JPH09243386A - Vehicular inertial navigation system - Google Patents

Vehicular inertial navigation system

Info

Publication number
JPH09243386A
JPH09243386A JP7092696A JP7092696A JPH09243386A JP H09243386 A JPH09243386 A JP H09243386A JP 7092696 A JP7092696 A JP 7092696A JP 7092696 A JP7092696 A JP 7092696A JP H09243386 A JPH09243386 A JP H09243386A
Authority
JP
Japan
Prior art keywords
calculation unit
pitch angle
input
vehicle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7092696A
Other languages
Japanese (ja)
Other versions
JP2843905B2 (en
Inventor
Junichi Ito
純一 伊藤
Hiromitsu Horikawa
浩光 堀川
Mitsutoshi Arai
光敏 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP7092696A priority Critical patent/JP2843905B2/en
Publication of JPH09243386A publication Critical patent/JPH09243386A/en
Application granted granted Critical
Publication of JP2843905B2 publication Critical patent/JP2843905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the accuracy of detecting altitude by correcting pitch-angle errors caused by a suspension mechanism when a vehicle is accelerated or decelerated or when it ascends or descends a slope. SOLUTION: A turning speed (n) of wheels, detected by an odometer 1, is input to a travel speed calculating part 3 and multiplied by a scale factor to calculate travel speed V. The angular velocity ωθ of rotation of the vehicle around a pitch axis, detected by a gyro 2, is input to a pitch angle calculating part 5 to calculate pitch angle θ. Acceleration (a) applied to the vehicle along the direction of travel, detected by an accelerometer 21, is input to a pitch angle correction calculating part 22 and multiplied by a predetermined factor to calculate the inclination angle ωθof the vehicle body relative to the ground that is caused by a suspension mechanism. A pitch angle correcting part 23 calculates θ'=θ-δθ. A vertical speed calculating part 4 calculates vertical speed VV=Vsinθ', which is then input to an altitude calculating part 7 to calculate the altitude LV of the vehicle relative to its starting point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両に搭載され、その
車両の現在の標高を検出する車両用慣性航法装置に係
り、特に加減速時及び傾斜地登降時において車両のサス
ペンション機構に起因して生ずるピッチ角誤差を補正し
て検出確度を向上させた車両用慣性航法装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inertial navigation system for a vehicle which is mounted on a vehicle and detects the current altitude of the vehicle. The present invention relates to an inertial navigation system for a vehicle, which corrects a generated pitch angle error and improves detection accuracy.

【0002】[0002]

【従来の技術】従来、標高を検出する車両用慣性航法装
置としてはオドメータを併用するものが一般的であり、
従来のこの種の装置を図5を参照して説明する。図5の
装置は、車体を車輪上に支えるサスペンション機構を有
する車両に搭載されている。
2. Description of the Related Art Conventionally, as an inertial navigation system for a vehicle for detecting an altitude, a system using an odometer is generally used.
A conventional device of this type will be described with reference to FIG. The apparatus of FIG. 5 is mounted on a vehicle having a suspension mechanism that supports the vehicle body on wheels.

【0003】車輪に取り付けられたオドメータ1より車
輪の回転速度n(rpm)が慣性航法装置(以下INSと
言う)演算部10の走行速度計算部3に入力され、走行
速度計算部3では入力された回転速度n及び車輪の周長
t(km)より車両の走行速度V V=n×Lt×60=n×ξ (km/Hr) (1) が求められ、鉛直速度計算部4に入力される。上記式の ξ=Lt×60 (2) はオドメータのスケールファクタと呼ばれる。
The rotational speed n (rpm) of the wheel is input from the odometer 1 attached to the wheel to the traveling speed calculation unit 3 of the inertial navigation device (hereinafter referred to as INS) calculation unit 10, and is input to the traveling speed calculation unit 3. From the rotational speed n and the wheel circumference L t (km), the vehicle running speed V V = n × L t × 60 = n × ξ (km / Hr) (1) is obtained, and the vertical speed calculation unit 4 Is entered. Ξ = L t × 60 (2) in the above equation is called the odometer scale factor.

【0004】ジャイロ2で車両のピッチ軸回りの回転角
速度ωθが検出され、INS演算部10のピッチ角計算
部5に入力される。ピッチ角計算部5では入力されたピ
ッチ軸回りの回転角速度ωθを積分して、ピッチ角θ θ=∫ωθdt+θ0 (ラジアン) (3) を計算して鉛直速度計算部4に入力する。上式のθ0
ピッチ角の初期値、つまり出発点におけるピッチ角であ
る。
The gyro 2 detects the rotational angular velocity ωθ about the pitch axis of the vehicle and inputs it to the pitch angle calculation unit 5 of the INS calculation unit 10. The pitch angle calculation unit 5 integrates the input rotation angular velocity ωθ about the pitch axis to calculate the pitch angle θθ = ∫ωθdt + θ 0 (radian) (3) and inputs it to the vertical velocity calculation unit 4. Θ 0 in the above equation is the initial value of the pitch angle, that is, the pitch angle at the starting point.

【0005】鉛直速度計算部4では、ピッチ角計算部5
より入力される車両のピッチ角θ(ラジアン)を用い
て、図5に示すように走行速度Vより鉛直速度Vvを算
出する。即ち、 Vv=Vsinθ (4)
In the vertical velocity calculation unit 4, the pitch angle calculation unit 5
The vertical speed V v is calculated from the traveling speed V as shown in FIG. 5 by using the vehicle pitch angle θ (radian) that is input more. That is, V v = V sin θ (4)

【0006】算出された鉛直速度Vvは鉛直速度計算部
4より標高計算部7に入力され、車両の出発点に対する
標高Lvが次式により計算され、外部に出力される。 Lv=∫Vvdt (5)
The calculated vertical velocity V v is input from the vertical velocity calculation unit 4 to the altitude calculation unit 7, and the altitude L v with respect to the starting point of the vehicle is calculated by the following equation and output to the outside. L v = ∫V v dt (5)

【0007】[0007]

【発明が解決しようとする課題】ところで、INSが取
り付けられている車体は、サスペンション機構によって
車輪上に支えられている。車両が平地に静止している状
態では、図7(A)に示すように、車体8は地面9に対
して平行に支持されており、従ってINSも地面に平行
となっている。しかし、図7(B)に示す車両の加減速
時や、図7(C)に示す傾斜面の登降時には、サスペン
ション機構の働きによって車体8が傾き、車体従ってI
NSは地面9に対して小さな傾斜角、つまりピッチ角δ
θをもつ。このためINS演算部10のピッチ角計算部
5より算出されるピッチ角θ(水平面11と地面9との
なす角)には地面9のピッチ角θ′に、地面9に対する
車体8のピッチ角δθが加わったものとなる。即ち、 θ=θ′+δθ (6) このため鉛直速度計算部4において(4)式により算出す
る鉛直速度Vvは、 Vv=Vsinθ=Vsin(θ′+δθ) =V(sinθ′cosδθ+cosθ′sinδθ) と表される。ここでδθは小さな値であるのでcosδθ
≒1,sinδθ≒δθと近似すれば。鉛直速度Vvは、 Vv≒Vsinθ′+Vδθcosθ′ (7) と表され、真の鉛直速度Vsinθ′に、Vδθcosθ′の
誤差が加わったものとなる。このため標高計算部7にお
いて(5)式により算出する標高Lvは、 Lv=∫Vvdt=∫(Vsinθ′+Vδθcosθ′)dt =∫Vsinθ′dt+∫Vδθcosθ′dt (8) となり、上記第1項の真の標高の他、第2項の誤差分が
含まれることとなる。
The vehicle body to which the INS is attached is supported on wheels by a suspension mechanism. When the vehicle is stationary on the flat ground, as shown in FIG. 7A, the vehicle body 8 is supported parallel to the ground surface 9, and thus the INS is also parallel to the ground surface. However, during acceleration / deceleration of the vehicle shown in FIG. 7B or when climbing up or down the inclined surface shown in FIG.
NS is a small inclination angle with respect to the ground surface 9, that is, a pitch angle δ
has θ. Therefore, the pitch angle θ calculated by the pitch angle calculation unit 5 of the INS calculation unit 10 (the angle formed by the horizontal plane 11 and the ground surface 9) is the pitch angle θ ′ of the ground surface 9 and the pitch angle δθ of the vehicle body 8 with respect to the ground surface 9. Will be added. That is, θ = θ ′ + δθ (6) Therefore, the vertical velocity V v calculated by the equation (4) in the vertical velocity calculation unit 4 is as follows: V v = Vsinθ = Vsin (θ ′ + δθ) = V (sinθ′cosδθ + cosθ′sinδθ ). Here, δθ is a small value, so cosδθ
If it is approximated as ≈1, sin δθ ≈δθ. The vertical velocity V v is expressed as V v ≈Vsin θ ′ + Vδθcos θ ′ (7), which is the true vertical velocity Vsinθ ′ plus the error of Vδθcos θ ′. Altitude L v calculated by this for the altitude calculation unit 7 (5) is, L v = ∫V v dt = ∫ (Vsinθ '+ Vδθcosθ') dt = ∫Vsinθ'dt + ∫Vδθcosθ'dt (8) , and the above In addition to the true altitude of the first term, the error of the second term is included.

【0008】本発明の目的は、車両の加減速時や、傾斜
面の登降時において、サスペンション機構に起因する車
体の傾きによる標高誤差を無くし、高精度の車両用慣性
航法装置を提供することにある。
It is an object of the present invention to provide a highly accurate inertial navigation system for a vehicle, which eliminates an elevation error due to a tilt of a vehicle body caused by a suspension mechanism when the vehicle is accelerated or decelerated or when an inclined surface is climbed or descended. is there.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る車両用慣性航法装置は、オドメータ
と、ジャイロと 加速度計と、慣性航法装置演算部とに
より構成されていて車体を車輪上に支えるサスペンショ
ン機構を有する車両に搭載され、前記慣性航法装置演算
部は、走行速度計算部と、ピッチ角補正値計算部と、ピ
ッチ角計算部と、ピッチ角補正部と、鉛直速度計算部
と、標高計算部とを具備しており、前記オドメータは、
前記車輪の回転速度nを検出して前記走行速度計算部に
入力するものであり、前記走行速度計算部は、入力され
た前記車輪の回転速度nにスケールファクタを乗算して
走行速度Vを計算し、前記鉛直速度計算部に入力するも
のであり、前記ジャイロは、前記車両のピッチ軸回りの
回転角速度ωθを検出して前記ピッチ角計算部に入力す
るものであり、前記ピッチ角計算部は、入力された前記
車両のピッチ軸回りの回転角速度ωθを積分してピッチ
角θを計算し、前記ピッチ角補正部に入力するものであ
り、前記加速度計は、車両に加わる走行方向の加速度a
を検出して前記ピッチ角補正値計算部に入力するもので
あり、前記ピッチ角補正値計算部は、入力された前記加
速度aに所定の係数を乗算して前記サスペンション機構
に起因する前記車体の地面に対する傾斜角δθを計算し
て前記ピッチ角補正部に入力するものであり、前記ピッ
チ角補正部は、入力された前記ピッチ角θより前記車体
の傾斜角δθを減算して、その差値θ′を前記鉛直速度
計算部に入力するものであり、前記鉛直速度計算部は、
入力された前記走行速度V及び差値θ′より鉛直速度V
v=Vsinθ′を計算して前記標高計算部に入力するもの
であり、前記標高計算部は、入力された前記鉛直速度V
vより車両の出発点に対する標高Lvを計算して出力する
ものであることを特徴としている。
In order to achieve the above object, an inertial navigation system for a vehicle according to the present invention comprises an odometer, a gyro, an accelerometer, and an inertial navigation system computing section. The inertial navigation device arithmetic unit is mounted on a vehicle having a suspension mechanism supported on wheels, and the inertial navigation device arithmetic unit calculates a traveling speed calculation unit, a pitch angle correction value calculation unit, a pitch angle calculation unit, a pitch angle correction unit, and a vertical speed calculation unit. And an altitude calculation unit, the odometer,
The rotational speed n of the wheel is detected and input to the traveling speed calculation unit. The traveling speed calculation unit calculates the traveling speed V by multiplying the input rotational speed n of the wheel by a scale factor. However, the gyro is to be input to the vertical velocity calculation unit, the gyro is to detect the rotational angular velocity ωθ around the pitch axis of the vehicle and input to the pitch angle calculation unit, and the pitch angle calculation unit is The input rotational angular velocity ωθ of the vehicle is integrated to calculate the pitch angle θ, and the pitch angle θ is input to the pitch angle correction unit.
Is detected and is input to the pitch angle correction value calculation unit, and the pitch angle correction value calculation unit multiplies the input acceleration a by a predetermined coefficient, and The inclination angle δθ with respect to the ground is calculated and input to the pitch angle correction unit, and the pitch angle correction unit subtracts the inclination angle δθ of the vehicle body from the input pitch angle θ, and the difference value thereof. θ'is input to the vertical speed calculation unit, and the vertical speed calculation unit
From the input traveling speed V and the difference value θ ′, the vertical speed V
v = Vsinθ ′ is calculated and input to the altitude calculation unit, and the altitude calculation unit inputs the vertical velocity V
v is characterized in that the calculating and outputting altitude L v than to the starting point of the vehicle.

【0010】[0010]

【作用】本発明の車両用INSにおいて、オドメータ
は、車輪の回転速度nを検出して走行速度計算部に入力
する。前記走行速度計算部は、入力された車輪の回転速
度nにスケールファクタを乗算して走行速度Vを計算
し、前記鉛直速度計算部に入力する。前記ジャイロは、
車両のピッチ軸回りの回転角速度ωθを検出して前記ピ
ッチ角計算部に入力する。前記ピッチ角計算部は、入力
された車両のピッチ軸回りの回転角速度ωθを積分して
ピッチ角θを計算し、前記ピッチ角補正部に入力する。
前記加速度計は、車両に加わる走行方向の加速度aを検
出して前記ピッチ角補正値計算部に入力する。前記ピッ
チ角補正値計算部は、入力された前記加速度aに所定の
係数を乗算してサスペンション機構に起因する車体の地
面に対する傾斜角δθを計算して前記ピッチ角補正部に
入力する。前記ピッチ角補正部は、入力された前記ピッ
チ角θより前記車体の傾斜角δθを減算して、その差値
θ′を前記鉛直速度計算部に入力する。前記鉛直速度計
算部は、入力された前記走行速度V及び差値θ′より鉛
直速度Vv=Vsinθ′を計算して前記標高計算部に入力
する。前記標高計算部は、入力された前記鉛直速度Vv
より車両の出発点に対する標高Lvを計算して外部へ出
力する。
In the vehicle INS of the present invention, the odometer detects the rotational speed n of the wheel and inputs it to the traveling speed calculation unit. The traveling speed calculation unit calculates the traveling speed V by multiplying the input wheel rotation speed n by a scale factor, and inputs the calculated traveling speed V to the vertical speed calculation unit. The gyro is
The rotational angular velocity ωθ around the pitch axis of the vehicle is detected and input to the pitch angle calculation unit. The pitch angle calculation unit integrates the input rotational angular velocity ωθ about the pitch axis of the vehicle to calculate the pitch angle θ, and inputs it to the pitch angle correction unit.
The accelerometer detects the acceleration a applied to the vehicle in the traveling direction and inputs it to the pitch angle correction value calculation unit. The pitch angle correction value calculation unit multiplies the input acceleration a by a predetermined coefficient to calculate an inclination angle δθ of the vehicle body with respect to the ground caused by the suspension mechanism, and inputs the inclination angle δθ to the pitch angle correction unit. The pitch angle correction unit subtracts the lean angle δθ of the vehicle body from the input pitch angle θ and inputs the difference value θ ′ to the vertical speed calculation unit. The vertical speed calculation unit calculates the vertical speed V v = Vsin θ ′ from the input traveling speed V and the difference value θ ′, and inputs it to the altitude calculation unit. The elevation calculation unit receives the input vertical velocity V v.
The altitude L v for the starting point of the vehicle is calculated and output to the outside.

【0011】本発明によれば、車両の加減速時や、傾斜
面の登降時において、サスペンション機構に起因する車
体の傾斜角δθを補正して真のピッチ角θ′を用いて鉛
直速度VVを計算でき、従って車両の出発点に対する標
高Lvを正確に計算することができる。
According to the present invention, when the vehicle is being accelerated or decelerated, or when the vehicle is climbing or descending a slope, the vehicle body inclination angle δθ caused by the suspension mechanism is corrected to use the true pitch angle θ ′ to obtain the vertical velocity V V. And thus the elevation L v for the starting point of the vehicle can be calculated accurately.

【0012】[0012]

【実施例】以下、本発明に係る車両用慣性航法装置の実
施例を図1に示す。但し、図5と対応する部分に同じ符
号を付し、重複説明を省略する。本発明に係る実施例で
は図5の従来の装置に加速度計21、ピッチ角補正値計
算部22及びピッチ角補正部23が追加される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a vehicle inertial navigation system according to the present invention is shown in FIG. However, the same reference numerals are given to the portions corresponding to those in FIG. 5, and the duplicate description will be omitted. In the embodiment according to the present invention, an accelerometer 21, a pitch angle correction value calculation unit 22 and a pitch angle correction unit 23 are added to the conventional device of FIG.

【0013】加速度計21により車両の車体8に加わる
走行方向の加速度aが検出され、INS演算部10内の
ピッチ角補正部22に入力される。図2に示すように加
速度aには、車両が傾斜面(水平面11に対してピッチ
角θをなす)を登降時において車両に加わる重力加速度
Gの、車体(従ってINS)のピッチ角θ方向の成分G
1が含まれる。ピッチ角補正値計算部22では、後述す
るように、加減速時或いは傾斜面登降時におけるサスペ
ンション機構に起因する車体8の地面9に対する傾斜
角、つまりピッチ角補正値δθが計算され、INS演算
部10内のピッチ角補正部23に入力される。ピッチ角
補正部23では、ピッチ角計算部5より入力されるピッ
チ角θよりピッチ角補正値δθが減算されて、真のピッ
チ角θ′ θ′=θ−δθ (9) が求められ、鉛直速度計算部4に入力される。
The accelerometer 21 detects the acceleration a in the traveling direction applied to the vehicle body 8 of the vehicle and inputs it to the pitch angle correction unit 22 in the INS calculation unit 10. As shown in FIG. 2, the acceleration a includes the gravitational acceleration G applied to the vehicle when climbing and descending an inclined surface (which makes a pitch angle θ with respect to the horizontal plane 11) in the pitch angle θ direction of the vehicle body (hence, INS). Ingredient G
Contains 1 As will be described later, the pitch angle correction value calculation unit 22 calculates the tilt angle of the vehicle body 8 with respect to the ground 9, that is, the pitch angle correction value δθ due to the suspension mechanism at the time of acceleration / deceleration or when climbing up / down the inclined surface, and the INS calculation unit. It is input to the pitch angle correction unit 23 in 10. In the pitch angle correction unit 23, the pitch angle correction value δθ is subtracted from the pitch angle θ input from the pitch angle calculation unit 5 to obtain the true pitch angle θ ′ θ ′ = θ−δθ (9), and the vertical angle θ ′ is obtained. It is input to the speed calculator 4.

【0014】鉛直速度計算部4及び標高計算部7では、
従来例で述べたものと同様にして、鉛直速度Vv及び出
発点に対する標高Lvがそれぞれ計算される。
In the vertical velocity calculator 4 and the altitude calculator 7,
The vertical velocity V v and the altitude L v with respect to the starting point are calculated in the same manner as described in the conventional example.

【0015】ここで、ピッチ角補正計算部22における
ピッチ角補正値δθの計算について述べる。
Here, the calculation of the pitch angle correction value δθ in the pitch angle correction calculation section 22 will be described.

【0016】図3に示すように車体8を車輪24上に支
えるサスペンション機構26はスプリング26aとダン
パ26bとで表すことができる。スプリング26aのバ
ネ定数をk、ダンパ26bのダンパ係数をd、車体8の
質量をMとする。車体8に力Fが走行方向に加えられ、
車体8がxだけ変位したとすれば、力Fと変位xとの間
には、 F=Mx″+dx′+kx (10) の関係が成立する。図4に示すように車輪24と車体8
との間隔をRとするとき、車体8は力Fを受けて、車輪
24を中心として半径Rの円弧に沿って距離xだけ変位
し、その結果、車体8は地面9に対して角度δθだけ傾
斜したとすれば、地面9に対する傾斜角δθは車体8が
車輪24を中心として力Fを受けて回転した角度に等し
い。従って、 x=Rδθ (11) と置ける。(10)式は(11)式を用いると F=RMδθ″+Rdδθ′+Rkδθ (12) と表される。ここで δθ′=Sδθ (13) と置くと、力Fは F=(S2RM+SRd+Rk)δθ (14) と表せる。従って、傾斜角、つまり補正角δθは δθ=F/(RMS2+RdS+Rk) (15) となる。分母の第1項、第2項は第3項に比べて一般に
小さな値であるのでこれらを省略すれば δθ≒F/Rk (16) となる、一方、力Fは車両に加わる走行方向の加速度a
と車両の質量Mとの積、即ち、 F=aM (17) であるから、この関係を(16)式に代入すれば δθ≒(M/Rk)×a (18) と表せる。
As shown in FIG. 3, the suspension mechanism 26 that supports the vehicle body 8 on the wheels 24 can be represented by a spring 26a and a damper 26b. The spring constant of the spring 26a is k, the damper coefficient of the damper 26b is d, and the mass of the vehicle body 8 is M. A force F is applied to the vehicle body 8 in the traveling direction,
If the vehicle body 8 is displaced by x, the relationship F = Mx ″ + dx ′ + kx (10) is established between the force F and the displacement x. As shown in FIG.
When the distance between and is R, the vehicle body 8 receives a force F and is displaced by a distance x along an arc of radius R with the wheel 24 as the center. If it is inclined, the inclination angle δθ with respect to the ground surface 9 is equal to the angle at which the vehicle body 8 receives the force F about the wheels 24 and rotates. Therefore, we can set x = Rδθ (11). Formula (10) is expressed as F = RMδθ ″ + Rdδθ ′ + Rkδθ (12) by using formula (11). Here, if we set δθ ′ = Sδθ (13), the force F is F = (S 2 RM + SRd + Rk) Therefore, the tilt angle, that is, the correction angle δθ is δθ = F / (RMS 2 + RdS + Rk) (15) The first and second terms of the denominator are generally smaller than the third term. Since it is a value, if these are omitted, δθ ≈ F / Rk (16), while the force F is the acceleration a in the traveling direction applied to the vehicle.
And the mass M of the vehicle, that is, F = aM (17), so by substituting this relationship into Eq. (16), δθ ≈ (M / Rk) × a (18).

【0017】上式の係数M/Rkは次のようにして求め
られる。
The coefficient M / Rk in the above equation is obtained as follows.

【0018】平地の一定地点間を等加速度a1で試験走
行する。このとき図1のピッチ角補正値計算22の出力
δθ=0とする。従ってピッチ角補正部23からピッチ
角θがそのまま鉛直速度計算部4に入力される。走行速
度計算部3の出力V1及び鉛直速度計算部4の出力Vv1
を測定し、その値を(7)式に代入する。なお平地である
から、真のピッチ角θ′=0とする。(7)式はVv1≒V1
δθとなり、従ってこのときのピッチ角の補正値δθは δθ≒Vv1/V1 (19) と求められる。この値をa=a1と共に(18)式に代入す
れば、 M/Rk≒δθ/a≒Vv1/V11 (20) このようにして求めた係数M/Rkの値はピッチ角補正
値計算部22のメモリに格納され、以後(18)式に基づ
き、入力される加速度aに係数M/Rkを乗算してピッ
チ角補正値δθが計算され、ピッチ角補正部23に入力
される。そのδθを用いてピッチ角補正部23におい
て、ピッチ角計算部5で算出したピッチ角θに対し補正
計算(θ−δθ)が行われ、誤差分を含まない真のピッ
チ角(地面のピッチ角)θ′が鉛直速度計算部4に入力
される。鉛直速度計算部4では、ピッチ角補正部23よ
り入力される真のピッチ角θ′を用いて、走行速度Vよ
り鉛直速度Vvを算出する。即ち、 Vv=Vsinθ′ (21)
A test run is performed at a uniform acceleration a 1 between certain points on a flat ground. At this time, the output δθ = 0 of the pitch angle correction value calculation 22 in FIG. 1 is set. Therefore, the pitch angle θ is directly input from the pitch angle correction unit 23 to the vertical velocity calculation unit 4. Output V 1 of running speed calculation unit 3 and output V v1 of vertical speed calculation unit 4
Is measured and the value is substituted into the equation (7). Since the ground is flat, the true pitch angle θ '= 0. Equation (7) is V v1 ≈ V 1
Therefore, the correction value δθ of the pitch angle at this time is calculated as δθ≈V v1 / V 1 (19). By substituting this value into the equation (18) together with a = a 1 , M / Rk≈δθ / a≈V v1 / V 1 a 1 (20) The value of the coefficient M / Rk thus obtained is the pitch angle. The pitch angle correction value δθ stored in the memory of the correction value calculation unit 22 is calculated by multiplying the input acceleration a by the coefficient M / Rk based on the equation (18), and is input to the pitch angle correction unit 23. It Using the δθ, the pitch angle correction unit 23 performs a correction calculation (θ−δθ) on the pitch angle θ calculated by the pitch angle calculation unit 5 to obtain the true pitch angle (ground pitch angle ) Θ'is input to the vertical velocity calculation unit 4. The vertical speed calculation unit 4 calculates the vertical speed V v from the traveling speed V using the true pitch angle θ ′ input from the pitch angle correction unit 23. That is, V v = V sin θ ′ (21)

【0019】算出された鉛直速度Vvは鉛直速度計算部
4より標高計算部7に入力され、車両の出発点に対する
標高Lvが(5)式により計算され、外部に出力される。
The calculated vertical velocity V v is input from the vertical velocity calculation unit 4 to the altitude calculation unit 7, and the altitude L v with respect to the starting point of the vehicle is calculated by the equation (5) and output to the outside.

【0020】以上本発明の実施例について説明してきた
が、本発明はこれに限定されることなく請求項の記載の
範囲内において各種の変形、変更が可能なことは当業者
には自明であろう。
Although the embodiment of the present invention has been described above, it is obvious to those skilled in the art that the present invention is not limited to this and various modifications and changes can be made within the scope of the claims. Let's do it.

【0021】[0021]

【発明の効果】以上説明したように、車両の加減速時或
いは傾斜地登降時に走行方向に加えられる加速度a(重
力加速度成分を含む)によって、車体がサスペンション
機構の働きにより、地面に対して傾斜角δθをもつが、
本発明の車両用慣性航法装置によれば、加速度計により
検出された加速度aよりこの傾斜角δθがピッチ角補正
値計算部で計算され、そのδθを用いてピッチ角補正部
において、ピッチ角計算部で算出したピッチ角θに対し
補正計算が行われ、誤差分を含まない真のピッチ角(地
面のピッチ角)θ′が鉛直速度計算部に入力される。従
って、前記サスペンション機構の働きによる車体の傾き
に起因する誤差を含まないより正確な標高データが得ら
れる。
As described above, when the vehicle is accelerated or decelerated or when the vehicle descends or descends on a sloping ground, the acceleration a (including the gravitational acceleration component) applied in the traveling direction causes the vehicle body to act on the inclination angle with respect to the ground. has δθ,
According to the inertial navigation system for a vehicle of the present invention, the inclination angle δθ is calculated by the pitch angle correction value calculation unit from the acceleration a detected by the accelerometer, and the pitch angle calculation unit uses the δθ to calculate the pitch angle. A correction calculation is performed on the pitch angle θ calculated by the section, and the true pitch angle (ground pitch angle) θ ′ that does not include an error is input to the vertical speed calculation section. Therefore, more accurate elevation data including no error caused by the tilt of the vehicle body due to the action of the suspension mechanism can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る車両用慣性航法装置の実施例を示
すブロック図である。
FIG. 1 is a block diagram showing an embodiment of a vehicle inertial navigation system according to the present invention.

【図2】車両に加わる重力加速度Gとその車体のピッチ
角方向の成分G1を説明するための説明図である。
FIG. 2 is an explanatory diagram for explaining a gravitational acceleration G applied to a vehicle and a component G 1 thereof in a pitch angle direction of a vehicle body.

【図3】サスペンション機構を等価回路で表した車両の
原理的な構成図である。
FIG. 3 is a principle configuration diagram of a vehicle in which a suspension mechanism is represented by an equivalent circuit.

【図4】車体が力Fを受けて車輪を中心にδθだけ回転
し、その結果車体が地面に対しδθだけ傾斜した状態を
示すための原理的な説明図である。
FIG. 4 is a principle explanatory view for showing a state in which the vehicle body receives a force F and rotates about the wheels by δθ, and as a result, the vehicle body is inclined by δθ with respect to the ground.

【図5】従来の車両用慣性航法装置のブロック図であ
る。
FIG. 5 is a block diagram of a conventional vehicle inertial navigation system.

【図6】車両の走行速度V、水平速度VH、鉛直速度Vv
とピッチ角θとの対応を示す説明図である。
FIG. 6 is a vehicle traveling speed V, a horizontal speed V H , and a vertical speed V v.
It is explanatory drawing which shows the correspondence of the pitch angle (theta) and.

【図7】車両の加減速時或いは坂道登降時に、車体が地
面に対してδθだけ傾斜した状態を示すための説明図で
ある。
FIG. 7 is an explanatory diagram showing a state in which the vehicle body is inclined by δθ with respect to the ground when the vehicle accelerates / decelerates or climbs up and down a slope.

【符号の説明】[Explanation of symbols]

1 オドメータ 2 ジャイロ 3 走行速度計算部 4 鉛直速度計算部 5 ピッチ角計算部 7 標高計算部 8 車体 9 地面 10 INS演算部 11 水平面 21 加速時計 22 ピッチ角補正値計算部 23 ピッチ角補正部 1 Odometer 2 Gyro 3 Running speed calculation unit 4 Vertical speed calculation unit 5 Pitch angle calculation unit 7 Elevation calculation unit 8 Body 9 Ground 10 INS calculation unit 11 Horizontal plane 21 Acceleration clock 22 Pitch angle correction value calculation unit 23 Pitch angle correction unit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オドメータと、ジャイロと 加速度計
と、慣性航法装置演算部とにより構成されていて車体を
車輪上に支えるサスペンション機構を有する車両に搭載
され、前記慣性航法装置演算部は、走行速度計算部と、
ピッチ角補正値計算部と、ピッチ角計算部と、ピッチ角
補正部と、鉛直速度計算部と、標高計算部とを具備する
車両用慣性航法装置であって、 前記オドメータは、前記車輪の回転速度nを検出して前
記走行速度計算部に入力するものであり、 前記走行速度計算部は、入力された前記車輪の回転速度
nにスケールファクタを乗算して走行速度Vを計算し、
前記鉛直速度計算部に入力するものであり、 前記ジャイロは、前記車両のピッチ軸回りの回転角速度
ωθを検出して前記ピッチ角計算部に入力するものであ
り、 前記ピッチ角計算部は、入力された前記車両のピッチ軸
回りの回転角速度ωθを積分してピッチ角θを計算し、
前記ピッチ角補正部に入力するものであり、 前記加速度計は、車両に加わる走行方向の加速度aを検
出して前記ピッチ角補正値計算部に入力するものであ
り、 前記ピッチ角補正値計算部は、入力された前記加速度a
に所定の係数を乗算して前記サスペンション機構に起因
する前記車体の地面に対する傾斜角δθを計算して前記
ピッチ角補正部に入力するものであり、 前記ピッチ角補正部は、入力された前記ピッチ角θより
前記車体の傾斜角δθを減算して、その差値θ′を前記
鉛直速度計算部に入力するものであり、 前記鉛直速度計算部は、入力された前記走行速度V及び
差値θ′より鉛直速度Vv=Vsinθ′を計算して前記標
高計算部に入力するものであり、 前記標高計算部は、入力された前記鉛直速度Vvより車
両の出発点に対する標高Lvを計算して出力するもので
あることを特徴とする車両用慣性航法装置。
1. A vehicle-mounted vehicle having a suspension mechanism configured to include an odometer, a gyro, an accelerometer, and an inertial navigation device computing unit for supporting a vehicle body on wheels. The calculation part,
A vehicle inertial navigation system comprising a pitch angle correction value calculation unit, a pitch angle calculation unit, a pitch angle correction unit, a vertical speed calculation unit, and an altitude calculation unit, wherein the odometer is a wheel rotation unit. The speed n is detected and input to the running speed calculator. The running speed calculator calculates the running speed V by multiplying the input rotation speed n of the wheel by a scale factor,
The gyro is for inputting to the vertical speed calculation unit, and the gyro is for inputting to the pitch angle calculation unit by detecting a rotational angular speed ωθ around the pitch axis of the vehicle, and the pitch angle calculation unit is an input. The pitch angle θ is calculated by integrating the rotational angular velocity ωθ around the pitch axis of the vehicle,
The acceleration angle is input to the pitch angle correction unit, and the accelerometer detects the acceleration a in the traveling direction applied to the vehicle and inputs the acceleration a to the pitch angle correction value calculation unit. Is the input acceleration a
Is multiplied by a predetermined coefficient to calculate an inclination angle δθ of the vehicle body with respect to the ground caused by the suspension mechanism, and the input angle is input to the pitch angle correction unit. The inclination angle δθ of the vehicle body is subtracted from the angle θ, and the difference value θ ′ is input to the vertical speed calculation unit. The vertical speed calculation unit inputs the traveling speed V and the difference value θ. The vertical velocity V v = V sin θ ′ is calculated from the ′ ′ and is input to the altitude calculation unit. The altitude calculation unit calculates the altitude L v with respect to the starting point of the vehicle from the input vertical velocity V v. An inertial navigation system for vehicles, characterized in that it is output as
JP7092696A 1996-03-04 1996-03-04 Inertial navigation system for vehicles Expired - Lifetime JP2843905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7092696A JP2843905B2 (en) 1996-03-04 1996-03-04 Inertial navigation system for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7092696A JP2843905B2 (en) 1996-03-04 1996-03-04 Inertial navigation system for vehicles

Publications (2)

Publication Number Publication Date
JPH09243386A true JPH09243386A (en) 1997-09-19
JP2843905B2 JP2843905B2 (en) 1999-01-06

Family

ID=13445612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7092696A Expired - Lifetime JP2843905B2 (en) 1996-03-04 1996-03-04 Inertial navigation system for vehicles

Country Status (1)

Country Link
JP (1) JP2843905B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016561A1 (en) * 1999-08-27 2001-03-08 Honeywell Inc. Integrated inertial/vms navigation system
US6564148B2 (en) * 2001-03-06 2003-05-13 Honeywell International Integrated inertial VMS navigation with inertial odometer correction
JP2016130704A (en) * 2015-01-15 2016-07-21 株式会社Ihi Altitude change calculation apparatus and altitude change calculation method
CN107462242A (en) * 2016-06-06 2017-12-12 千寻位置网络有限公司 Vehicle speed measuring method and its device
CN107560612A (en) * 2016-06-30 2018-01-09 瑞士优北罗股份有限公司 For the system and method for the Angle Position for determining the vehicles
CN108036756A (en) * 2017-12-05 2018-05-15 中国船舶重工集团公司第七0七研究所 A kind of method that the adjacent axis verticality inspection of dual-axis rotation inertial measuring unit is carried out using accelerometer
WO2019221407A1 (en) * 2018-05-16 2019-11-21 두산인프라코어 주식회사 Method and device for measuring ground tilt angle in construction equipment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003508737A (en) * 1999-08-27 2003-03-04 ハネウェル・インコーポレーテッド Apparatus and method for accurately measuring inertial operation data of a vehicle
WO2001016561A1 (en) * 1999-08-27 2001-03-08 Honeywell Inc. Integrated inertial/vms navigation system
US6564148B2 (en) * 2001-03-06 2003-05-13 Honeywell International Integrated inertial VMS navigation with inertial odometer correction
JP2016130704A (en) * 2015-01-15 2016-07-21 株式会社Ihi Altitude change calculation apparatus and altitude change calculation method
CN107462242B (en) * 2016-06-06 2020-09-29 千寻位置网络有限公司 Vehicle speed measuring method and device
CN107462242A (en) * 2016-06-06 2017-12-12 千寻位置网络有限公司 Vehicle speed measuring method and its device
CN107560612A (en) * 2016-06-30 2018-01-09 瑞士优北罗股份有限公司 For the system and method for the Angle Position for determining the vehicles
EP3264036A3 (en) * 2016-06-30 2018-05-16 u-blox AG System for and method of determining angular position of a vehicle
CN108036756A (en) * 2017-12-05 2018-05-15 中国船舶重工集团公司第七0七研究所 A kind of method that the adjacent axis verticality inspection of dual-axis rotation inertial measuring unit is carried out using accelerometer
CN108036756B (en) * 2017-12-05 2020-02-18 中国船舶重工集团公司第七0七研究所 Method for detecting perpendicularity of adjacent axes of biaxial rotation inertia measurement device by using accelerometer
KR20190131210A (en) * 2018-05-16 2019-11-26 두산인프라코어 주식회사 Apparatus and method for measuring an inclined angle of a ground surface in construction machinery
WO2019221407A1 (en) * 2018-05-16 2019-11-21 두산인프라코어 주식회사 Method and device for measuring ground tilt angle in construction equipment
CN111989442A (en) * 2018-05-16 2020-11-24 斗山英维高株式会社 Method and device for measuring ground inclination angle in engineering machinery

Also Published As

Publication number Publication date
JP2843905B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
JP4126239B2 (en) Angular velocity detector
JP3375268B2 (en) Navigation device
US4470124A (en) Method of adjusting the zero-point of rate type sensor
JP3533230B2 (en) Vehicle travel distance measuring device, travel guide system and vehicle equipped with the device
JPH0553208B2 (en)
JP2843905B2 (en) Inertial navigation system for vehicles
JP2004125689A (en) Position calculation system for self-contained navigation
JP4149913B2 (en) Integrated inertia VMS navigation with inertia odometer correction
CN112429006A (en) Vehicle-mounted road surface gradient measuring system and measuring method
JP3783257B2 (en) Navigation device
JPH0942979A (en) On-vehicle navigation device
JPH05215564A (en) Automobile position measuring apparatus
JP2843904B2 (en) Inertial navigation system for vehicles
JPH10221098A (en) Position measuring apparatus
JP2006189450A (en) Navigation system
JP2843903B2 (en) Inertial navigation device
JPH07242112A (en) Vehicle control device
JP4110846B2 (en) VEHICLE PITCH ANGLE DETECTION METHOD USING CAR NAVIGATION DEVICE AND CAR NAVIGATION DEVICE
JPH11211745A (en) Speed distance meter
JP3791074B2 (en) Navigation device
JP2843902B2 (en) Inertial navigation system for vehicles
JPS6042614A (en) Correcting device of tilt angle sensor
JP2003139536A (en) Declinometer and azimuth measuring method
JPH0620091Y2 (en) Locator device for mobile
JP3440765B2 (en) Crossing slope detector for road surface

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term