JPH09243422A - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter

Info

Publication number
JPH09243422A
JPH09243422A JP8051105A JP5110596A JPH09243422A JP H09243422 A JPH09243422 A JP H09243422A JP 8051105 A JP8051105 A JP 8051105A JP 5110596 A JP5110596 A JP 5110596A JP H09243422 A JPH09243422 A JP H09243422A
Authority
JP
Japan
Prior art keywords
wave detection
time
counter
received wave
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8051105A
Other languages
Japanese (ja)
Other versions
JP3759988B2 (en
Inventor
Noriyuki Nabeshima
徳行 鍋島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP05110596A priority Critical patent/JP3759988B2/en
Publication of JPH09243422A publication Critical patent/JPH09243422A/en
Application granted granted Critical
Publication of JP3759988B2 publication Critical patent/JP3759988B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate time-consuming division by operating a flow meter with low consumption current and low voltage to reduce a memory capacity of a computer. SOLUTION: Switching parts 5, 10 are set as shown in the figure so that ultrasonic waves are transmitted forward from a transceiver 2 and received by a transceiver 3. When a sensor 4 catches received waves at the transceiver 3, the transceiver 2 re-transmits ultrasonic waves. This is repeated (n) times in a forward direction. The switching parts 5, 10 are switched and similarly the above operations are repeated (n) times in the reverse direction. Total times T1 , T2 for each of (n) times of operations in the forward and reverse directions are counted by a second counter 9. Second or higher digits of the counted values of the times T1 , T2 are made into addresses, reciprocals of the times T1 , T2 are stored in a memory as a data table, and two pieces of data are read for each measurement so that an interval between the values is interpolated by linear approximation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超音波流量計の改良
に関する。
The present invention relates to an improvement of an ultrasonic flowmeter.

【0002】[0002]

【従来の技術】超音波流量計で時間逆数差法を用いたも
のが公知である。図5において、静止流体中の音速を
C、流体の流れの速さをVとすると、音波の伝搬方向が
流れに沿った方向(以下順方向と言う)と一致すればそ
の伝搬速度は(C+V)となり、流れに逆らった方向
(以下逆方向と言う)の場合には(C−V)となる。
2. Description of the Related Art An ultrasonic flow meter using a time reciprocal difference method is known. In FIG. 5, assuming that the velocity of sound in the stationary fluid is C and the velocity of the fluid flow is V, if the propagation direction of the sound wave coincides with the direction along the flow (hereinafter referred to as forward direction), the propagation velocity is (C + V ), And becomes (CV) in the case of the direction against the flow (hereinafter referred to as the reverse direction).

【0003】距離Lを隔てて1組の送受波器2,3を流
管1の上流と下流に離して配設し、送波器2から順方向
に超音波を発射したとき、受波器3に超音波が到達する
に要する時間をt1 、送波器3から逆方向に超音波を発
射したときに、受波器2に超音波が到達するに要する時
間をt2 とすれば、 t1 =L/(C+V) ・・・(1) t2 =L/(C−V) ・・・(2) となる。
A set of transducers 2 and 3 separated by a distance L are arranged upstream and downstream of the flow tube 1, and when the ultrasonic waves are emitted from the transmitter 2 in the forward direction, the transducers are received. If the time required for the ultrasonic wave to reach 3 is t 1 , and the time required for the ultrasonic wave to reach the receiver 2 when the ultrasonic wave is emitted from the wave transmitter 3 in the opposite direction is t 2 , t 1 = L / (C + V) ··· (1) t 2 = L / a (C-V) ··· (2 ).

【0004】順方向と逆方向の超音波の上記伝搬時間t
1 ,t2 を測定し、これから流速Vを算出して、さらに
流量を求めたり、積算流量を求めたりしていた。流速V
は上記(1),(2)式から音速Cに無関係に、 V=(L/2)〔(1/t1 )−(1/t2 )〕・・・(3) として求めており、時間t1 ,t2 の逆数1/t1 ,1
/t2 の差を利用していることから時間逆数差法と呼ば
れている。
The above-mentioned propagation time t of ultrasonic waves in the forward and reverse directions
1 and t 2 were measured, the flow velocity V was calculated from this, and the flow rate was further calculated or the integrated flow rate was calculated. Flow velocity V
The above (1), independently from (2) the speed of sound C, V = (L / 2 ) - are determined as [(1 / t 1) (1 / t 2)] (3), Reciprocal of time t 1 , t 2 1 / t 1 , 1
It is called the time reciprocal difference method because it utilizes the difference of / t 2 .

【0005】送波器2(又は3)に駆動パルスP1 を印
加して励振すると、伝搬時間t1 (又はt2 )後に受波
器3(又は2)に超音波が到達するが、受波器3(又は
2)で受信された受信波(電気信号)は図6に示すよう
に先頭値の零から次第に成長し、第1波、第2波、第3
波、第4波、第5波と順に大きな値となり、ピーク値を
過ぎてから次第に減衰する波形となる。
When the drive pulse P 1 is applied to the wave transmitter 2 (or 3) to excite it, ultrasonic waves reach the wave receiver 3 (or 2) after the propagation time t 1 (or t 2 ). The received wave (electrical signal) received by the wave filter 3 (or 2) gradually grows from the leading value of zero as shown in FIG. 6, and the first wave, the second wave, and the third wave.
The wave, the fourth wave, and the fifth wave have larger values in this order, and the waveform gradually attenuates after the peak value has passed.

【0006】伝搬時間t1 (又はt2 )の終了時点は符
号「イ」で示す波形の先頭であるが、この時点を検出す
ることはできないので、実際には第3波又は第5波の後
のゼロクロスポイントを、受波器3(又は2)に接続し
た受信波検知部で検出している。図6では駆動パルスP
1 から受信波の第3波の直後のゼロクロスポイント
「ロ」までの時間を受信波検知部で検出し、予め別の実
験で求めて記憶させてある遅れ時間τを差し引いて、伝
搬時間t1 (又はt2 )を求める。
The end point of the propagation time t 1 (or t 2 ) is the beginning of the waveform indicated by the symbol "a", but since this point cannot be detected, the third or fifth wave is actually detected. The subsequent zero cross point is detected by the received wave detection unit connected to the wave receiver 3 (or 2). In FIG. 6, the drive pulse P
The time from 1 to the zero cross point “B” immediately after the third wave of the received wave is detected by the received wave detection unit, and the delay time τ stored in advance by another experiment is subtracted to obtain the propagation time t 1 (Or t 2 ) is calculated.

【0007】伝搬時間の分解能を上げて流量計の計測精
度を高めるために、1回の超音波の送受でなく、受信と
同時に次の同方向の送信を行い、同方向の送受を複数回
(n回)連続して繰り返し、最初(第1回目)の送信か
ら最後の第n回目の受信までの時間を測定し、その値よ
り1回の送信から受信までの時間t1 (又はt2 )を求
めるようにしていた。
In order to increase the resolution of the propagation time and improve the measurement accuracy of the flowmeter, the ultrasonic wave is not transmitted / received once but at the same time, the next transmission in the same direction is performed, and transmission / reception in the same direction is performed a plurality of times ( Repeat n times continuously, measure the time from the first (first) transmission to the last nth reception, and from that value, the time t 1 (or t 2 ) from one transmission to reception I was trying to ask.

【0008】第1回の送信即ち駆動パルスP1 から第n
回目の受信までの時間は、受信波検知部が超音波の到達
を直接検知するのが前述のように図6のゼロクロスポイ
ント「ロ」であるから、同一方向のn回の測定中、流速
Vが一定であれば、順方向ではnt1 +nτ、逆方向で
はnt2 +nτとなる。
From the first transmission, that is, the drive pulse P 1 to the nth
Since the reception wave detection unit directly detects the arrival of the ultrasonic wave at the zero cross point "b" in FIG. 6 as described above, the time until the reception of the sixth time is the flow velocity V during the measurement of n times in the same direction. if but constant, nt 1 + nτ, the nt 2 + nτ the reverse direction in the forward direction.

【0009】従って第1回目の送信から第n回目の受信
までの時間nt1 +nτとnt2 +nτを用いて時間逆
数差法を用いて流速や流量を求めたり、さらに積算流量
(体積)を求めていた。
Therefore, using the time nt 1 + nτ and nt 2 + nτ from the first transmission to the nth reception, the flow velocity and flow rate are obtained by the time reciprocal difference method, and further the integrated flow rate (volume) is obtained. Was there.

【0010】順方向の計測における第1回目の送信から
第n回目の受信までの時間をT1 、逆方向の計測におけ
る第1回目の送信から第n回目の受信までの時間をT2
とすると、(1),(2)式に対応する式として、 T1 −nτ=nL/(C+V) ・・・(1A) T2 −nτ=nL/(C−V) ・・・(2A) が得られる。
In the forward measurement, the time from the first transmission to the nth reception is T 1 , and in the reverse measurement, the time from the first transmission to the nth reception is T 2.
Then, as an equation corresponding to the equations (1) and (2), T 1 −nτ = nL / (C + V) ... (1A) T 2 −nτ = nL / (CV) ... (2A ) Is obtained.

【0011】流速Vは上記(1A),(2A)式から音
速Cに無関係に、 V=(nL/2)〔{1/(T1 −nτ)}−{1/(T2 −nτ)}〕 ・・・(3A) として求められる。
From the above equations (1A) and (2A), the flow velocity V is V = (nL / 2) [{1 / (T 1 -nτ)}-{1 / (T 2 -nτ) regardless of the sound velocity C. }] ... (3A).

【0012】この種の超音波流量計では、順方向の計測
と逆方向の計測との切り替え制御をマイクロコンピュー
タで構成したコントローラ部で行っており、数式(3
A)の演算もこのマイクロコンピュータを使用して行っ
ている。
In this type of ultrasonic flowmeter, switching control between forward measurement and reverse measurement is performed by a controller section composed of a microcomputer, and equation (3)
The calculation of A) is also performed using this microcomputer.

【0013】[0013]

【発明が解決しようとする課題】前記従来の技術では、
1/(T1 −nτ)とか1/(T2 −nτ)の割算をマ
イクロコンピュータで行っている。
In the above prior art,
A microcomputer divides 1 / (T 1 −nτ) or 1 / (T 2 −nτ).

【0014】一般的にマイクロコンピュータは割算に時
間がかかり、この種の流量計では上記割算の計算桁数が
多いため、なお更に時間がかかり、高速のマイクロコン
ピュータが必要となり、高価で大電力を要するという問
題点があった。
Generally, a microcomputer takes a long time to divide, and in this kind of flowmeter, since the number of digits to be calculated in the above division is large, it takes much more time, a high-speed microcomputer is required, and it is expensive and large. There was a problem that it required power.

【0015】例えば、音速を440m/sec、距離L
を0.2m、繰り返し回数nを200回、時間T1 とか
2 を計測するカウンタの基準クロックを1MHz(=
10 6 Hz)とすると、流体の流速Vが零のときはT1
=T2 でこれをTとあらわせば、 T−nτ=200×0.2×106 /440カウント =90909カウント=90909×10-6s となる。
For example, the speed of sound is 440 m / sec and the distance L is
Is 0.2 m, the number of repetitions n is 200, and the time T1And
TTwoThe reference clock of the counter that measures is 1 MHz (=
10 6Hz), when the flow velocity V of the fluid is zero, T1
= TTwoIf this is expressed as T, then T−nτ = 200 × 0.2 × 106/ 440 count = 90909 count = 90909 × 10-6s.

【0016】そのため数式(3A)に従って1÷909
09という有効数字が6桁程度の割算を行う必要があ
る。実際には、流体の流速Vの違いや、順方向の測定か
逆方向の測定かによりT1,T2 が異なる値となった
り、遅れ時間nτを時間T1 ,T2 から減算したものが
割算の分母になるが、超音波の周波数を500KHzと
したとき、nτは図6のように受信波の第3波のゼロク
ロスポイント「ロ」を検出する場合では基準クロック1
MHzの計数値でほぼ、 200×1.5×2=600カウント で、上記90909カウントの約0.66%であり、割
算の桁数が6桁程度であることに変わりはない。
Therefore, according to the equation (3A), 1/909
It is necessary to divide about 6 significant digits of 09. Actually, T 1 and T 2 have different values depending on the difference in the flow velocity V of the fluid, the measurement in the forward direction or the measurement in the reverse direction, or the difference obtained by subtracting the delay time nτ from the times T 1 and T 2. It becomes the denominator of division, but when the frequency of the ultrasonic wave is 500 KHz, nτ is the reference clock 1 when the zero cross point “b” of the third wave of the received wave is detected as shown in FIG.
The count value of MHz is approximately 200 × 1.5 × 2 = 600 counts, which is about 0.66% of the above 90909 counts, and the number of digits for division remains about 6 digits.

【0017】通常割算をマイクロコンピュータで行うに
は、引き算を何回も行いながら計算することになり、何
回引くことができるかを実際に引きながら求める。従っ
て桁数の大きな割算を行うと流速や流量測定の間隔で計
算が終了しないこともあり得る。
In order to perform normal division by a microcomputer, calculation is performed while performing subtraction many times, and how many times subtraction can be actually performed is calculated. Therefore, if a division with a large number of digits is performed, the calculation may not end at the interval of flow velocity or flow rate measurement.

【0018】仮に間に合うように流量計のシステムを設
計しても、マイクロコンピュータが動きっぱなしにな
り、低消費電力化が実現できないという問題点があっ
た。そこで、本発明はかかる問題点を解消できる時間逆
数差法を用いた超音波流量計を提供することを目的とす
る。
Even if the flow meter system is designed to be in time, the microcomputer is kept running and low power consumption cannot be realized. Therefore, an object of the present invention is to provide an ultrasonic flowmeter using the time reciprocal difference method, which can solve the above problems.

【0019】[0019]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、流体の流れ中を流れと同方向あ
るいは斜め方向に超音波の送受をする送信側にも受信側
にも働く一対の超音波送受波器(2)(3)と、受信側
の送受波器(3又は2)が接続され、受信波を検知する
と受信波検知信号を出力する受信波検知部(4)と、第
1送信指令信号を入力した時に送信側の送受波器(2又
は3)を駆動し、その後は受信波検知部(4)からの受
信波検知信号ごとに後述する第n受信波検知信号が入力
されるまで送信側の送受波器(2又は3)を駆動する送
波器駆動部(6)と、順方向の計測を行うときは上流側
の送受波器(2)を送波器駆動部(6)に接続するとと
もに下流側の送受波器(3)を受信波検知部(4)に接
続し、逆方向の計測を行うときは下流側の送受波器
(3)を送波器駆動部(6)に接続するとともに上流側
の送受波器(2)を受信波検知部(4)に接続する切替
部(5,10)と、一定のタイミングで交互に切替部
(5,10)を切り替えて順方向の計測と逆方向の計測
を切り替える送受切替信号を出力して交互に送受の切り
替えを行いながら、その都度第1送信指令信号を出力す
るコントローラ部(7)と、受信波検知部(4)からの
受信波検知信号を受け、順方向の計測時と逆方向の計測
時毎にn番目の受信波検知信号を検知して第n受信波検
知信号を出力する第1のカウンタ(8)と、順方向計測
時における第1送信指令信号から第n受信波検知信号ま
での時間(T1 )と、逆方向計測時における第1送信指
令信号から第n受信波検知信号までの時間(T2 )を測
定する第2のカウンタ(9)とを具備し、第n受信波検
知信号を受けると第2のカウンタ(9)の測定値(T1
又はT2)を読み取り、時間逆数差法を用いて流速、流
量等の演算をコントローラ部(7)で行う超音波流量計
であって、前記第2のカウンタ(9)を構成する時間計
測部が基準クロックを計数する10進カウンタ(93〜
97)よりなり、前記コントローラ部(7)がマイクロ
コンピュータで構成され、第2のカウンタ(9)から読
み取るべき測定値(T1 又はT2 )より、遅れ時間に相
当する一定値(nτ)を減じた値(T1 −nτ又はT2
−nτ)を最下位1桁とその他の上位桁に分けて、最下
位1桁の数値をb、その他の上位桁の数値をaとして、
該その他の上位桁の数値aに相当するアドレスと該アド
レスに対応するデータ1/(10a)の集合からなるデ
ータテーブル〔表1〕をマイクロコンピュータのメモリ
に格納し、順方向又は逆方向の計測に当たって第2のカ
ウンタ(9)から読み取った測定値(T1 又はT2 )に
対応する前記上位桁の数値(a)に相当するアドレス
と、この上位桁の数値(a)に1を加算した数値(a+
1)に相当するアドレスより両アドレスに対応する時間
逆数の数値1/(10a)と1/{10(a+1)}に
相当する二つの格納データを前記データテーブル〔表
1〕から読み出し、これらのデータと前記測定値(T1
又はT2 )の最下位1桁の数値(b)とから時間逆数
{1/(T1 −nτ)又は1/(T2 −nτ)}に相当
する値1/(10a+b)を直線近似によって導き、流
速や流量の演算に使用するようにしたことを特徴とする
超音波流量計である。
In order to achieve the above-mentioned object, the invention of claim 1 has a transmitting side and a receiving side which transmit and receive ultrasonic waves in the same direction as the flow of the fluid or in an oblique direction. A pair of ultrasonic wave transmitters / receivers (2) and (3) that also work and a receiver side wave transmitter / receiver (3 or 2) are connected, and a reception wave detection unit (4) that outputs a reception wave detection signal when a reception wave is detected ), And when the first transmission command signal is input, the transmitter / receiver (2 or 3) on the transmission side is driven, and thereafter, the nth received wave described later is received for each received wave detection signal from the received wave detection unit (4). The transmitter drive unit (6) that drives the transmitter / receiver unit (2 or 3) on the transmission side until the detection signal is input, and the transmitter / receiver unit (2) on the upstream side when performing forward measurement. In addition to connecting to the wave drive unit (6), the wave transmitter / receiver (3) on the downstream side is connected to the received wave detection unit (4), When performing, the switching unit (5) that connects the downstream side wave transmitter / receiver (3) to the wave transmitter drive unit (6) and connects the upstream side wave transmitter / receiver (2) to the received wave detection unit (4) , 10) and the switching section (5, 10) alternately at a fixed timing to switch between forward measurement and reverse measurement, and output a transmission / reception switching signal to alternately switch transmission / reception. Receives the received wave detection signal from the controller section (7) that outputs the first transmission command signal and the received wave detection section (4), and detects the nth received wave every time when measuring in the forward direction and when measuring in the reverse direction. A first counter (8) that detects a signal and outputs an nth received wave detection signal; a time (T 1 ) from the first transmission command signal to the nth received wave detection signal during forward measurement; Time from the 1st transmission command signal to the nth received wave detection signal when measuring the direction T 2) comprises a second counter and (9) for measuring a measured value of the receiving the n-th reception wave detection signal a second counter (9) (T 1
Alternatively, an ultrasonic flowmeter in which T 2 ) is read and the calculation of the flow velocity, the flow rate, etc. is performed by the controller unit (7) by using the time reciprocal difference method, and the time measuring unit constituting the second counter (9) is provided. Is a decimal counter (93-
97), the controller section (7) is composed of a microcomputer, and a constant value (nτ) corresponding to the delay time is obtained from the measured value (T 1 or T 2 ) to be read from the second counter (9). Subtracted value (T 1 −nτ or T 2
-Nτ) is divided into the least significant one digit and the other significant digits, the numerical value of the least significant one digit is b, and the numerical value of the other significant digits is a,
A data table [Table 1] consisting of a set of an address corresponding to the other upper digit number a and data 1 / (10a) corresponding to the address is stored in the memory of the microcomputer, and forward or backward measurement is performed. At this time, 1 is added to the address corresponding to the numerical value (a) of the upper digit corresponding to the measured value (T 1 or T 2 ) read from the second counter (9) and the numerical value (a) of the upper digit. Numerical value (a +
From the address corresponding to 1), two stored data corresponding to numerical values 1 / (10a) and 1 / {10 (a + 1)} of time reciprocal numbers corresponding to both addresses are read from the data table [Table 1], Data and the measured value (T 1
Or by the least significant digits (b) because the time inverse {1 / (T 1 -nτ) or 1 / (T 2 -nτ)} corresponding to the value 1 / (10a + b) a linear approximation of the T 2) The ultrasonic flowmeter is characterized by being used for calculation of flow velocity and flow rate.

【0020】請求項2の発明は、流体の流れ中を流れと
同方向あるいは斜め方向に超音波の送受をする送信側に
も受信側にも働く一対の超音波送受波器(2)(3)
と、受信側の送受波器(3又は2)が接続され、受信波
を検知すると受信波検知信号を出力する受信波検知部
(4)と、第1送信指令信号を入力した時に送信側の送
受波器(2又は3)を駆動し、その後は受信波検知部
(4)からの受信波検知信号ごとに後述する第n受信波
検知信号が入力されるまで送信側の送受波器(2又は
3)を駆動する送波器駆動部(6)と、順方向の計測を
行うときは上流側の送受波器(2)を送波器駆動部
(6)に接続するとともに下流側の送受波器(3)を受
信波検知部(4)に接続し、逆方向の計測を行うときは
下流側の送受波器(3)を送波器駆動部(6)に接続す
るとともに上流側の送受波器(2)を受信波検知部
(4)に接続する切替部(5,10)と、一定のタイミ
ングで交互に切替部(5,10)を切り替えて順方向の
計測と逆方向の計測を切り替える送受切替信号を出力し
て交互に送受の切り替えを行いながら、その都度第1送
信指令信号を出力するコントローラ部(7)と、受信波
検知部(4)がらの受信波検知信号を受け、順方向の計
測時と逆方向の計測時毎にn番目の受信波検知信号を検
知して第n受信波検知信号を出力する第1のカウンタ
(8)と、順方向計測時における第1送信指令信号から
第n受信波検知信号までの時間(T1 )と、逆方向計測
時における第1送信指令信号から第n受信波検知信号ま
での時間(T2 )を測定する第2のカウンタ(9)とを
具備し、第n受信波検知信号を受けると第2のカウンタ
(9)の測定値(T1 又はT2)を読み取り、時間逆数
差法を用いて流速、流量等の演算をコントローラ部
(7)で行う超音波流量計であって、前記第2のカウン
タ(9)を構成する時間計測部が基準クロックを計数す
る10進カウンタ(93〜97)よりなり、前記コント
ローラ部(7)がマイクロコンピュータで構成され、第
2のカウンタ(9)から読み取るべき測定値(T1 又は
2 )を最下位1桁の数値(B)とその他の上位桁の数
値(A)に分けて、該その他の上位桁の数値(A)に相
当するアドレスと、該アドレスに対応する前記第2のカ
ウンタ(9)から読み取った測定値(T1 又はT2 )よ
り遅れ時間に相当する一定値(nτ)を減じた時間(T
1 −nτ又はT2 −nτ)の逆数{1/(T1 −nτ)
又は1/(T2 −nτ)}に対応するデータ1/(10
A−nτ)との集合からなるデータテーブル(表2)を
マイクロコンピュータのメモリに格納し、順方向又は逆
方向の計測に当たって第2のカウンタ(9)から読み取
った測定値(T1 又はT2 )に対応する前記上位桁の数
値(A)に相当するアドレスと、この上位桁(A)に1
を加算した数値(A+1)に相当するアドレスより両ア
ドレスに対応する二つの時間逆数の数値1/(10A−
nτ)と1/(10(A+1)−nτ)に相当する二つ
の格納データを前記データテーブル(表2)から読み出
し、これらのデータと前記測定値(T1 又はT2 )の最
下位1桁の数値(B)とから時間逆数{1/(T1 −n
τ)又は1/(T2 −nτ)}に相当する値1/(10
A+B−nτ)を直線近似によって導き、流速や流量の
演算に使用するようにしたことを特徴とする超音波流量
計である。
According to a second aspect of the present invention, a pair of ultrasonic wave transmitters / receivers (2) (3) that work both on the transmitting side and on the receiving side for transmitting / receiving ultrasonic waves in the same direction as the flow or in an oblique direction in the flow of fluid. )
And a receiver-side transmitter / receiver (3 or 2) are connected, and a reception-wave detection unit (4) that outputs a reception-wave detection signal when a reception wave is detected, and a transmission-side detector when the first transmission command signal is input The transmitter / receiver (2 or 3) is driven, and thereafter, the transmitter / receiver (2) on the transmitting side is input until the nth received wave detection signal described later is input for each received wave detection signal from the received wave detection unit (4). Or, the wave transmitter drive unit (6) that drives the wave transmitter and drive unit (6) and the wave transmitter / receiver (2) on the upstream side are connected to the wave transmitter drive unit (6) and the wave transmitter / receiver on the downstream side when performing forward measurement When the wave detector (3) is connected to the received wave detector (4) and the measurement in the reverse direction is performed, the wave transmitter / receiver (3) on the downstream side is connected to the wave transmitter drive unit (6) and the wave on the upstream side is connected. A switching unit (5, 10) for connecting the wave transmitter / receiver (2) to the reception wave detecting unit (4) and a switching unit (5, 10) alternately at a fixed timing. A controller section (7) that outputs a first transmission command signal each time while switching between transmission and reception by outputting a transmission / reception switching signal for switching between forward measurement and reverse measurement, and a received wave detection section. (4) A first counter that receives the received wave detection signal and detects the nth received wave detection signal and outputs the nth received wave detection signal every time the forward measurement and the reverse measurement are performed. 8), the time (T 1 ) from the first transmission command signal to the nth received wave detection signal during forward measurement, and the time from the first transmission command signal to the nth received wave detection signal during reverse measurement A second counter (9) for measuring (T 2 ) is provided, and when the nth received wave detection signal is received, the measured value (T 1 or T 2 ) of the second counter (9) is read and the time reciprocal is calculated. The controller part (7 ) In the ultrasonic flowmeter, the time measuring unit constituting the second counter (9) is composed of a decimal counter (93 to 97) for counting a reference clock, and the controller unit (7) is a micro counter. The measurement value (T 1 or T 2 ) to be read from the second counter (9) is composed of a computer and is divided into a numerical value of the lowest one digit (B) and a numerical value of the other upper digit (A), and the other values. A constant value (nτ) corresponding to the delay time from the address corresponding to the numerical value (A) of the upper digit of the and the measured value (T 1 or T 2 ) read from the second counter (9) corresponding to the address. Time (T
1 -Enutau or T 2 -nτ inverse of) {1 / (T 1 -nτ )
Or data 1 / (10 corresponding to 1 / (T 2 −nτ)}
A-nτ) is stored in the memory of the microcomputer as a data table (Table 2), and the measurement value (T 1 or T 2 ) read from the second counter (9) in the forward or reverse direction measurement is stored. ), The address corresponding to the numerical value (A) of the upper digit, and 1 in this upper digit (A).
From the address corresponding to the numerical value (A + 1) that is added, two numerical values 1 / (10A-
nτ) and two stored data corresponding to 1 / (10 (A + 1) -nτ) are read from the data table (Table 2), and these data and the lowest digit of the measured value (T 1 or T 2 ) are read. (B) and the reciprocal of time {1 / (T 1 −n
τ) or 1 / (T 2 −nτ)} corresponding value 1 / (10
A + B−nτ) is derived by linear approximation and is used for calculation of flow velocity and flow rate.

【0021】請求項3の発明は、流体の流れ中を流れと
同方向あるいは斜め方向に超音波の送受をする送信側に
も受信側にも働く一対の超音波送受波器(2)(3)
と、受信側の送受波器(3又は2)が接続され、受信波
を検知すると受信波検知信号を出力する受信波検知部
(4)と、第1送信指令信号を入力した時に送信側の送
受波器(2又は3)を駆動し、その後は受信波検知部
(4)からの受信波検知信号ごとに後述する第n受信波
検知信号が入力されるまで送信側の送受波器(2又は
3)を駆動する送波器駆動部(6)と、順方向の計測を
行うときは上流側の送受波器(2)を送波器駆動部
(6)に接続するとともに下流側の送受波器(3)を受
信波検知部(4)に接続し、逆方向の計測を行うときは
下流側の送受波器(3)を送波器駆動部(6)に接続す
るとともに上流側の送受波器(2)を受信波検知部
(4)に接続する切替部(5,10)と、一定のタイミ
ングで交互に切替部(5,10)を切り替えて順方向の
計測と逆方向の計測を切り替える送受切替信号を出力し
て交互に送受の切り替えを行いながら、その都度第1送
信指令信号を出力するコントローラ部(7)と、受信波
検知部(4)がらの受信波検知信号を受け、順方向の計
測時と逆方向の計測時毎にn番目の受信波検知信号を検
知して第n受信波検知信号を出力する第1のカウンタ
(8)と、順方向計測時における第1送信指令信号から
第n受信波検知信号までの時間(T1 )と、逆方向計測
時における第1送信指令信号から第n受信波検知信号ま
での時間(T2 )を測定する第2のカウンタ(9)とを
具備し、第n受信波検知信号を受けると第2のカウンタ
(9)の測定値(T1 又はT2)を読み取り、時間逆数
差法を用いて流速、流量等の演算をコントローラ部
(7)で行う超音波流量計であって、前記第2のカウン
タ(9)を構成する時間計測部が基準クロックを計数す
るカウンタで、その最下位が1桁の10進カウンタ(9
3)、それより上位が2進カウンタ(98)よりなり、
前記コントローラ部(7)がマイクロコンビュータで構
成され、該マイクロコンピュータが第2のカウンタ
(9)の測定値(T1 又はT2 )として読み取るべき数
値を、その上位桁を2進数(a′)で、最下位桁を10
進数(b)で読み取り、別途、前記2進数の上位桁
(a′)を10進変換した値(c)の逆数に1/10を
乗じたデータ1/(10c)を上位桁(a′)をアドレ
スとするデータテーブルとして前記マイクロコンピュー
タのメモリに格納し、上位桁(a′)に相当するアドレ
スと、これに1を加算した数値(a′+1)に相当する
アドレスより両アドレスに対応する時間逆数の数値1/
(10c)と1/{10(c+1)}に相当する二つの
データを読み出し、これらのデータと前記下位桁の数値
(b)とから直線近似によって時間逆数{1/(T1
nτ)又は1/(T2 −nτ)}に相当する値1/(1
0c+b)を導き、以後の流速又は流量等の演算に使用
するようにしたことを特徴とする超音波流量計である。
According to a third aspect of the present invention, a pair of ultrasonic wave transmitters / receivers (2) (3) that act on both the transmitting side and the receiving side for transmitting and receiving ultrasonic waves in the same direction as the flow of the fluid or in the oblique direction. )
And a receiver-side transmitter / receiver (3 or 2) are connected, and a reception-wave detection unit (4) that outputs a reception-wave detection signal when a reception wave is detected, and a transmission-side detector when the first transmission command signal is input The transmitter / receiver (2 or 3) is driven, and thereafter, the transmitter / receiver (2) on the transmitting side is input until the nth received wave detection signal described later is input for each received wave detection signal from the received wave detection unit (4). Or, the wave transmitter drive unit (6) that drives the wave transmitter and drive unit (6) and the wave transmitter / receiver (2) on the upstream side are connected to the wave transmitter drive unit (6) when performing forward measurement, and the wave transmitter / receiver on the downstream side is connected. When the wave detector (3) is connected to the received wave detector (4) and the measurement in the reverse direction is performed, the wave transmitter / receiver (3) on the downstream side is connected to the wave transmitter drive unit (6) and the wave on the upstream side is connected. A switching unit (5, 10) for connecting the wave transmitter / receiver (2) to the reception wave detecting unit (4) and a switching unit (5, 10) alternately at a fixed timing. A controller section (7) that outputs a first transmission command signal each time while switching between transmission and reception by outputting a transmission / reception switching signal for switching between forward measurement and reverse measurement, and a received wave detection section. (4) A first counter that receives the received wave detection signal and detects the nth received wave detection signal and outputs the nth received wave detection signal every time the forward measurement and the reverse measurement are performed. 8), the time (T 1 ) from the first transmission command signal to the nth received wave detection signal during forward measurement, and the time from the first transmission command signal to the nth received wave detection signal during reverse measurement A second counter (9) for measuring (T 2 ) is provided, and when the nth received wave detection signal is received, the measured value (T 1 or T 2 ) of the second counter (9) is read and the time reciprocal is calculated. The controller part (7 ) Is a counter for counting the reference clock by the time measuring unit that constitutes the second counter (9), and the lowest digit is a decimal digit counter (9
3), the upper level of which is a binary counter (98),
The controller section (7) is composed of a micro-computer, and the numerical value to be read by the microcomputer as the measurement value (T 1 or T 2 ) of the second counter (9) is the upper digit of which is a binary number (a ′). And the least significant digit is 10
Data 1 / (10c), which is obtained by reading the binary number (b) and multiplying the reciprocal of the value (c) obtained by decimally converting the upper digit (a ') of the binary number by 1/10, is the upper digit (a'). Is stored in the memory of the microcomputer as a data table with the address as an address, and the address corresponding to the upper digit (a ') and the address corresponding to the numerical value (a' + 1) obtained by adding 1 to the upper digit correspond to both addresses. Numerical value of time reciprocal 1 /
Two data items corresponding to (10c) and 1 / {10 (c + 1)} are read out, and the reciprocal time {1 / (T 1 −) is obtained by linear approximation from these data and the numerical value (b) of the lower digit.
value corresponding to (nτ) or 1 / (T 2 −nτ)} 1 / (1
0c + b), and is used for subsequent calculation of flow velocity or flow rate.

【0022】そして、請求項4の発明は、請求項1,2
又は3の超音波流量計において、データテーブルに格納
するデータが、請求項1,2又は3に記載されたデータ
{1/(10a),1/(10A−nτ)又は1/(1
0c)}から一定値を減じた値或いは一定値を乗じた値
をデータとしてデータテーブルを構成したことを特徴と
するものである。
The invention of claim 4 is the same as claim 1 or claim 2.
In the ultrasonic flowmeter according to claim 3 or 4, the data stored in the data table is the data {1 / (10a), 1 / (10A-nτ) or 1 / (1) described in claim 1, 2 or 3.
0c)} is a value obtained by subtracting a constant value or a value obtained by multiplying the constant value by the data table.

【0023】[0023]

【発明の実施の形態】図1はこの発明の好ましい実施の
形態で、図2はそのタイムチャートである。同図におい
て、2,3は1対の超音波送受波器で、従来技術と同様
に、流体の流れ中を流れと同方向あるいは斜め方向に超
音波の送受をする。
1 is a preferred embodiment of the present invention, and FIG. 2 is a time chart thereof. In the figure, reference numerals 2 and 3 denote a pair of ultrasonic transducers for transmitting and receiving ultrasonic waves in the same direction or obliquely to the flow of a fluid as in the prior art.

【0024】4は受信波検知部で、信号切替器5によっ
て選択された受信側の送受波器3又は2がその入力に接
続され、受信波をその所定の波のゼロクロスポイント例
えば図6のように第3波の直後のゼロクロスポイント
「ロ」で検知すると受信波検知信号(図2参照)を出力
する。
Reference numeral 4 denotes a received wave detecting section, which is connected to the input thereof with the receiving-side wave transmitter / receiver 3 or 2 selected by the signal switch 5, and the received wave is a zero cross point of the predetermined wave, for example, as shown in FIG. When the zero-cross point “B” immediately after the third wave is detected, the reception wave detection signal (see FIG. 2) is output.

【0025】図2では第1,第2,第3,…及び第nの
各受信波検知信号にそれぞれ1,2,3,…及びnの各
符号を付けている。6は後述するコントローラ部7から
の第1送信指令信号を入力した時に送信側の送受波器2
又は3を励振し、その後は受波器検知部4からの受信波
検知信号ごとに後述する第n受信波検知信号が入力され
るまで送信側の送受波器2又は3を励振する送波器駆動
部である。
In FIG. 2, the first, second, third, ... And nth received wave detection signals are respectively labeled with 1, 2, 3 ,. Reference numeral 6 denotes a transmitter / receiver 2 on the transmission side when a first transmission command signal is input from the controller section 7 described later.
Or a wave transmitter that excites the wave transmitter 2 or 3 on the transmission side until an nth received wave detection signal described later is input for each reception wave detection signal from the wave receiver detection unit 4. It is a drive unit.

【0026】7はマイクロコンピュータで構成されたコ
ントローラ部で、信号切替器5と切替スイッチ10を一
定のタイミングで同期して切り替えることで順方向の計
測と逆方向の計測を交互に切り替える送受切替信号を出
力して、交互に送受の切り替えを行いながら、その都度
第1送信指令信号を前記送波器駆動部6と後記第1のカ
ウンタ8と第2のカウンタ9へ出力する。
Reference numeral 7 denotes a controller section composed of a microcomputer, and a transmission / reception switching signal for alternately switching between forward measurement and reverse measurement by switching the signal switch 5 and the changeover switch 10 in synchronization at a constant timing. Is output and the transmission and reception are alternately switched, and the first transmission command signal is output to the transmitter driving unit 6, the first counter 8 and the second counter 9 described later each time.

【0027】信号切替器5と切替スイッチ10は両者で
切替部を構成し、順方向の計測を行うときは切替スイッ
チ10を図示の状態にして上流側の送受波器2を送波器
駆動部6に接続するとともに、信号切替器5を図示の状
態にして下流側の送受波器3を受信波検知部4に接続す
る。
The signal switch 5 and the change-over switch 10 together constitute a change-over unit, and when performing forward measurement, the change-over switch 10 is set to the state shown in the drawing and the upstream side transmitter / receiver 2 is set to the wave-transmitter drive unit. 6, the signal switch 5 is set to the state shown in the figure, and the downstream side wave transmitter / receiver 3 is connected to the received wave detector 4.

【0028】そして、逆方向の計測を行うときは切替ス
イッチ10を図示の状態から切り替えて下流側の送受波
器3を送波器駆動部6に接続するとともに、信号切替器
5を図示の状態から切り替えて上流側の送受波器2を、
受信波検知部4に接続する。
When performing measurement in the reverse direction, the changeover switch 10 is switched from the state shown in the figure to connect the wave transmitter / receiver 3 on the downstream side to the wave transmitter drive section 6, and the signal switch 5 is shown in the state shown in the figure. Switch to the transmitter / receiver 2 on the upstream side,
It is connected to the received wave detector 4.

【0029】8は第1のカウンタで受信波検知部4から
の受信波検知信号を受け、順方向の計測時と逆方向の計
測時ごとに受信波検知信号を計数して計数値がnとなっ
たとき、つまりn番目の受信波検知信号を検知して第n
受信波検知信号を出力する。なお、この第1のカウンタ
8はコントローラ部7からの第1送信指令信号で計数値
が零にリセットされる。
Reference numeral 8 denotes a first counter which receives the received wave detection signal from the received wave detection unit 4 and counts the received wave detection signal every time when measuring in the forward direction and at the time when measuring in the reverse direction, and the count value is n. , That is, when the nth received wave detection signal is detected
Outputs the reception wave detection signal. The count value of the first counter 8 is reset to zero by the first transmission command signal from the controller unit 7.

【0030】9は第2のカウンタで順方向計測時におけ
るコントローラ部7からの第1送信指令信号Pから第1
のカウンタ8からの第n受信波検知信号までの時間T1
(図2参照)と、逆方向計測時における第1送信指令信
号から第n受信波検知信号までの時間T2 をそれぞれ測
定する。
Reference numeral 9 denotes a second counter, which is based on the first transmission command signal P from the controller unit 7 during the forward measurement.
Time T 1 from the counter 8 to the nth received wave detection signal
(See FIG. 2) and the time T 2 from the first transmission command signal to the nth received wave detection signal at the time of backward measurement.

【0031】図2に示すように、順方向における各回の
見かけ上の伝搬時間は、正味の伝搬時間t1 に各回の遅
れ時間τを加算したt1 +τであり、第1送信指令信号
Pから第n受信波検知信号までの時間、つまり順方向計
測時における第2のカウンタ9の測定値T1 は、 T1 =nt1 +nτ であらわされる。
As shown in FIG. 2, the apparent propagation time at each time in the forward direction is t 1 + τ obtained by adding the delay time τ at each time to the net propagation time t 1 and is calculated from the first transmission command signal P. The time until the nth received wave detection signal, that is, the measurement value T 1 of the second counter 9 at the time of forward measurement is expressed as T 1 = nt 1 + nτ.

【0032】同様に逆方向計測時における第2のカウン
タ9の測定値T2 は、 T2 =nt2 +nτ であらわされる。
Similarly, the measured value T 2 of the second counter 9 during the backward measurement is represented by T 2 = nt 2 + nτ.

【0033】第2のカウンタ9を構成する時間計測部は
10進カウンタよりなり、1MHzの基準クロックを計
数して、図2に示す順方向計測時の第1送信指令信号P
から第n受信波検知信号までの時間T1 と、逆方向計測
時における第1送信指令信号から第n受信波検知信号ま
での時間T2 を基準クロックの計数値としてカウントす
る。
The time measuring unit constituting the second counter 9 is composed of a decimal counter, counts the reference clock of 1 MHz, and outputs the first transmission command signal P at the time of forward measurement shown in FIG.
The time T 1 of the to the n reception wave detection signals from, for counting the time T 2 of the from the first transmission command signal in the reverse direction measurement to the n reception wave detection signal as a count value of the reference clock.

【0034】図3に第2のカウンタ9の構成を示す。9
1は1MHzの基準クロックを発振するクロック発生
器、92はクロック発生器91からの基準クロックを通
過させたり止めたりするゲートで前記第1送信指令信号
を受けるとゲート92が開き基準クロックを通過させる
ようになり、前記第1のカウンタ8からの第n受信波検
知信号を受けると、それまで開いていたゲート92が閉
じるように構成されている。
FIG. 3 shows the configuration of the second counter 9. 9
Reference numeral 1 is a clock generator that oscillates a reference clock of 1 MHz, and 92 is a gate that passes or stops the reference clock from the clock generator 91. When the first transmission command signal is received, the gate 92 opens to pass the reference clock. When the nth received wave detection signal from the first counter 8 is received, the gate 92 that has been open until then is closed.

【0035】93,94,…,97は10進1桁のカウ
ンタで、93が1桁目、94が2桁目、…、97が5桁
目の10進数の計数を分担し、最下位の1桁目のカウン
タ93は、ゲート92を通過してきた基準クロックを計
数し、そのキャリーを2桁目のカウンタ94に入力す
る。このようにして、各カウンタ93,94,…のキャ
リーが次の上位桁のカウンタ94,…,95に入力され
て、測定値T1 ,T2 を計数する。
, 97 are decimal 1-digit counters, 93 are the first digit, 94 are the second digit, ..., 97 are the fifth digit, and the lowest decimal digits are shared. The first-digit counter 93 counts the reference clock that has passed through the gate 92 and inputs the carry to the second-digit counter 94. In this manner, the carry of each of the counters 93, 94, ... Is input to the next upper digit counters 94, ..., 95 to count the measured values T 1 , T 2 .

【0036】なお第1送信指令信号はゲート92を開く
とともに、各桁のカウンタ93,94,…,97の内容
を零にリセットする。10進各桁のカウンタ93,9
4,…,97は、それぞれ1,2,4,8出力端子を備
えていて、これらの端子からの1,2,4,8出力がコ
ントローラ部7へ入力されるようになっている。
The first transmission command signal opens the gate 92 and resets the contents of the counters 93, 94, ..., 97 of each digit to zero. Decimal digit counters 93, 9
4, ..., 97 are respectively provided with 1, 2, 4, 8 output terminals, and 1, 2, 4, 8 outputs from these terminals are input to the controller section 7.

【0037】なお各10進カウンタ93,94,…,9
7はそれぞれ100 ,101 ,…,104 の各桁を分担
し、全部で10進5桁のカウンタを構成しているが、こ
れらのカウンタの数は必要とする第2のカウンタ9の1
0進数の桁数に応じて用意される。
Each decimal counter 93, 94, ..., 9
7 respectively share each digit of 10 0 , 10 1 , ..., 10 4 and constitute a counter of 5 decimal digits in total, and the number of these counters is the same as that of the second counter 9 required. 1
It is prepared according to the number of digits of 0-digit.

【0038】コントローラ部7は順方向計測時と逆方向
計測時において、第1のカウンタ8からの第n受信波検
知信号を受ける都度第2のカウンタ9の測定値T1 ,T
2 を読み取り、時間逆数差法を用いて流速、流量、積算
流量等の演算を行うが、この発明では、逆数の計算を行
うのに前記〔発明が解決しようとする課題〕の欄で説明
したような6桁程度の割算をマイクロコンピュータで計
算することを避け、マイクロコンピュータのメモリに格
納したデータテーブルを活用して時間逆数値を短時間で
導くようにしている。
The controller unit 7 measures the measured values T 1 and T of the second counter 9 each time it receives the nth received wave detection signal from the first counter 8 during forward measurement and reverse measurement.
2 is read and the flow velocity, the flow rate, the integrated flow rate, etc. are calculated using the time reciprocal difference method, but in the present invention, the calculation of the reciprocal number is described in the section of [Problems to be solved by the invention]. The calculation of the division of about 6 digits is avoided by the microcomputer, and the reciprocal time value is derived in a short time by utilizing the data table stored in the memory of the microcomputer.

【0039】図1の実施の形態では、第2のカウンタ9
から読み取るべき測定値T1 ,T2,…これは1MHz
の基準クロックを10進カウンタで時間T1 ,T2 の間
カウントした計数値であらわされる…より遅れ時間に相
当する一定値nτを1MHzの基準クロックの計数値に
換算した値を減じた値T1 −nτ,T2 −nτを最下位
1桁とその他の上位桁に分けて、最下位1桁の数値を
b、その他の上位桁の数値をaとして、該その他の上位
桁の数値aに相当するアドレスと該アドレスに対応する
データ1/(10a)の集合からなる〔表1〕のデータ
テーブルをマイクロコンピュータのメモリに格納してお
く。
In the embodiment of FIG. 1, the second counter 9
Measurements to be read from T 1 , T 2 , ... This is 1 MHz
Is represented by the count value obtained by counting the reference clock of the decimal counter during the times T 1 and T 2 ... A value T obtained by subtracting a value obtained by converting the constant value nτ corresponding to the delay time into the count value of the reference clock of 1 MHz. 1 −nτ, T 2 −nτ are divided into the least significant one digit and the other significant digits, and the numerical value of the least significant one digit is b and the numerical value of the other significant digits is a, and the numerical value a of the other significant digits is A data table of [Table 1] consisting of a set of corresponding addresses and data 1 / (10a) corresponding to the addresses is stored in the memory of the microcomputer.

【0040】1MHzの基準クロックの計数値で表現さ
れる第2のカウンタ9の測定値T1,T2 や遅れ時間n
τは、距離L、流体の流れの速さV、順方向及び逆方向
における各繰り返し回数n、超音波の周期、流体の流れ
と超音波の発射方向とでなす角度等で決まるが、T1
nτ,T2 −nτの数値が取り得る範囲が1MHzの基
準クロックの計数値で表現して例えば15001から4
5000までの範囲であるとすると、これらの計数値は
45000−15000=30000個の計数値の集合
からなるデータテーブルを設けることになる。
The measured values T 1 , T 2 of the second counter 9 and the delay time n expressed by the count value of the reference clock of 1 MHz.
The tau, the distance L, the fluid flow velocity V, and the repeat count n in the forward and reverse directions, the period of the ultrasonic wave, but determined by the angle or the like formed by the launch direction of the fluid flow and ultrasound, T 1
The range in which the numerical values of nτ and T 2 −nτ can be represented by the count value of the reference clock of 1 MHz is, for example, 15001 to 4
Assuming a range of up to 5000, these count values are provided with a data table consisting of a set of 45000-15000 = 30000 count values.

【0041】図1の実施形態では、もっと少ない個数の
集合からなるデータテーブルを用意して、このデータテ
ーブルから時間逆数値を読み出すことで前記6桁程度の
割算をしなくても良く、かつ小さなデータテーブルです
むようにしている。
In the embodiment shown in FIG. 1, it is not necessary to prepare a data table consisting of a smaller number of sets and read the time reciprocal value from the data table to perform the division of about 6 digits. I try to use a small data table.

【0042】即ち、15001,15002,…,44
999,45000からなる30000個の計数値の集
合を構成する各計数値、つまり第2のカウンタ9から読
み取るべき測定値T1 −nτ,T2 −nτを最下位1桁
とその他の上位桁に分けて、最下位1桁の数値をb、そ
の他の上位桁の数値をaとして、該その他の上位桁の数
値aに相当するアドレスと該アドレスに対応するデータ
1/(10a)の集合からなるデータテーブルをマイク
ロコンピュータのメモリに格納しておく。
That is, 15001, 15002, ..., 44
Each count value constituting a set of 30,000 count values consisting of 999,45000, that is, measured values T 1 -nτ, T 2 -nτ to be read from the second counter 9 are set to the lowest one digit and the other upper digits. Separately, the least significant one digit is b, and the other upper digit is a, and is composed of an address corresponding to the other upper digit a and data 1 / (10a) corresponding to the address. The data table is stored in the memory of the microcomputer.

【0043】このデータテーブルは、測定値T1 −nτ
が15001のときは、最下位1桁の数値bは1とな
る。そして、その他の上位桁の数値は1500である。
従って、この測定値15001に対応するアドレスは1
500、該アドレス1500に対応するデータ1/(1
0a)は、 1/(10×1500)=6.6666667×10-5・・・(4) となる。なお上式の右辺の8桁の有効数字の最下位桁の
6はその下位の桁の6を四捨五入して7と表現したもの
である。
This data table shows the measured value T 1 -nτ
Is 15001, the least significant digit 1 is 1. The other upper digits are 1500.
Therefore, the address corresponding to this measured value 15001 is 1
500, data 1 / (1 corresponding to the address 1500
0a) becomes 1 / (10 × 1500) = 6.6666667 × 10 −5 (4). The least significant digit 6 of the 8 significant digits on the right side of the above equation is expressed as 7 by rounding off the least significant digit 6.

【0044】このようにして、アドレスと対応するデー
タのデータテーブルは〔表1〕のようになる。なお表1
のデータは、上記(4)式の右辺の8桁の有効数字と同
様の数値の小数点を外してあらわしたものである。
In this way, the data table of the data corresponding to the addresses is as shown in [Table 1]. Table 1
The data is expressed by removing the decimal point of the same numerical value as the 8 significant digits on the right side of the above equation (4).

【0045】[0045]

【表1】 [Table 1]

【0046】このようにして〔表1〕のデータテーブル
を作成してマイクロコンピュータのメモリに格納すると
データの数は前記30000個の1/10の3000個
になる。
When the data table of [Table 1] is created and stored in the memory of the microcomputer in this way, the number of data becomes 1/10 of the above 30,000, 3000.

【0047】第2のカウンタ9の測定値T1 −nτ,T
2 −nτの最下位桁が0の値の上位桁の数値の逆数の有
効数字8桁の集合で表1のデータテーブルを作成したわ
けである。
The measured value T 1 −nτ, T of the second counter 9
The data table of Table 1 was created with a set of 8 significant digits that is the reciprocal of the numerical value of the upper digit of the value of 0 in the least significant digit of 2- nτ.

【0048】こうして〔表1〕のデータテーブルでは、
メモリ容量が小さくて済むが、第2のカウンタ9の測定
値T1 −nτ,T2 −nτの最下位桁が0以外の数値の
ときの値を直接テーブルから読み出すことができない。
Thus, in the data table of [Table 1],
Although the memory capacity is small, the values when the least significant digit of the measured values T 1 -nτ, T 2 -nτ of the second counter 9 is a value other than 0 cannot be read directly from the table.

【0049】例えば第2のカウンタ9の測定値T1 又は
2 が17943の場合、この測定値17943に対応
するアドレスは一定値nτを600とすると17943
−600=17343となる。これに対応する逆数のデ
ータをずばり〔表1〕のデータテーブルからは読み出せ
ない。そこで測定値17343に対応する時間逆数値を
〔表1〕のデータテーブルから読み出したデータを活用
して直線近似で求める。
For example, when the measured value T 1 or T 2 of the second counter 9 is 17943, the address corresponding to this measured value 17943 is 17943 when the constant value nτ is 600.
-600 = 17343. The reciprocal data corresponding to this cannot be read from the data table of [Table 1]. Therefore, the time reciprocal value corresponding to the measured value 17343 is obtained by linear approximation using the data read from the data table of [Table 1].

【0050】第2のカウンタ9の測定値が17943で
あるので、この測定値の数値から一定値nτ=600を
引いた前述のように17343である。そこで、その上
位の4桁の数値1734に相当するアドレスと、この上
位桁の数値1734に1を加算した1735に相当する
アドレスより、1/(10×1734)と1/(10×
1735)に相当する二つの格納データを〔表1〕のデ
ータテーブルから読み出す。実際にはコントローラ部7
を構成するマイクロコンピュータのメモリに格納したデ
ータから読み出す。
Since the measured value of the second counter 9 is 17943, it is 17343 as described above obtained by subtracting the constant value nτ = 600 from the numerical value of this measured value. Therefore, 1 / (10 × 1734) and 1 / (10 ×) are obtained from the address corresponding to the upper 4-digit numerical value 1734 and the address corresponding to 1735 obtained by adding 1 to the high-order numerical value 1734.
The two stored data corresponding to 1735) are read from the data table of [Table 1]. Actually the controller unit 7
It is read from the data stored in the memory of the microcomputer constituting the.

【0051】 アドレス データ 1734 57670127 1735 57636888 そして、これらの二つのデータから測定値17943に
対応するデータを次の(5)式で直線近似を使って導
く。
Address data 1734 56710727 1735 57636888 Then, the data corresponding to the measured value 17943 is derived from these two data by using the following equation (5) using linear approximation.

【0052】測定値17943に対応するデータ=57
670127−(57670127 −57636888)×(3/10) ・・・(5) (5)式の演算をマイクロコンピュータでする場合、
(57670127−57636888)×(3/1
0)の計算に多少の時間がかかるものの、テーブルが小
さくなり、実現可能となる。このようにして、小さいテ
ーブルから読み出したデータを用いて、直線近似でテー
ブルの中間のデータを演算することで、テーブルを格納
するメモリが小さくてすみ、しかも全体として割算に長
時間をかけなくてすむ。
Data corresponding to the measured value 17943 = 57
670127- (57677027-57636888) * (3/10) ... (5) When performing a calculation of Formula (5) with a microcomputer,
(57677027-57636888) x (3/1
Although the calculation of 0) takes some time, the table becomes small and can be realized. In this way, the data read from a small table is used to calculate the data in the middle of the table by linear approximation, so that the memory for storing the table can be made small, and the overall division does not take a long time. End

【0053】(5)式の演算以後の流速、流量、積算流
量等の演算は周知の方法でできるので詳細な説明を省略
する。なお、データテーブルのデータは、〔表1〕の値
から一定値を減じた値として記憶格納するようにしても
よい。この場合のオフセット分は、その後の演算{1/
(T1 −nτ)}−{1/(T2 −nτ)}で差し引か
れて相殺されるので問題にはならない。また流量等の演
算を考慮して、データを流管の断面積等の定数を乗じた
値として記憶格納することで、後の演算時間を小さくす
ることができる(請求項4)。
Since the calculation of the flow velocity, the flow rate, the integrated flow rate and the like after the calculation of the equation (5) can be performed by a known method, the detailed description thereof will be omitted. The data in the data table may be stored as a value obtained by subtracting a constant value from the value in [Table 1]. The offset amount in this case is calculated by the following calculation {1 /
(T 1 −n τ)}-{1 / (T 2 −n τ)} is subtracted and canceled out, so there is no problem. Further, by taking into account the calculation of the flow rate and the like, and storing and storing the data as a value multiplied by a constant such as the cross-sectional area of the flow tube, the subsequent calculation time can be shortened (claim 4).

【0054】[0054]

【実施例】上記〔発明の実施の形態〕では、主として請
求項1に相当する実施態様を述べ、更に請求項4の発明
にも言及したが、請求項2の発明のように流量計を構成
しても請求項1と同様の効果が得られる。
In the above [embodiment of the invention], an embodiment mainly corresponding to claim 1 was described and the invention of claim 4 was also referred to. However, a flow meter is constructed as in the invention of claim 2. Even if it does, the same effect as claim 1 can be obtained.

【0055】請求項2の発明では、図1のブロック図
で、コントローラ部7を構成するマイクロコンピュータ
の作用だけが前記実施態様と相違するので、以下、この
相違点を主体にして請求項2に対応する発明の実施例
(以下第2実施例と言う)を説明する。
In the invention of claim 2, only the operation of the microcomputer constituting the controller section 7 in the block diagram of FIG. 1 is different from that of the above-mentioned embodiment. A corresponding embodiment of the invention (hereinafter referred to as a second embodiment) will be described.

【0056】この第2実施例では、第2のカウンタ9か
ら読み取るべき測定値T1 又はT2 を最下位1桁の数値
Bとその他の上位桁の数値Aに分けて、該その他の上位
桁の数値Aに相当するアドレスと、該アドレスに対応す
る前記第2のカウンタ9から読み取った測定値T1又は
2 より遅れ時間に相当する一定値nτを減じた時間T
1 −nτ又はT2 −nτの逆数1/(T1 −nτ)又は
1/(T2 −nτ)に対応するデータ1/(10A−n
τ)との集合からなるデータテーブル(表2)をマイク
ロコンピュータのメモリに格納し、順方向又は逆方向の
計測に当たって第2のカウンタ9から読み取った測定値
1 又はT2 に対応する前記上位桁の数値Aに相当する
アドレスと、この上位桁Aに1を加算した数値A+1に
相当するアドレスより両アドレスに対応する二つの時間
逆数の数値1/(10A−nτ)と1/(10(A+
1)−nτ)に相当する二つの格納データを前記データ
テーブル(表2)から読み出し、これらのデータと前記
測定値T1 又はT2 の最下位1桁の数値Bとから時間逆
数1/(T1 −nτ)又は1/(T2 −nτ)に相当す
る値1/(10A+B−nτ)を直線近似によって導
き、流速や流量の演算に使用する。
In the second embodiment, the second counter 9
Measurement value T to be read from1Or TTwoIs the lowest one digit
B and other upper digits A are divided into the other upper digits
The address corresponding to the digit number A and the address corresponding to the address
Measured value T read from the second counter 91Or
TTwoTime T obtained by subtracting a constant value nτ corresponding to a delay time
1-Nτ or TTwoReciprocal of −nτ 1 / (T1-Nτ) or
1 / (TTwoData corresponding to -nτ 1 / (10A-n
Microphone data table (Table 2) consisting of
Stored in the computer's memory and forward or backward
Measurement value read from the second counter 9 for measurement
T 1Or TTwoCorresponding to the numerical value A of the upper digit corresponding to
Add the address and the higher digit A to the numerical value A + 1
Two times corresponding to both addresses from the corresponding address
Reciprocal numbers 1 / (10A-nτ) and 1 / (10 (A +
1) -nτ) two stored data corresponding to the above data
Read from the table (Table 2), these data and the above
Measured value T1Or TTwoThe time is reversed from the lowest 1 digit of B
Number 1 / (T1-Nτ) or 1 / (TTwo-Nτ)
The value 1 / (10A + B-nτ) is derived by linear approximation.
Used for calculation of flow velocity and flow rate.

【0057】前記実施態様では、第2のカウンタ9から
読み取るべき測定値T1 ,T2 から遅れ時間に相当する
一定値nτを減じた値、T1 −nτ,T2 −nτがとり
得る範囲が15001から45000の場合について、
最下位の桁を除くその他の上位桁の数値1500〜45
00をアドレスとして、各アドレスに対応するデータ1
/(10×1500)〜1/(10×4500)を〔表
1〕のようなデータテーブルとしてメモリに格納した。
In the above embodiment, the measured values T 1 and T 2 to be read from the second counter 9 minus the constant value nτ corresponding to the delay time, the range of T 1 -nτ and T 2 -nτ, Is from 15001 to 45000,
Numerical values of other high-order digits 1500 to 45 excluding the lowest-order digit
Data 1 corresponding to each address with 00 as the address
/ (10 × 1500) to 1 / (10 × 4500) was stored in the memory as a data table as shown in [Table 1].

【0058】従って、メモリに格納した〔表1〕のデー
タテーブルのアドレスにアクセスするには、第2のカウ
ンタ9から読み取った測定値T1 ,T2 から遅れ時間に
相当する一定値nτを減算してT1 −nτやT2 −nτ
を得てから、その最下位の桁を除いたその他の上位桁の
数値をアドレスとしてアクセスしていた。
Therefore, in order to access the address of the data table of [Table 1] stored in the memory, the constant value nτ corresponding to the delay time is subtracted from the measured values T 1 and T 2 read from the second counter 9. Then T 1 −nτ or T 2 −nτ
After getting, I was accessing as the address the numerical value of the other high-order digit except the lowest digit.

【0059】ところが、第2実施例では、前記〔表1〕
に対応する数値を使って〔表2〕のデータテーブルを作
成すると、次のようになる。基準クロック等の条件が前
記実施態様と同じで、一定値nτが600カウントとす
ると、第2のカウンタ9から読み取るべき測定値T1
2 の範囲は15001+600〜45000+60
0、つまり15601〜45600となる。
However, in the second embodiment, the above [Table 1]
When the data table of [Table 2] is created by using the numerical values corresponding to, it becomes as follows. Assuming that the conditions such as the reference clock are the same as those in the above embodiment and the constant value nτ is 600 counts, the measured value T 1 , to be read from the second counter 9,
The range of T 2 is 15001 + 600 to 45000 + 60
0, that is, 15601 to 45600.

【0060】この15601〜45600という測定値
が第2のカウンタ9の測定値として直接コントローラ部
7のマイクロコンピュータで読み取られる。この測定値
は1MHzの基準クロックのカウント値である。
The measured values 15601 to 45600 are directly read by the microcomputer of the controller section 7 as the measured values of the second counter 9. This measured value is the count value of the reference clock of 1 MHz.

【0061】測定値15601に対応するアドレスは最
下位桁の1を除いた1560となり、該アドレス156
0に対応するデータ1/(10A−nτ)は、A=15
60、nτ=600であるから、 アドレス1560に対応するデータ=1/(15600−600) =1/15000=6.6666667×10-5 ・・・(6) となる。
The address corresponding to the measured value 15601 becomes 1560 excluding the least significant digit 1, and the address 156
The data 1 / (10A-nτ) corresponding to 0 is A = 15
Since 60 and n τ = 600, the data corresponding to the address 1560 is 1 / (15600−600) = 1/15000 = 6.6666667 × 10 −5 (6).

【0062】この(6)式の右辺のデータは前記実施態
様で説明した(4)式のデータと全く同じである。そこ
で、〔表2〕のデータテーブルを次のように作成して、
コントローラ部7のマイクロコンピュータに記憶格納す
る。
The data on the right side of the equation (6) is exactly the same as the data of the equation (4) described in the above embodiment. Therefore, create the data table of [Table 2] as follows,
It is stored in the microcomputer of the controller unit 7.

【0063】[0063]

【表2】 [Table 2]

【0064】この第2実施例の場合も、データの数は前
記実施態様のときと同じ3000個という小さな数であ
り、かつ各データの数値は〔表1〕の場合のデータの数
値と同じである。
Also in the case of the second embodiment, the number of data is as small as 3000 as in the above embodiment, and the numerical value of each data is the same as the numerical value of the data in the case of [Table 1]. is there.

【0065】ところで、この第2の実施例で、第2のカ
ウンタ9で測定した見掛け上の伝搬時間の総和T1 又は
2 が前記実施態様の場合に使用した測定値17943
であったとする。
By the way, in the second embodiment, the total sum T 1 or T 2 of the apparent propagation times measured by the second counter 9 is the measured value 17943 used in the above embodiment.
Assume that

【0066】この場合のアドレスは17943の最下位
の1桁の数値3を除いた他の上位桁の数値であるから、
B=3,A=1794となる。従ってアドレスAは17
94となり、このときの時間逆数は〔表2〕のデータテ
ーブルからのデータとして、57670127を読み出
すことができる。
Since the address in this case is the numerical value of the upper digit other than the numerical value 1 of the lowest digit of 17943,
B = 3 and A = 1794. Therefore, the address A is 17
As a result, the reciprocal of time at this time can read 57670127 as data from the data table of [Table 2].

【0067】またA+1のアドレスは1794+1=1
795となり、このアドレス1795に対応する時間逆
数は〔表2〕のデータテーブルからのデータとして57
636888を読み出すことができる。
The address of A + 1 is 1794 + 1 = 1.
795, and the time reciprocal corresponding to this address 1795 is 57 as the data from the data table of [Table 2].
636888 can be read.

【0068】従って、第2のカウンタ9の測定値179
43に対する時間逆数のデータは、上記二つのデータか
ら直線近似で次のように求めることができる。 測定値17943に対応するデータ=57670127− (57670127−57636888)×(3/10)・・・(7) 上記(7)式は、前記実施態様の場合の(5)式と同じ
であり、流速、流量、積算流量等を求めるその後の演算
は、当然実施態様と同様にして行うことができる。
Therefore, the measured value 179 of the second counter 9
The reciprocal time data for 43 can be obtained from the above two data by linear approximation as follows. Data corresponding to the measured value 17943 = 57677027− (57677027−57636888) × (3/10) (7) The above equation (7) is the same as the equation (5) in the above embodiment, and the flow velocity is Subsequent calculations for obtaining the flow rate, the integrated flow rate, and the like can be naturally performed in the same manner as in the embodiment.

【0069】この第2実施例は、請求項2に対応するも
ので、請求項1に対応する実施態様と比較して、データ
テーブルにアクセスしてデータを読み出すときに、第2
のカウンタ9の測定値から一定の遅れ時間に相当する値
nτ=600カウントを減算した値からアドレスを決め
る必要がないので、順方向や逆方向の測定の都度、nτ
=600カウントの値を測定値T1 又はT2 から引き算
する操作が不要となり、その分演算速度や消費電流の面
でより有利となる効果がある。
This second embodiment corresponds to claim 2, and, compared with the embodiment corresponding to claim 1, when the data table is accessed and the data is read,
Since it is not necessary to determine the address from the value obtained by subtracting the value nτ = 600 counts corresponding to a constant delay time from the measurement value of the counter 9 of n
The operation of subtracting the value of 600 counts from the measured value T 1 or T 2 becomes unnecessary, and there is an effect that it becomes more advantageous in terms of the calculation speed and the consumed current.

【0070】この第2実施例の場合でも、データテーブ
ルのデータは、〔表2〕の値から一定値を減じた値とし
て記憶格納するようにしてもよい。また流量等の演算を
考慮して、データを流管の断面積等の定数を乗じた値と
して記憶格納することで後の演算時間を小さくすること
ができる(請求項4)。
Even in the case of the second embodiment, the data of the data table may be stored and stored as a value obtained by subtracting a constant value from the value of [Table 2]. Further, by taking into account the calculation of the flow rate and the like, the data is stored and stored as a value multiplied by a constant such as the cross-sectional area of the flow tube, whereby the subsequent calculation time can be shortened (claim 4).

【0071】次に請求項3の発明に対応する第3の実施
例について説明する。第3の実施例では、図1のブロッ
ク図に示す第2のカウンタ9の構成が図4のように変わ
っており、かつコントローラ部7を構成するマイクロコ
ンピュータの作用が前記実施態様と相違するので、以下
この相違点を主体にして第3実施例を説明する。
Next, a third embodiment corresponding to the invention of claim 3 will be described. In the third embodiment, the configuration of the second counter 9 shown in the block diagram of FIG. 1 is changed as shown in FIG. 4, and the action of the microcomputer constituting the controller section 7 is different from that of the above embodiment. Hereinafter, the third embodiment will be described focusing on this difference.

【0072】図4において、9は第2のカウンタで、9
1は第2実施例の基準カウンタ91と同じ1MHzの基
準クロックを発振する基準クロック発生器、92は第2
実施例のゲート92と同じように基準クロック発生器9
1からの1MHzの基準クロックを第1送信指令信号と
第n受信波検知信号に応じて開閉するゲート、93は第
2実施例の10進1桁のカウンタ93と同様に、ゲート
92が開いている間の1MHzの基準クロックを計数す
る1桁の10進カウンタで構成され、10進カウンタ9
3より上位が2進カウンタ98で構成されて図示のよう
に接続されている。
In FIG. 4, 9 is a second counter, which is 9
Reference numeral 1 is a reference clock generator that oscillates a reference clock of 1 MHz, which is the same as the reference counter 91 of the second embodiment, and 92 is a second reference clock generator.
A reference clock generator 9 similar to the gate 92 of the embodiment.
A gate for opening / closing the 1 MHz reference clock from 1 in response to the first transmission command signal and the nth received wave detection signal, and 93, like the decimal one-digit counter 93 of the second embodiment, opens the gate 92. It consists of a 1-digit decimal counter that counts the reference clock of 1 MHz while
A binary counter 98 above 3 is connected and connected as shown.

【0073】10進カウンタ93と2進カウンタ98は
第1送信指令信号が各リセット端子Rに入力されるとそ
の内容が零にリセットされる。また10進カウンタ93
の1,2,4,8出力と2進カウンタ98の出力Q1
2 ,Q3 ,…はコントローラ部7へ接続されている。
The contents of the decimal counter 93 and the binary counter 98 are reset to zero when the first transmission command signal is input to each reset terminal R. Decimal counter 93
1, 2, 4, 8 outputs and the output Q 1 of the binary counter 98
Q 2 , Q 3 , ... Are connected to the controller unit 7.

【0074】この第3実施例ではコントローラ部7を構
成するマイクロコンピュータが第2のカウンタ(9)の
測定値(T1 又はT2 )として読み取るべき数値を、そ
の上位桁を2進数(a′)で、最下位桁を10進数
(b)で読み取り、別途、前記2進数の上位桁(a′)
を10進変換した値(c)の逆数に1/10を乗じたデ
ータ1/(10c)を上位桁(a′)をアドレスとする
データテーブル〔表3〕として前記マイクロコンピュー
タのメモリに格納し、上位桁(a′)に相当するアドレ
スと、これに1を加算した数値(a′+1)に相当する
アドレスより両アドレスに対応する時間逆数の数値1/
(10c)と1/{10(c+1)}に相当する二つの
データを読み出し、これらのデータと前記下位桁の数値
(b)とから直線近似によって時間逆数{1/(T1
nτ)又は1/(T2 −nτ)}に相当する値1/(1
0c+b)を導き、以後の流速又は流量等の演算に使用
するようにしている。
In the third embodiment, the numerical value which the microcomputer constituting the controller section 7 should read as the measurement value (T 1 or T 2 ) of the second counter (9), the upper digit of which is a binary number (a ′). ), The least significant digit is read as a decimal number (b), and the upper digit (a ') of the binary number is separately read.
The data 1 / (10c) obtained by multiplying the reciprocal of the decimal-converted value (c) by 1/10 is stored in the memory of the microcomputer as a data table [Table 3] having the upper digit (a ') as an address. , The address corresponding to the upper digit (a ′) and the address corresponding to the numerical value (a ′ + 1) obtained by adding 1 to the address, the numerical value 1 / the reciprocal of time corresponding to both addresses.
Two data items corresponding to (10c) and 1 / {10 (c + 1)} are read out, and the reciprocal time {1 / (T 1 −) is obtained by linear approximation from these data and the numerical value (b) of the lower digit.
value corresponding to (nτ) or 1 / (T 2 −nτ)} 1 / (1
0c + b) is derived and used for subsequent calculation of the flow velocity or flow rate.

【0075】この第3実施例では、マイクロコンピュー
タのデータテーブルのアドレスは2進数である。前述の
実施態様の数値例のように、アドレス1734から、対
応するデータ57670127を得る場合、実際には1
0進数1734を16進化2進表現であらわした2進数
に変換して6C6Hとし、これを加工して得たデータの
格納アドレスを求めることを行っている。
In the third embodiment, the address of the data table of the microcomputer is a binary number. When the corresponding data 57670127 is obtained from the address 1734 as in the numerical example of the above-described embodiment, it is actually 1
The 0-1 digit 1734 is converted into a binary number represented by a 16-evolution binary representation to be 6C6H, and the storage address of the data obtained by processing this is obtained.

【0076】マイクロコンピュータを8ビットのマイク
ロコンピュータとすると、4個のアドレス分のエリアが
メモリに割り当てられていて、下記〔表3〕のデータテ
ーブルを記憶格納しておく。
When the microcomputer is an 8-bit microcomputer, areas for four addresses are assigned to the memory, and the data table shown in [Table 3] below is stored.

【0077】※を付けた行のアドレスを出すには6C6
を4倍して、更にオフセット分の一定値αを加算して、
この計算で格納アドレスを出す。
6C6 to output the address of the line with *
Is multiplied by 4 and the constant value α for the offset is further added,
The storage address is output by this calculation.

【0078】[0078]

【表3】 [Table 3]

【0079】この第3実施例ではマイクロコンピュータ
の負担を小さくするため第2のカウンタ9における最下
位の10進1桁のカウンタ93より上位の桁には2進カ
ウンタ(バイナリカウンタ)98を使い、10進から2
進への煩わしい変換を不要としている。
In the third embodiment, in order to reduce the load on the microcomputer, a binary counter (binary counter) 98 is used for a digit higher than the lowest decimal one digit counter 93 in the second counter 9. Decimal to 2
It eliminates the need for a cumbersome conversion to hex.

【0080】なお、遅れ時間nτに相当する一定値の引
き算は、10進数と2進数が混在した数値でも全10進
数や全2進数の時と同様に可能である。また、この第3
実施例の場合でも、データテーブルのデータは、[表
3]の値から一定値を減じた値として記憶格納するよう
にしてもよい。また流量等の演算を考慮して、データを
流管の断面積等の定数を乗じた値として記憶格納するこ
とで後の演算時間を小さくすることができる(請求項
4)。
It should be noted that subtraction of a constant value corresponding to the delay time nτ is possible even with a numerical value in which a decimal number and a binary number are mixed, as in the case of the full decimal number or the full binary number. Also, this third
Even in the case of the embodiment, the data in the data table may be stored and stored as a value obtained by subtracting a constant value from the value in [Table 3]. Further, by taking into account the calculation of the flow rate and the like, the data is stored and stored as a value multiplied by a constant such as the cross-sectional area of the flow tube, whereby the subsequent calculation time can be shortened (claim 4).

【0081】[0081]

【発明の効果】本発明の超音波流量計は、上述のように
構成されているので、従来技術で行っていた有効数字が
6桁程度の割算を順方向や逆方向の測定値T1 ,T2
ら行うことが不必要となり、予めメモリに記憶格納して
あるデータテーブルのアドレスをアクセスして時間逆数
値に相当するデータを読み出して、流速、流量や積算流
量の演算に活用できる。
Since the ultrasonic flowmeter of the present invention is constructed as described above, the division of the effective figures of about 6 digits, which was carried out in the prior art, is performed to the measured value T 1 in the forward or reverse direction. , T 2 becomes unnecessary, and the address corresponding to the time reciprocal value can be read by accessing the address of the data table stored in the memory in advance, and can be utilized for the calculation of the flow velocity, the flow rate and the integrated flow rate.

【0082】その結果、高速動作のマイクロコンピュー
タが不要で、演算時間が短くて済むため、低消費電流で
かつ低電圧で作動する超音波流量計が実用化できるとい
う効果を奏する。
As a result, there is no need for a high-speed microcomputer, and the calculation time is short, so that an ultrasonic flowmeter that operates with low current consumption and low voltage can be put to practical use.

【0083】また、データテーブルの大きさが小さくて
済みメモリ容量が小さくても良く、この点においても効
果的である。
Further, the size of the data table may be small and the memory capacity may be small, which is also effective in this respect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の好ましい実施形態のブロック図であ
る。
FIG. 1 is a block diagram of a preferred embodiment of the present invention.

【図2】図1の実施形態のタイムチャートである。FIG. 2 is a time chart of the embodiment of FIG.

【図3】本発明の実施形態に用いる第2のカウンタの電
気回路図である。
FIG. 3 is an electric circuit diagram of a second counter used in the embodiment of the present invention.

【図4】本発明の第3実施例に用いる第2のカウンタの
電気回路図である。
FIG. 4 is an electric circuit diagram of a second counter used in the third embodiment of the present invention.

【図5】超音波流量計の原理を説明する略図である。FIG. 5 is a schematic diagram illustrating the principle of an ultrasonic flowmeter.

【図6】従来技術の受信波検知部の動作を説明するため
の電気信号波形を示す線図である。
FIG. 6 is a diagram showing an electric signal waveform for explaining the operation of the received wave detection unit of the prior art.

【符号の説明】[Explanation of symbols]

1 流管 2 上流側の送受波器 3 下流側の送受波器 4 受信波検知部 5 切替部を構成する信号切替器 6 送波器駆動部 7 コントローラ部 8 第1のカウンタ 9 第2のカウンタ 10 切替部を構成する切替スイッチ 91 基準クロック発生器 92 ゲート 93 最下位の1桁の10進カウンタ 94 101 位の1桁の10進カウンタ 97 104 位の1桁の10進カウンタ 98 2進カウンタ a 数値bの桁以外の上位桁の数値 b 最下位1桁の数値 a 2進数の上位桁の数値a′を10進数に変換し
た数値 a′ 2進数の上位桁の数値 A 数値Bの桁以外の上位桁の数値 B 最下位1桁の数値 T1 順方向計測時の測定値、時間 T2 逆方向計測時の測定値、時間 n 順方向又は逆方向計測時の繰り返し回数 nτ 遅れ時間
DESCRIPTION OF SYMBOLS 1 Flow tube 2 Upstream side wave transmitter / receiver 3 Downstream side wave transmitter / receiver 4 Received wave detection unit 5 Signal switcher 6 that constitutes a switching unit 6 Wave transmitter drive unit 7 Controller unit 8 First counter 9 Second counter 10 Changeover Switch Constituting Changeover Unit 91 Reference Clock Generator 92 Gate 93 Lowest 1-digit Decimal Counter 94 10 1st- place 1-digit Decimal Counter 97 10 4th- place 1-digit Decimal Counter 98 Binary Counter a Numerical value of high-order digit other than digit of numerical value b Numerical value of lowest 1 digit a Numerical value of upper digit of binary number a'converted into decimal number a'Numerical value of upper digit of binary number A Digit of numerical value B Numerical value of upper digit other than B Numerical value of lowest one digit T 1 Measurement value during forward measurement, time T 2 Measurement value during backward measurement, time n Number of repetitions during forward or reverse measurement n τ Delay time

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 流体の流れ中を流れと同方向あるいは斜
め方向に超音波の送受をする送信側にも受信側にも働く
一対の超音波送受波器(2)(3)と、 受信側の送受波器(3又は2)が接続され、受信波を検
知すると受信波検知信号を出力する受信波検知部(4)
と、 第1送信指令信号を入力した時に送信側の送受波器(2
又は3)を駆動し、その後は受信波検知部(4)からの
受信波検知信号ごとに後述する第n受信波検知信号が入
力されるまで送信側の送受波器(2又は3)を駆動する
送波器駆動部(6)と、 順方向の計測を行うときは上流側の送受波器(2)を送
波器駆動部(6)に接続するとともに下流側の送受波器
(3)を受信波検知部(4)に接続し、逆方向の計測を
行うときは下流側の送受波器(3)を送波器駆動部
(6)に接続するとともに上流側の送受波器(2)を受
信波検知部(4)に接続する切替部(5,10)と、 一定のタイミングで交互に切替部(5,10)を切り替
えて順方向の計測と逆方向の計測を切り替える送受切替
信号を出力して交互に送受の切り替えを行いながら、そ
の都度第1送信指令信号を出力するコントローラ部
(7)と、 受信波検知部(4)からの受信波検知信号を受け、順方
向の計測時と逆方向の計測時毎にn番目の受信波検知信
号を検知して第n受信波検知信号を出力する第1のカウ
ンタ(8)と、 順方向計測時における第1送信指令信号から第n受信波
検知信号までの時間(T1 )と、逆方向計測時における
第1送信指令信号から第n受信波検知信号までの時間
(T2 )を測定する第2のカウンタ(9)とを具備し、 第n受信波検知信号を受けると第2のカウンタ(9)の
測定値(T1 又はT2)を読み取り、時間逆数差法を用
いて流速、流量等の演算をコントローラ部(7)で行う
超音波流量計であって、 前記第2のカウンタ(9)を構成する時間計測部が基準
クロックを計数する10進カウンタ(93〜97)より
なり、 前記コントローラ部(7)がマイクロコンピュータで構
成され、 第2のカウンタ(9)から読み取るべき測定値(T1
はT2 )より、遅れ時間に相当する一定値(nτ)を減
じた値(T1 −nτ又はT2 −nτ)を最下位1桁とそ
の他の上位桁に分けて、最下位1桁の数値をb、その他
の上位桁の数値をaとして、該その他の上位桁の数値a
に相当するアドレスと該アドレスに対応するデータ1/
(10a)の集合からなるデータテーブル〔表1〕をマ
イクロコンピュータのメモリに格納し、 順方向又は逆方向の計測に当たって第2のカウンタ
(9)から読み取った測定値(T1 又はT2 )に対応す
る前記上位桁の数値(a)に相当するアドレスと、この
上位桁の数値(a)に1を加算した数値(a+1)に相
当するアドレスより両アドレスに対応する時間逆数の数
値1/(10a)と1/{10(a+1)}に相当する
二つの格納データを前記データテーブル〔表1〕から読
み出し、これらのデータと前記測定値(T1 又はT2
の最下位1桁の数値(b)とから時間逆数{1/(T1
−nτ)又は1/(T2 −nτ)}に相当する値1/
(10a+b)を直線近似によって導き、流速や流量の
演算に使用するようにしたことを特徴とする超音波流量
計。
1. A pair of ultrasonic wave transmitters / receivers (2) (3), which work both on the transmitting side and on the receiving side for transmitting and receiving ultrasonic waves in the same direction or in an oblique direction in the flow of a fluid, and a receiving side. (3) or (2) is connected to, and the reception wave detection unit (4) that outputs a reception wave detection signal when a reception wave is detected
When the first transmission command signal is input, the transmitter / receiver (2
Or 3), and thereafter drives the transmitter / receiver (2 or 3) on the transmission side until the nth received wave detection signal described later is input for each received wave detection signal from the received wave detection unit (4). And a transmitter driving unit (6) for connecting the upstream side transducer (2) to the transmitter driving unit (6) and a downstream side transducer (3) for forward measurement. Is connected to the received wave detector (4), and when measuring in the opposite direction, the downstream transducer (3) is connected to the transmitter driver (6) and the upstream transducer (2) is connected. ) Is connected to the received wave detection unit (4) and the switching unit (5, 10) is alternately switched at a fixed timing to switch between forward measurement and reverse measurement. A controller unit that outputs a signal and alternately transmits and receives, and outputs the first transmission command signal each time ( ) And the received wave detection signal from the received wave detection unit (4), the nth received wave detection signal is detected at every measurement of the forward direction and the reverse direction, and the nth received wave detection signal is obtained. A first counter (8) for outputting, a time (T 1 ) from the first transmission command signal to the nth received wave detection signal at the time of forward measurement, and the time from the first transmission command signal to the nth at the time of backward measurement. A second counter (9) for measuring the time (T 2 ) until the received wave detection signal is received, and when the nth received wave detection signal is received, the measurement value (T 1 or T 1 ) of the second counter (9) 2 ) is an ultrasonic flowmeter in which the controller section (7) reads the flow rate and calculates the flow rate, the flow rate, etc. by using the time reciprocal difference method, and the time measuring section constituting the second counter (9) is a reference. The controller comprises a decimal counter (93 to 97) for counting a clock, (7) is formed by a microcomputer, the second counter measurements to be read from (9) from (T 1 or T 2), the value obtained by subtracting a predetermined value (Enutau) corresponding to the delay time (T 1 -nτ Or T 2 −nτ) is divided into the least significant one digit and the other significant digits, and the numerical value of the least significant one digit is b and the numerical value of the other significant digits is a, and the numerical value a of the other significant digits is
And the data 1 / corresponding to the address
The data table [Table 1] consisting of the set of (10a) is stored in the memory of the microcomputer, and the measured value (T 1 or T 2 ) read from the second counter (9) is measured in the forward or reverse direction. From the corresponding address corresponding to the numerical value (a) of the upper digit and the address corresponding to the numerical value (a + 1) obtained by adding 1 to the numerical value (a) of the upper digit, the numerical value 1 / ( 10a) and two stored data corresponding to 1 / {10 (a + 1)} are read from the data table [Table 1], and these data and the measured value (T 1 or T 2 ) are read.
Of the least significant digit of (b) and the reciprocal of time {1 / (T 1
−nτ) or 1 / (T 2 −nτ)}
An ultrasonic flowmeter characterized in that (10a + b) is derived by linear approximation and is used for calculation of flow velocity and flow rate.
【請求項2】 流体の流れ中を流れと同方向あるいは斜
め方向に超音波の送受をする送信側にも受信側にも働く
一対の超音波送受波器(2)(3)と、 受信側の送受波器(3又は2)が接続され、受信波を検
知すると受信波検知信号を出力する受信波検知部(4)
と、 第1送信指令信号を入力した時に送信側の送受波器(2
又は3)を駆動し、その後は受信波検知部(4)からの
受信波検知信号ごとに後述する第n受信波検知信号が入
力されるまで送信側の送受波器(2又は3)を駆動する
送波器駆動部(6)と、 順方向の計測を行うときは上流側の送受波器(2)を送
波器駆動部(6)に接続するとともに下流側の送受波器
(3)を受信波検知部(4)に接続し、逆方向の計測を
行うときは下流側の送受波器(3)を送波器駆動部
(6)に接続するとともに上流側の送受波器(2)を受
信波検知部(4)に接続する切替部(5,10)と、 一定のタイミングで交互に切替部(5,10)を切り替
えて順方向の計測と逆方向の計測を切り替える送受切替
信号を出力して交互に送受の切り替えを行いながら、そ
の都度第1送信指令信号を出力するコントローラ部
(7)と、 受信波検知部(4)がらの受信波検知信号を受け、順方
向の計測時と逆方向の計測時毎にn番目の受信波検知信
号を検知して第n受信波検知信号を出力する第1のカウ
ンタ(8)と、 順方向計測時における第1送信指令信号から第n受信波
検知信号までの時間(T1 )と、逆方向計測時における
第1送信指令信号から第n受信波検知信号までの時間
(T2 )を測定する第2のカウンタ(9)とを具備し、 第n受信波検知信号を受けると第2のカウンタ(9)の
測定値(T1 又はT2)を読み取り、時間逆数差法を用
いて流速、流量等の演算をコントローラ部(7)で行う
超音波流量計であって、 前記第2のカウンタ(9)を構成する時間計測部が基準
クロックを計数する10進カウンタ(93〜97)より
なり、 前記コントローラ部(7)がマイクロコンピュータで構
成され、 第2のカウンタ(9)から読み取るべき測定値(T1
はT2 )を最下位1桁の数値(B)とその他の上位桁の
数値(A)に分けて、該その他の上位桁の数値(A)に
相当するアドレスと、該アドレスに対応する前記第2の
カウンタ(9)から読み取った測定値(T1 又はT2
より遅れ時間に相当する一定値(nτ)を減じた時間
(T1 −nτ又はT2 −nτ)の逆数{1/(T1 −n
τ)又は1/(T2 −nτ)}に対応するデータ1/
(10A−nτ)との集合からなるデータテーブル(表
2)をマイクロコンピュータのメモリに格納し、 順方向又は逆方向の計測に当たって第2のカウンタ
(9)から読み取った測定値(T1 又はT2 )に対応す
る前記上位桁の数値(A)に相当するアドレスと、この
上位桁(A)に1を加算した数値(A+1)に相当する
アドレスより両アドレスに対応する二つの時間逆数の数
値1/(10A−nτ)と1/(10(A+1)−n
τ)に相当する二つの格納データを前記データテーブル
(表2)から読み出し、これらのデータと前記測定値
(T1 又はT2 )の最下位1桁の数値(B)とから時間
逆数{1/(T1 −nτ)又は1/(T2 −nτ)}に
相当する値1/(10A+B−nτ)を直線近似によっ
て導き、流速や流量の演算に使用するようにしたことを
特徴とする超音波流量計。
2. A pair of ultrasonic wave transmitters / receivers (2) (3), which act on both the transmitting side and the receiving side for transmitting and receiving ultrasonic waves in the same direction as the flow of the fluid or in the oblique direction, and the receiving side. (3) or (2) is connected to, and the reception wave detection unit (4) that outputs a reception wave detection signal when a reception wave is detected
When the first transmission command signal is input, the transmitter / receiver (2
Or 3), and thereafter drives the transmitter / receiver (2 or 3) on the transmission side until the nth received wave detection signal described later is input for each received wave detection signal from the received wave detection unit (4). And a transmitter driving unit (6) for connecting the upstream side transducer (2) to the transmitter driving unit (6) and a downstream side transducer (3) for forward measurement. Is connected to the received wave detector (4), and when measuring in the opposite direction, the downstream transducer (3) is connected to the transmitter driver (6) and the upstream transducer (2) is connected. ) Is connected to the received wave detection unit (4) and the switching unit (5, 10) is alternately switched at a fixed timing to switch between forward measurement and reverse measurement. A controller unit that outputs a signal and alternately transmits and receives, and outputs the first transmission command signal each time ( ) And the received wave detection signal from the received wave detection unit (4), the nth received wave detection signal is detected every time the forward measurement and the reverse measurement are performed, and the nth received wave detection signal is obtained. A first counter (8) for outputting, a time (T 1 ) from the first transmission command signal to the nth received wave detection signal at the time of forward measurement, and the time from the first transmission command signal to the nth at the time of backward measurement. A second counter (9) for measuring the time (T 2 ) until the received wave detection signal is received, and when the nth received wave detection signal is received, the measurement value (T 1 or T 1 ) of the second counter (9) 2 ) is an ultrasonic flowmeter in which the controller section (7) reads the flow rate and calculates the flow rate, the flow rate, etc. by using the time reciprocal difference method, and the time measuring section constituting the second counter (9) is a reference. The controller comprises a decimal counter (93 to 97) for counting a clock, (7) is formed by a microcomputer, the second counter (9) the least significant digits of the measured value (T 1 or T 2) to be read from (B) and other significant digit of the numeric (A) Separately, the address corresponding to the other upper digit (A) and the measured value (T 1 or T 2 ) read from the second counter (9) corresponding to the address.
The reciprocal of the time (T 1 -nτ or T 2 -nτ) obtained by subtracting the constant value (nτ) corresponding to the delay time {1 / (T 1 -n
τ) or 1 / (T 2 −nτ)} corresponding data 1 /
A data table (Table 2) consisting of a set of (10A-nτ) is stored in the memory of the microcomputer, and the measurement value (T 1 or T read from the second counter (9) in the forward or reverse direction measurement is stored. 2 ) An address corresponding to the numerical value (A) of the upper digit corresponding to 2 ) and an address corresponding to the numerical value (A + 1) obtained by adding 1 to the upper digit (A). 1 / (10A-nτ) and 1 / (10 (A + 1) -n
Two stored data corresponding to τ) are read from the data table (Table 2), and a reciprocal time {1 is obtained from these data and the least significant digit (B) of the measured value (T 1 or T 2 ). It is characterized in that the value 1 / (10A + B-nτ) corresponding to / (T 1 -nτ) or 1 / (T 2 -nτ)} is derived by linear approximation and used for the calculation of the flow velocity and the flow rate. Ultrasonic flow meter.
【請求項3】 流体の流れ中を流れと同方向あるいは斜
め方向に超音波の送受をする送信側にも受信側にも働く
一対の超音波送受波器(2)(3)と、 受信側の送受波器(3又は2)が接続され、受信波を検
知すると受信波検知信号を出力する受信波検知部(4)
と、 第1送信指令信号を入力した時に送信側の送受波器(2
又は3)を駆動し、その後は受信波検知部(4)からの
受信波検知信号ごとに後述する第n受信波検知信号が入
力されるまで送信側の送受波器(2又は3)を駆動する
送波器駆動部(6)と、 順方向の計測を行うときは上流側の送受波器(2)を送
波器駆動部(6)に接続するとともに下流側の送受波器
(3)を受信波検知部(4)に接続し、逆方向の計測を
行うときは下流側の送受波器(3)を送波器駆動部
(6)に接続するとともに上流側の送受波器(2)を受
信波検知部(4)に接続する切替部(5,10)と、 一定のタイミングで交互に切替部(5,10)を切り替
えて順方向の計測と逆方向の計測を切り替える送受切替
信号を出力して交互に送受の切り替えを行いながら、そ
の都度第1送信指令信号を出力するコントローラ部
(7)と、 受信波検知部(4)がらの受信波検知信号を受け、順方
向の計測時と逆方向の計測時毎にn番目の受信波検知信
号を検知して第n受信波検知信号を出力する第1のカウ
ンタ(8)と、 順方向計測時における第1送信指令信号から第n受信波
検知信号までの時間(T1 )と、逆方向計測時における
第1送信指令信号から第n受信波検知信号までの時間
(T2 )を測定する第2のカウンタ(9)とを具備し、 第n受信波検知信号を受けると第2のカウンタ(9)の
測定値(T1 又はT2)を読み取り、時間逆数差法を用
いて流速、流量等の演算をコントローラ部(7)で行う
超音波流量計であって、 前記第2のカウンタ(9)を構成する時間計測部が基準
クロックを計数するカウンタで、その最下位が1桁の1
0進カウンタ(93)、それより上位が2進カウンタ
(98)よりなり、 前記コントローラ部(7)がマイクロコンビュータで構
成され、 該マイクロコンピュータが第2のカウンタ(9)の測定
値(T1 又はT2 )として読み取るべき数値を、その上
位桁を2進数(a′)で、最下位桁を10進数(b)で
読み取り、 別途、前記2進数の上位桁(a′)を10進変換した値
(c)の逆数に1/10を乗じたデータ1/(10c)
を上位桁(a′)をアドレスとするデータテーブルとし
て前記マイクロコンピュータのメモリに格納し、 上位桁(a′)に相当するアドレスと、これに1を加算
した数値(a′+1)に相当するアドレスより両アドレ
スに対応する時間逆数の数値1/(10c)と1/{1
0(c+1)}に相当する二つのデータを読み出し、こ
れらのデータと前記下位桁の数値(b)とから直線近似
によって時間逆数{1/(T1 −nτ)又は1/(T2
−nτ)}に相当する値1/(10c+b)を導き、以
後の流速又は流量等の演算に使用するようにしたことを
特徴とする超音波流量計。
3. A pair of ultrasonic wave transmitters / receivers (2) (3), which act both on the transmitting side and on the receiving side for transmitting and receiving ultrasonic waves in the same direction or in an oblique direction in the flow of the fluid, and the receiving side. (3) or (2) is connected to, and the reception wave detection unit (4) that outputs a reception wave detection signal when a reception wave is detected
When the first transmission command signal is input, the transmitter / receiver (2
Or 3), and thereafter drives the transmitter / receiver (2 or 3) on the transmission side until the nth received wave detection signal described later is input for each received wave detection signal from the received wave detection unit (4). And a transmitter driving unit (6) for connecting the upstream side transducer (2) to the transmitter driving unit (6) and a downstream side transducer (3) for forward measurement. Is connected to the received wave detector (4), and when measuring in the opposite direction, the downstream transducer (3) is connected to the transmitter driver (6) and the upstream transducer (2) is connected. ) Is connected to the received wave detection unit (4) and the switching unit (5, 10) is alternately switched at a fixed timing to switch between forward measurement and reverse measurement. A controller unit that outputs a signal and alternately transmits and receives, and outputs the first transmission command signal each time ( ) And the received wave detection signal from the received wave detection unit (4), the nth received wave detection signal is detected every time the forward measurement and the reverse measurement are performed, and the nth received wave detection signal is obtained. A first counter (8) for outputting, a time (T 1 ) from the first transmission command signal to the nth received wave detection signal at the time of forward measurement, and the time from the first transmission command signal to the nth at the time of backward measurement. A second counter (9) for measuring the time (T 2 ) until the received wave detection signal is received, and when the nth received wave detection signal is received, the measurement value (T 1 or T 1 ) of the second counter (9) 2 ) is an ultrasonic flowmeter in which the controller section (7) reads the flow rate and calculates the flow rate, the flow rate, etc. by using the time reciprocal difference method, and the time measuring section constituting the second counter (9) is a reference. A counter that counts clocks, the lowest digit of which is 1
A 0-ary counter (93) and a binary counter (98) higher than the 0-ary counter (93), the controller section (7) is composed of a micro-computer, and the microcomputer has a measurement value (T 1 ) of the second counter (9). Or, the upper digit of the numerical value to be read as T 2 ) is read as a binary number (a ') and the least significant digit is read as a decimal number (b), and the upper digit (a') of the binary number is converted into a decimal number separately. Data 1 / (10c) obtained by multiplying the reciprocal of the calculated value (c) by 1/10
Is stored in the memory of the microcomputer as a data table having the upper digit (a ') as the address, and corresponds to the address corresponding to the upper digit (a') and the numerical value (a '+ 1) obtained by adding 1 to the address. Reciprocal time numbers 1 / (10c) and 1 / {1 corresponding to both addresses
Two data corresponding to 0 (c + 1)} are read out, and the time reciprocal {1 / (T 1 −nτ) or 1 / (T 2 is obtained by linear approximation from these data and the numerical value (b) of the lower digit.
An ultrasonic flowmeter characterized by deriving a value 1 / (10c + b) corresponding to −nτ)} and using it for subsequent calculation of a flow velocity or a flow rate.
【請求項4】 データテーブルに格納するデータが、請
求項1,2又は3に記載されたデータ{1/(10
a),1/(10A−nτ)又は1/(10c)}から
一定値を減じた値或いは一定値を乗じた値をデータとし
てデータテーブルを構成したことを特徴とする請求項
1,2又は3記載の超音波流量計。
4. The data stored in the data table is the data {1 / (10
3. The data table is configured with data obtained by subtracting a constant value from a), 1 / (10A-n [tau]) or 1 / (10c)} or multiplying the constant value by data. 3. The ultrasonic flowmeter according to item 3.
JP05110596A 1996-03-08 1996-03-08 Ultrasonic flow meter Expired - Fee Related JP3759988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05110596A JP3759988B2 (en) 1996-03-08 1996-03-08 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05110596A JP3759988B2 (en) 1996-03-08 1996-03-08 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JPH09243422A true JPH09243422A (en) 1997-09-19
JP3759988B2 JP3759988B2 (en) 2006-03-29

Family

ID=12877537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05110596A Expired - Fee Related JP3759988B2 (en) 1996-03-08 1996-03-08 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP3759988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866165A (en) * 2010-06-30 2010-10-20 清华大学 Echoed flight time measuring method based on field programmable gate array

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346870B2 (en) * 2010-04-16 2013-11-20 株式会社アツデン Ultrasonic flow meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866165A (en) * 2010-06-30 2010-10-20 清华大学 Echoed flight time measuring method based on field programmable gate array

Also Published As

Publication number Publication date
JP3759988B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
CN101662988B (en) Ultrasonographic device
JP2774270B2 (en) Method and apparatus for suppressing fixed target echoes in distance measurements according to the pulse transit time principle
US5311124A (en) Emulated analog output magnetostrictive position transducer with set point selection
JPH09243422A (en) Ultrasonic flow meter
EP0807825B1 (en) Ultrasonic continuous wave doppler blood flow-meter
US4321835A (en) Apparatus for measuring the flow velocity of a fluid
JP4960554B2 (en) Ultrasonic flow meter
JPS6361976A (en) Ultrasonic switch
JPH1090029A (en) Ultrasonic wave flowmeter
JPH06100654B2 (en) Ultrasonic rangefinder
RU2104498C1 (en) Ultrasonic frequency-pulse method of measurement of flow rate and device for its implementation
JP4485641B2 (en) Ultrasonic flow meter
RU2085858C1 (en) Ultrasound method for detection of product volume which runs through pipe and device which implements said method
JPH01195796A (en) Centralized automatic metering device
SU915273A1 (en) Frequency demodulator
SU1114945A1 (en) Device for determination of concrete strength
JP3944084B2 (en) Ultrasonic diagnostic equipment
JPH05825Y2 (en)
SU1564647A1 (en) Device for adaptive processing of information
RU1837396C (en) Multichannel frequency-to-code converter
SU849253A1 (en) Method and device for reading-out graphic information
JP3124990B2 (en) Measured value-frequency converter
SU1180798A1 (en) Digital ultrasonic speed meter
JPH10132927A (en) Timing circuit
SU1292019A1 (en) Device for reading graphic information

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees