a long frame, the frames are conveyed so as to pass through a station of each manufacturing process of capacitors, and the leak current is measured at one of the stations. In this case, the effect of the present invention is particularly exhibited.

【0013】[0013]

【発明の実施の形態】つぎに、図面を参照しながら本発
明のコンデンサのリーク電流の測定方法を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a method for measuring a leakage current of a capacitor according to the present invention will be described with reference to the drawings.

【0014】図1の(a)は本発明のリーク電流の測定
方法を説明する模式図、(b)および(c)はそのフロ
ーチャートである。コンデンサ1は従来と同様に長尺の
銅フレームなどに並列に連結され、順次搬送されながら
リーク電流測定器5のプローブ端子の数(図1では3個
で、図4と異なるが個数には限定されない)だけ接続さ
れ、その個数のコンデンサのリーク電流の測定を一度に
行う。本発明では、このリーク電流測定器5がコントロ
ーラ6により2種類の測定電圧に切り替えられるように
なっており、まず、一方の電圧、たとえば低い電圧V1
を印加して所定時間の経過後の電流値を測定した後、直
ちにリーク電流測定器5の電圧をコントローラ6により
切り替えて、高い電圧V2 にし、所定時間の経過後の電
流値を測定することに特徴がある。
FIG. 1A is a schematic diagram for explaining the leak current measuring method of the present invention, and FIGS. 1B and 1C are flow charts thereof. The capacitor 1 is connected to a long copper frame or the like in parallel as in the conventional case, and while being sequentially transported, the number of probe terminals of the leak current measuring device 5 (three in FIG. 1, different from FIG. 4 but limited in number). Not connected), and the leak current of that number of capacitors is measured at one time. In the present invention, the leak current measuring device 5 is switched to two types of measurement voltage by the controller 6, and first, one voltage, for example, a low voltage V 1
Immediately after measuring the current value after a lapse of a predetermined time, the controller 6 immediately switches the voltage of the leak current measuring device 5 to a high voltage V 2 and measures the current value after a lapse of the predetermined time. Is characterized by.

【0015】すなわち、本発明によれば、リーク電流の
測定を始めたら2種類の電圧の測定を必ず連続して行う
ため、第1のリーク電流を測定した後に長時間放置され
てその後に第2のリーク電流の測定が行われるというこ
とは起こらない。もし製造ラインのどこかでラインが中
断する故障が発生しても、リーク電流の測定が完了する
まで行われ、その後に中断に至る。もともとリーク電流
測定時間中は連結されたコンデンサの搬送はストップし
ており、リーク電流の測定などの各工程の作業が終了す
る度ごとに間欠的に搬送される仕組みになっているから
である。
That is, according to the present invention, since two kinds of voltages are always measured continuously after the measurement of the leak current is started, the first leak current is measured and then left for a long time and then the second leak current is measured. It does not happen that a leak current measurement of is performed. Even if a line break occurs somewhere in the manufacturing line, the leak current is measured until it is completed, and then the break occurs. This is because the transfer of the connected capacitors is originally stopped during the leak current measurement time, and the capacitors are intermittently transferred each time the work of each process such as measurement of the leak current is completed.

【0016】この2種類のリーク電流の測定が完了した
後に、連結されたコンデンサ1はその個数分ずつ次工程
に搬送され、放電器4のところに送られたコンデンサ1
は放電器4に接続されて放電される。その後、不良排出
器7に送られ、前の工程の電流測定器5の測定結果に基
づきコントローラ6からの指示により不良品のみが連結
部分から切り落とされ不良品箱に入れられ(NG)、良
品は連結されたまま、さらに次工程に送られる(G
O)。この一連の工程をフローチャートにしたのが図1
(b)である。
After the measurement of these two kinds of leak currents is completed, the capacitors 1 connected to each other are conveyed to the next process by the number thereof and sent to the discharger 4.
Is connected to the discharger 4 and discharged. After that, the defective product is sent to the defective ejector 7, and only the defective product is cut off from the connecting portion according to the instruction from the controller 6 based on the measurement result of the current measuring device 5 in the previous process and put in the defective product box (NG). It is sent to the next process while being connected (G
O). The flow chart of this series of steps is shown in FIG.
(B).

【0017】前述の方法では、リーク電流の測定の後一
連のコンデンサを測定個数分ずつ搬送し、異なるステー
ションに設けられた放電器4により放電をした。そうす
ることによりリーク電流の測定と放電とを同じ時間に並
列に行うことができるため、設備の回転数を向上させる
のに都合がよい。しかし、リーク電流測定器5の電圧の
切替をさらに0Vにも切り替えられるようにしておき、
2種類の電流測定を終了した後にコンデンサ1に印加す
る電圧を0Vに切り替えて同じステーションで放電して
もよい。このときの工程をフローチャートにしたのが図
1(c)である。このようにすれば、別途放電器を設け
る必要がない。製造ラインの回転は、後述するように、
電流測定器のプローブ端子の数を多くしたり、リーク電
流測定器を複数台設けることにより、一度の測定個数を
多くすることにより早くなる。
In the above-mentioned method, after measuring the leak current, a series of capacitors are conveyed by the number of measured capacitors and discharged by the dischargers 4 provided in different stations. By doing so, leakage current measurement and discharge can be performed in parallel at the same time, which is convenient for improving the rotation speed of the equipment. However, if the voltage of the leak current measuring device 5 can be switched to 0V,
The voltage applied to the capacitor 1 may be switched to 0 V and discharged at the same station after the two types of current measurements are completed. FIG. 1C is a flowchart showing the steps at this time. In this way, it is not necessary to provide a separate discharge device. The rotation of the production line, as described later,
By increasing the number of probe terminals of the current measuring device or providing a plurality of leak current measuring devices, it is possible to increase the number of measurements at one time, which leads to faster processing.

【0018】本発明の方法により、2種類の電圧を連続
的に印加してリーク電流を測定するときの印加される電
圧と電流との関係を図2に示す。図2において、まずV
1 の電圧がコンデンサに印加されると充電電流が流れ、
指数関数的に電流値Iが減る。たとえば20秒程度の時
間t1 の間電圧V1 を印加し、時間t1 が経過した時点
の電流値I1 を測定する。その後、直ちにコンデンサに
印加する電圧をV2 に切り替え、たとえば32秒程度の
時間t2 の間放置する。この電圧が高くなった際に充電
電流が再度急激に多く流れ、その後指数関数的に電流は
少なくなる。時間t2 が経過した時点の電流I2 を測定
し、両方の電流I1 、I2 が共に規定値内に入っている
か否かにより良否の判定をコントローラ6(図1参照)
により行う。なお、図2において、Dは電圧を0にした
瞬間に逆方向に流れる電流を示している。
FIG. 2 shows the relationship between the applied voltage and the current when the leak current is measured by continuously applying two kinds of voltages by the method of the present invention. In FIG. 2, first, V
When the voltage of 1 is applied to the capacitor, the charging current flows,
The current value I decreases exponentially. For example between the voltage V 1 of the 20 seconds to time t 1 is applied to measure the current value I 1 of the elapse of time t 1. Immediately thereafter, the voltage applied to the capacitor is switched to V 2 , and the capacitor is left for a time t 2 of, for example, 32 seconds. When this voltage becomes high, the charging current rapidly increases again, and then the current decreases exponentially. The controller 6 (see FIG. 1) measures the current I 2 at the time when the time t 2 has passed, and judges whether both the currents I 1 and I 2 are within the specified values.
By. In FIG. 2, D indicates a current flowing in the opposite direction at the moment when the voltage is set to zero.

【0019】本発明によれば、2種類のリーク電流の測
定を1つの測定器で連続的に行うため、電流測定の工程
の時間が多くかかり、他の放電などに要する時間とバラ
ンスが取れない場合は、設備の稼働率が低下する。しか
し、そのような場合には、リーク電流測定器のプローブ
端子の数を多くしたり、リーク電流測定器を2台以上並
べることにより、コンデンサの搬送を一度に測定する個
数ごとに行えばよい。むしろ第1と第2の電流測定時間
が異なる場合は、2台でそれぞれ連続測定を行う方がス
ループットが向上する。
According to the present invention, since two kinds of leak currents are continuously measured by one measuring instrument, it takes a lot of time for the step of current measurement, and it is not balanced with the time required for other discharges. In this case, the operating rate of the equipment will decrease. However, in such a case, the number of probe terminals of the leak current measuring device may be increased or two or more leak current measuring devices may be arranged to carry out the transportation of the capacitor for each number to be measured at one time. On the contrary, when the first and second current measurement times are different, the throughput is improved by performing continuous measurement on each of the two devices.

【0020】[0020]

【発明の効果】本発明によれば、2種類の電流測定を連
続して測定し、その間に間欠時間がないため、いずれか
の工程の故障などによりコンデンサの搬送ラインがスト
ップしても、2種類の測定の間の時間がバラツクことが
ない。その結果、ラインに故障などが発生してコンデン
サの搬送が中断した場合でも、リーク電流の測定値にバ
ラツキの要因がなく、再検査の必要がないと共に、常に
正確な測定をすることができ、信頼性の高い検査をする
ことができる。
According to the present invention, since two types of current measurements are continuously measured and there is no intermittent time between them, even if the capacitor transfer line is stopped due to a failure of any process, The time between different types of measurements does not vary. As a result, even when a line failure or the like interrupts the transfer of the capacitor, there is no cause of variation in the leak current measurement value, there is no need for re-inspection, and accurate measurement is always possible, A highly reliable inspection can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のリーク電流の測定方法を説明するため
の模式図およびフローチャートである。
FIG. 1 is a schematic view and a flowchart for explaining a leak current measuring method of the present invention.

【図2】本発明の方法によるリーク電流測定時の印加電
圧と電流との関係図である。
FIG. 2 is a relationship diagram between an applied voltage and a current when measuring a leak current according to the method of the present invention.

【図3】コンデンサのリーク電流を測定する等価回路図
である。
FIG. 3 is an equivalent circuit diagram for measuring a leak current of a capacitor.

【図4】従来のコンデンサのリーク電流の測定方法を説
明する図である。
FIG. 4 is a diagram illustrating a conventional method for measuring a leak current of a capacitor.

【図5】従来の方法によるリーク電流測定時の印加電圧
と電流との関係図である。
FIG. 5 is a relationship diagram between an applied voltage and a current when measuring a leak current by a conventional method.

【符号の説明】[Explanation of symbols]

1 コンデンサ 4 放電器 5 リーク電流測定器 1 Capacitor 4 Discharger 5 Leakage current measuring instrument

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コンデンサに2種類の電圧を印加してそ
れぞれの一定時間後の電流値が所定範囲に入っているか
否かを検査するコンデンサのリーク電流の測定方法であ
って、前記2種類の電圧による測定を連続して行うこと
を特徴とするコンデンサのリーク電流の測定方法。
1. A method for measuring a leak current of a capacitor, which comprises applying two types of voltage to a capacitor and inspecting whether or not a current value after a fixed time falls within a predetermined range. A method for measuring the leakage current of a capacitor, which is characterized by continuously measuring by voltage.
【請求項2】 複数個のコンデンサペレットを長尺のフ
レームに並列に連結し、該フレームをコンデンサの各製
造工程のステーションを通過するように搬送し、前記ス
テーションの1つで前記リーク電流の測定を行う請求項
1記載のリーク電流の測定方法。
2. A plurality of capacitor pellets are connected in parallel to a long frame, the frames are conveyed so as to pass through a station of each capacitor manufacturing process, and the leak current is measured at one of the stations. The method for measuring leak current according to claim 1, wherein
JP4985696A 1996-03-07 1996-03-07 Capacitor leakage current measurement method Expired - Fee Related JP3663251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4985696A JP3663251B2 (en) 1996-03-07 1996-03-07 Capacitor leakage current measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4985696A JP3663251B2 (en) 1996-03-07 1996-03-07 Capacitor leakage current measurement method

Publications (2)

Publication Number Publication Date
JPH09243695A true JPH09243695A (en) 1997-09-19
JP3663251B2 JP3663251B2 (en) 2005-06-22

Family

ID=12842708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4985696A Expired - Fee Related JP3663251B2 (en) 1996-03-07 1996-03-07 Capacitor leakage current measurement method

Country Status (1)

Country Link
JP (1) JP3663251B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040072285A (en) * 2003-02-10 2004-08-18 삼성전자주식회사 Apparatus for testing flexible printed circuit board
WO2008147694A1 (en) * 2007-05-24 2008-12-04 Electro Scientific Industries, Inc. Capacitive measurements with fast recovery current return
US8054085B2 (en) 2008-03-31 2011-11-08 Electro Scientific Industries, Inc. Programmable gain trans-impedance amplifier overload recovery circuit
WO2019237704A1 (en) * 2018-06-13 2019-12-19 中车株洲电力机车有限公司 Method and system for detecting leakage abnormality of capacitor, and computer device
CN110676189A (en) * 2019-09-26 2020-01-10 大连理工大学 Test analysis method for determining failure position of GaN cascode device
CN112122178A (en) * 2020-08-27 2020-12-25 惠州亿纬锂能股份有限公司 Composite power supply screening device and screening method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040072285A (en) * 2003-02-10 2004-08-18 삼성전자주식회사 Apparatus for testing flexible printed circuit board
WO2008147694A1 (en) * 2007-05-24 2008-12-04 Electro Scientific Industries, Inc. Capacitive measurements with fast recovery current return
US7940058B2 (en) 2007-05-24 2011-05-10 Electro Scientific Industries, Inc. Capacitive measurements with fast recovery current return
US8054085B2 (en) 2008-03-31 2011-11-08 Electro Scientific Industries, Inc. Programmable gain trans-impedance amplifier overload recovery circuit
US8686739B2 (en) 2008-03-31 2014-04-01 Electro Scientific Industries, Inc. Programmable gain trans-impedance amplifier overload recovery circuit
WO2019237704A1 (en) * 2018-06-13 2019-12-19 中车株洲电力机车有限公司 Method and system for detecting leakage abnormality of capacitor, and computer device
CN110676189A (en) * 2019-09-26 2020-01-10 大连理工大学 Test analysis method for determining failure position of GaN cascode device
CN110676189B (en) * 2019-09-26 2021-09-14 大连理工大学 Test analysis method for determining failure position of GaN cascode device
CN112122178A (en) * 2020-08-27 2020-12-25 惠州亿纬锂能股份有限公司 Composite power supply screening device and screening method

Also Published As

Publication number Publication date
JP3663251B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
EP0990150B1 (en) Detecting a bad cell in a storage battery
KR100187727B1 (en) Contact checking apparatus for handler and ic test system having checker thereof
US20070176621A1 (en) Semiconductor wafer testing apparatus and method of testing semiconductor wafer
JP2001208784A (en) Insulation resistance measuring method and insulation resistance measuring apparatus for capacitor
JP3663251B2 (en) Capacitor leakage current measurement method
US5654632A (en) Method for inspecting semiconductor devices on a wafer
JP2011089858A (en) Method of maintaining inspection tool and substrate inspection apparatus
EP1118867B1 (en) Method for testing a CMOS integrated circuit
US6300771B1 (en) Electrical inspection device for detecting a latent defect
US20050009218A1 (en) Test method and test apparatus for semiconductor device
US7221180B2 (en) Device and method for testing electronic components
JPH0845538A (en) Insulation testing device of secondary battery
JP4030031B2 (en) Inspection method for electronic components
JPH10115651A (en) Inspection method for leak current characteristic of capacitor
JP4596834B2 (en) Electronic circuit inspection apparatus and electronic circuit inspection method
JPH09203764A (en) Method for judging presence or absence of poorly connected lead by using four-terminal measuring method
JP3144224B2 (en) Screening method for ceramic capacitors
KR101483952B1 (en) Wire harness inspection method
JP2868462B2 (en) Semiconductor integrated circuit test method and test control device
JPS60115846A (en) Method and device for inspection of insulating thin film
JPH01180467A (en) On-line relay checking method
JPH042974A (en) Testing method of semiconductor device
JPS63208770A (en) Inspecting method for electrolytic capacitor
JP2001264385A (en) Automatic ic transport device and automatic ic inspection method
JPH11183529A (en) Method and instrument for measuring microcurrent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Effective date: 20040611

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050322

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20050328

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees