JPH09237813A - Method and device for testing semiconductor substrate - Google Patents

Method and device for testing semiconductor substrate

Info

Publication number
JPH09237813A
JPH09237813A JP4142696A JP4142696A JPH09237813A JP H09237813 A JPH09237813 A JP H09237813A JP 4142696 A JP4142696 A JP 4142696A JP 4142696 A JP4142696 A JP 4142696A JP H09237813 A JPH09237813 A JP H09237813A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
load
temperature
indenter
dislocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4142696A
Other languages
Japanese (ja)
Inventor
Osamu Fujii
修 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4142696A priority Critical patent/JPH09237813A/en
Publication of JPH09237813A publication Critical patent/JPH09237813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for test with which accurate dislocation generating stress on the surface of a semiconductor substrate is obtained. SOLUTION: To the surface of a semiconductor substrate 23 which is kept at lower temperature than evaluation temperature, test load is applied with an indenter 25 in between, and at this state, the temperature of the semiconductor substrate 23 is raised up to the evaluation temperature and held whole specified time, and then the temperature is lowered, and then generation state of dislocation is confirmed with a means which detects variation in crystal lattice in the semiconductor substrate 23, and, from the relationship among the evaluation temperature, contact stress caused by application load and dislocation generation state, dislocation generation stress is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体基板の試験
方法およびその装置に係り、特に半導体基板の転位発生
応力を取得するための試験方法およびその装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor substrate testing method and apparatus, and more particularly to a testing method and apparatus for obtaining dislocation generation stress of a semiconductor substrate.

【0002】[0002]

【従来の技術】周知のように、シリコンウェハなどの半
導体基板は、半導体デバイス製造の出発材料として用い
られている。このような半導体基板は、通常結晶格子に
乱れのない無転位のものが用いられる。しかし、多数回
に亘るデバイス製造プロセスを経た後の半導体基板には
転位の存在しているものがある。転位は電気的特性に大
きな影響を与える。たとえば、半導体基板表面のデバイ
ス活性層近傍に転位が存在していると、この転位は基板
中の鉄や銅などの金属不純物原子をその周囲に引き寄せ
る。この転位が電気的な分離を必要とする領域間に存在
していると、金属不純物原子を媒介として電気的に短絡
し易くなり、リーク電流が発生して電気的信頼性を低下
させる。電気的特性が低下すると、必然的に製品歩留ま
りも低下することになる。
As is well known, a semiconductor substrate such as a silicon wafer is used as a starting material for manufacturing a semiconductor device. As such a semiconductor substrate, a dislocation-free substrate having no disorder in the crystal lattice is usually used. However, some semiconductor substrates have dislocations after the device manufacturing process is performed many times. Dislocations have a great influence on electrical characteristics. For example, when a dislocation exists near the device active layer on the surface of the semiconductor substrate, the dislocation attracts metal impurity atoms such as iron and copper in the substrate to the surroundings. If these dislocations are present between the regions that require electrical isolation, electrical dislocations tend to be mediated by metal impurity atoms, and a leak current is generated to lower the electrical reliability. When the electrical characteristics are lowered, the product yield is inevitably lowered.

【0003】このようなことから、転位発生の抑制は半
導体デバイス製造にとって最重要課題のーつとなってい
る。転位発生を抑制するには、転位が発生する応力を正
確に知る必要がある。半導体基板は主に 600℃以上の温
度で転位が発生し易いため、予め試験を行って高温中で
の転位発生臨界応力を取得しておく必要がある。
From the above, suppression of dislocation generation is one of the most important issues for semiconductor device manufacturing. In order to suppress the generation of dislocations, it is necessary to accurately know the stress at which dislocations occur. Since dislocations tend to occur mainly in semiconductor substrates at temperatures above 600 ° C, it is necessary to conduct a test in advance to obtain the critical stress for dislocation generation at high temperatures.

【0004】図5には高温中での転位発生臨界応力を取
得する従来の試験方法を実施する装置が示されている。
従来の試験方法では、まず試験用の加熱炉1内に設けら
れた試料支持台2上に半導体基板3を載置する。試料支
持台2の上方には圧子4を先端に持つ負荷ロッド5が加
熱炉1の上壁を貫通するように設けられている。この負
荷ロッド5はナイフエッジを持つ天秤6によって支持さ
れ、電磁負荷機構7によって駆動されるように構成され
ている。
FIG. 5 shows an apparatus for carrying out a conventional test method for obtaining the critical stress for dislocation generation at high temperature.
In the conventional test method, first, the semiconductor substrate 3 is placed on the sample support base 2 provided in the test heating furnace 1. A load rod 5 having an indenter 4 at its tip is provided above the sample support base 2 so as to penetrate the upper wall of the heating furnace 1. The load rod 5 is supported by a balance 6 having a knife edge, and is driven by an electromagnetic load mechanism 7.

【0005】試験に先だって、真空ポンプ8で加熱炉1
内を真空排気する。その後、加熱炉1内を昇温させ、半
導体基板3を評価温度まで昇温させる。評価温度に達し
た後、電磁負荷機構7で負荷ロッド5を変位させて圧子
4を半導体基板3の表面を接触させ、試験荷重で圧子4
を押込み、たとえば 10 秒間保持する。
Prior to the test, the vacuum furnace 8 was used to heat the furnace 1.
The inside is evacuated. Then, the temperature inside the heating furnace 1 is raised to raise the semiconductor substrate 3 to the evaluation temperature. After reaching the evaluation temperature, the load rod 5 is displaced by the electromagnetic load mechanism 7 to bring the indenter 4 into contact with the surface of the semiconductor substrate 3, and the indenter 4 is applied with a test load.
Press and hold for 10 seconds, for example.

【0006】続いて、加熱炉1内を降温させた後に加熱
炉1から半導体基板3を取り出し、これをフッ酸を主成
分とする選択エッチング液に浸し、エッチピット法によ
り半導体基板3の表面に転位が発生しているか否かを観
察する。転位が発生している場合には、転位ピットとし
て観察される。そして、圧子4の押込荷重と転位発生と
の関係から、評価温度での転位発生応力を取得する。
Then, after the temperature inside the heating furnace 1 is lowered, the semiconductor substrate 3 is taken out from the heating furnace 1, immersed in a selective etching solution containing hydrofluoric acid as a main component, and the surface of the semiconductor substrate 3 is etched by an etch pit method. Observe whether dislocations have occurred. When dislocations occur, they are observed as dislocation pits. Then, the dislocation generation stress at the evaluation temperature is acquired from the relationship between the pushing load of the indenter 4 and the dislocation generation.

【0007】しかしながら、上述した従来の試験方法に
あっては次のような問題があった。すなわち、従来の試
験方法では半導体基板3が評価温度に達した時点で圧子
4を半導体基板3に接触させる方式を採用している。こ
のため、負荷ロッド5が伝熱経路となり、圧子4が半導
体基板3に接触した時点において、半導体基板3と圧子
4との間に温度勾配が生じる可能性がある。転位の発生
は温度の影響を大きく受ける。したがって、正確な転位
発生応力を取得するには上述した温度勾配が有害とな
る。
However, the above-mentioned conventional test method has the following problems. That is, the conventional test method employs a method in which the indenter 4 is brought into contact with the semiconductor substrate 3 when the semiconductor substrate 3 reaches the evaluation temperature. Therefore, when the load rod 5 serves as a heat transfer path and the indenter 4 contacts the semiconductor substrate 3, a temperature gradient may occur between the semiconductor substrate 3 and the indenter 4. The occurrence of dislocations is greatly affected by temperature. Therefore, the above-mentioned temperature gradient becomes detrimental in obtaining accurate dislocation generation stress.

【0008】また、従来の試験方法では高温下において
圧子4を半導体基板3に所定の荷重まで押込む方式を採
用している。転位の発生は押込むときの速度、すなわち
半導体基板3に与える歪み速度の影響も大きく受ける。
実際の半導体デバイス製造工程において、半導体基板に
作用する歪み速度は1秒間当り、10-9程度とかなり小
であると予想される。このため、従来の試験方法のよう
に圧子4を押込んでの試験では実際の製造工程との対比
が困難で、製造工程にフィードバックできるデータを得
難い問題があった。
Further, in the conventional test method, a method of pushing the indenter 4 into the semiconductor substrate 3 up to a predetermined load at high temperature is adopted. The generation of dislocations is greatly influenced by the speed at the time of pushing, that is, the strain speed given to the semiconductor substrate 3.
In the actual semiconductor device manufacturing process, the strain rate acting on the semiconductor substrate is expected to be as small as about 10 −9 per second. Therefore, in the test in which the indenter 4 is pushed in like the conventional test method, it is difficult to compare with the actual manufacturing process, and it is difficult to obtain data that can be fed back to the manufacturing process.

【0009】[0009]

【発明が解決しようとする課題】上述の如く、従来の試
験方法では、半導体基板を実際に取扱う環境条件下を念
頭に入れた正確な転位発生応力を取得し難いという問題
があった。そこで本発明は、荷重印加系との間に生じ易
い温度勾配を抑制できるとともに歪み速度の影響を回避
できる試験を実施でき、もって半導体製造工程にフィー
ドバックして歩留まりの向上に寄与できる正確な転位発
生応力を簡単に取得可能な半導体基板の試験方法および
その装置を提供することを目的としている。
As described above, the conventional test method has a problem that it is difficult to obtain accurate dislocation generation stress in consideration of the environmental conditions under which the semiconductor substrate is actually handled. Therefore, the present invention can carry out a test that can suppress the temperature gradient that tends to occur between the load application system and avoid the influence of strain rate, and thus can accurately feed back to the semiconductor manufacturing process to contribute to the improvement of yield. An object of the present invention is to provide a semiconductor substrate test method and a device therefor capable of easily obtaining stress.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る試験方法では、評価温度より低い温度
に保たれている半導体基板の表面に圧子を介して試験荷
重を印加し、この状態で半導体基板を評価温度まで昇温
させて一定時間保持した後に降温させ、しかる後に上記
半導体基板における結晶格子の乱れを検出する手段で転
位の発生状況を確認し、評価温度と印加荷重による接触
応力と転位発生状況との相関から半導体基板の転位発生
応力を取得するようにしている。
In order to achieve the above object, in the test method according to the present invention, a test load is applied to the surface of the semiconductor substrate kept at a temperature lower than the evaluation temperature through an indenter, In this state, the semiconductor substrate is heated to the evaluation temperature and held for a certain period of time and then cooled, and then the dislocation generation state is confirmed by means for detecting the disorder of the crystal lattice in the semiconductor substrate, and the evaluation temperature and applied load The dislocation generation stress of the semiconductor substrate is acquired from the correlation between the contact stress and the dislocation generation state.

【0011】なお、試験荷重の印加は、前記半導体基板
上への前記圧子の載置あるいは上記圧子と荷重調整用重
りとの載置で行うことが好ましい。また上記目的を達成
するために、本発明に係る試験装置では、内部に半導体
基板を支持する支持台を備えた試料容器と、前記支持台
に支持される前記半導体基板に接触して該半導体基板へ
所定の荷重を印加するための荷重印加手段と、前記半導
体基板を加熱するための加熱手段と、前記荷重印加手段
で荷重を印加した状態で前記半導体基板を評価温度まで
昇温させて所定時間保持した後に降温させるように前記
加熱手段を制御する加熱制御手段と、前記降温後の半導
体基板における転位の発生状況を検出する検出手段と、
前記評価温度と前記印加荷重による接触応力と前記転位
発生状況との相関から前記半導体基板の転位発生応力を
求める演算手段とを備えている。
The test load is preferably applied by placing the indenter on the semiconductor substrate or placing the indenter and the load adjusting weight. Further, in order to achieve the above object, in the test apparatus according to the present invention, a sample container having a support base for supporting a semiconductor substrate therein and the semiconductor substrate supported by the support base are brought into contact with the semiconductor substrate. A load applying means for applying a predetermined load to the semiconductor substrate, a heating means for heating the semiconductor substrate, and a predetermined time after heating the semiconductor substrate to an evaluation temperature while applying the load by the load applying means. Heating control means for controlling the heating means so as to lower the temperature after holding, and detection means for detecting the occurrence state of dislocations in the semiconductor substrate after the temperature is lowered,
And a calculation means for obtaining the dislocation generation stress of the semiconductor substrate from the correlation between the evaluation temperature, the contact stress due to the applied load, and the dislocation generation state.

【0012】本発明に係る試験方法では、評価温度より
低い温度に保たれている半導体基板の表面に圧子を介し
て試験荷重を印加し、その後に半導体基板を評価温度ま
で昇温させる手順を採用しているので、評価温度での歪
み速度の影響を回避できる。また、半導体基板の表面に
圧子を介して試験荷重を印加した後に半導体基板を評価
温度まで昇温させるようにしているので、半導体基板と
圧子との間に温度勾配がつき難い。なお、駆動機構を用
いて荷重を印加する場合には、荷重印加系の途中に断熱
材を介在させておけば、温度勾配の発生を抑制すること
ができる。さらに、半導体基板上への前記圧子の載置あ
るいは上記圧子と荷重調整用重りとの載置で試験荷重を
印加する方式を採用すれば、温度勾配の発生をなくすこ
とができる。
In the test method according to the present invention, a procedure is adopted in which a test load is applied to the surface of the semiconductor substrate kept at a temperature lower than the evaluation temperature through an indenter, and then the semiconductor substrate is heated to the evaluation temperature. Therefore, the influence of the strain rate at the evaluation temperature can be avoided. Further, since the test load is applied to the surface of the semiconductor substrate via the indenter and the temperature of the semiconductor substrate is raised to the evaluation temperature, it is difficult for the semiconductor substrate and the indenter to have a temperature gradient. When a load is applied by using the drive mechanism, if a heat insulating material is interposed in the middle of the load applying system, the occurrence of temperature gradient can be suppressed. Further, by adopting a method of applying a test load by placing the indenter on the semiconductor substrate or placing the indenter and the load adjusting weight on each other, it is possible to eliminate the temperature gradient.

【0013】[0013]

【発明の実施の形態】以下、図面を参照しながら発明の
実施形態を説明する。図1には本発明の試験方法を実施
する装置が示されている。ヒータ等の加熱手段および加
熱温度を制御する加熱制御手段を備えた試験用の加熱炉
(試料容器)21内には試料支持台22が設けてあり、
この試料保持台22上に半導体基板23が水平に載置さ
れる。試験に際しては、試料支持台22上に載置されて
いる半導体基板23の上に荷重印加手段としての荷重印
加具24が載置される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an apparatus for carrying out the test method of the present invention. A sample support base 22 is provided in a test heating furnace (sample container) 21 provided with a heating means such as a heater and a heating control means for controlling a heating temperature.
The semiconductor substrate 23 is horizontally placed on the sample holder 22. In the test, a load application tool 24 as a load application means is placed on the semiconductor substrate 23 placed on the sample support base 22.

【0014】荷重印加具24は、半導体基板23上に直
接置かれる圧子25と、この圧子25を内部に収容した
状態で半導体基板23上に置かれて圧子25が転動する
のを規制する薄肉の保持筒体26と、この保持筒体26
内で圧子25の上に必要な個数置かれる荷重調整用の重
り27とで構成されている。
The load application tool 24 is placed directly on the semiconductor substrate 23, and the indenter 25 is placed on the semiconductor substrate 23 in a state where the indenter 25 is housed inside and is thin to regulate the rolling of the indenter 25. Holding cylinder 26 and this holding cylinder 26
It is composed of a weight 27 for adjusting the load, which is placed on the indenter 25 in a necessary number.

【0015】圧子25は、高温中でも強度が保てるよう
な金属、セラミックスまたは石英などで、球状もしくは
球面を有する形状に形成され、かつ半導体基板23との
接触部表面が平滑に研磨されている。保持筒体26およ
び荷重調整用重り27も圧子25と同様に高温でも強度
が保てるような金属、セラミックスまたは石英などで形
成されている。
The indenter 25 is made of metal, ceramics, quartz, or the like that can maintain its strength even at high temperatures, and is formed into a shape having a spherical or spherical surface, and the surface of the contact portion with the semiconductor substrate 23 is polished smoothly. Similarly to the indenter 25, the holding cylinder 26 and the load adjusting weight 27 are also made of metal, ceramics, quartz, or the like that can maintain strength even at high temperatures.

【0016】半導体基板23の表面には、圧子25の重
量と荷重調整用重り27の重量との和の重量が試験荷重
として印加されることになる。主に荷重調整用重り27
の個数や大きさを変化させることで加える試験荷重が調
整される。圧子25および荷重調整用重り27は予め電
子天秤によりその重量が測定され、この測定された重量
と圧子25の半導体基板23への接触部形状とから半導
体基板23に発生する応力が算出される。
The sum of the weight of the indenter 25 and the weight of the load adjusting weight 27 is applied to the surface of the semiconductor substrate 23 as a test load. Mainly weight adjustment weight 27
The test load to be applied is adjusted by changing the number and size of the. The weight of the indenter 25 and the weight 27 for adjusting the load is measured by an electronic balance in advance, and the stress generated in the semiconductor substrate 23 is calculated from the measured weight and the shape of the contact portion of the indenter 25 with the semiconductor substrate 23.

【0017】なお、加熱炉21内は真空ポンプ28によ
り真空排気できるようになっている。次に、上述した装
置を使って半導体基板23の転位発生応力を取得する試
験の手順を説明する。
The inside of the heating furnace 21 can be evacuated by a vacuum pump 28. Next, a procedure of a test for acquiring the dislocation generation stress of the semiconductor substrate 23 using the above-mentioned device will be described.

【0018】まず、加熱炉21内の試料支持台22の上
に半導体基板23を載置する。そして、半導体基板23
上に圧子25、保持筒体26および荷重調整用重り27
からなる荷重印加具24を載置する。なお、このとき、
圧子25の重量と荷重調整用重り27の重量との和が試
験荷重となるように荷重調整用重り27の個数や大きさ
を選択する。
First, the semiconductor substrate 23 is placed on the sample support base 22 in the heating furnace 21. Then, the semiconductor substrate 23
The indenter 25, the holding cylinder 26, and the weight 27 for adjusting the load are provided on the upper side.
The load applying tool 24 consisting of is placed. At this time,
The number and size of the load adjusting weights 27 are selected so that the sum of the weight of the indenter 25 and the weight of the load adjusting weights 27 becomes the test load.

【0019】次に、加熱炉21内を真空ポンプ28で所
定圧力まで排気する。続いて、加熱制御手段を動作させ
て加熱炉21内の温度を一定の上昇率で昇温させる。評
価温度まで昇温させた後、この温度で−定時間、たとえ
ば10秒間保持する。
Next, the inside of the heating furnace 21 is evacuated to a predetermined pressure by the vacuum pump 28. Then, the heating control means is operated to raise the temperature in the heating furnace 21 at a constant rate of increase. After raising the temperature to the evaluation temperature, it is kept at this temperature for a fixed time, for example, 10 seconds.

【0020】次に、加熱炉21内の温度を一定の降下率
で降温させる。次に、加熱炉21内から半導体基板23
を取出し、この半導体基板23の結晶格子の乱れを検出
する。検出する方法としては、たとえば取出された半導
体基板23をフッ酸を主成分とする選択エッチング液に
浸し、エッチピット法により半導体基板23表面に転位
が発生しているか否かを観察する。もし転位が発生して
いるときには、圧子25によって押された箇所だけが優
先的に溶解するため、転位ピットとして光学顕微鏡など
で観察できる。結晶格子の乱れ検出は、選択エッチング
に限らず、X線観察や透過型電子顕微鏡を用いることも
できる。
Next, the temperature in the heating furnace 21 is lowered at a constant rate of decrease. Next, from the inside of the heating furnace 21, the semiconductor substrate 23
Then, the disorder of the crystal lattice of the semiconductor substrate 23 is detected. As a method of detection, for example, the semiconductor substrate 23 taken out is dipped in a selective etching solution containing hydrofluoric acid as a main component, and whether or not dislocations are generated on the surface of the semiconductor substrate 23 is observed by an etch pit method. If dislocations have occurred, only the portion pressed by the indenter 25 is preferentially melted, so that dislocation pits can be observed with an optical microscope or the like. Detection of disorder of the crystal lattice is not limited to selective etching, but X-ray observation or a transmission electron microscope can be used.

【0021】次に、圧子25および荷重調整用重り27
の重量で負荷したときの荷重、すなわち分解せん断応力
と転位発生との関係から、その評価温度での転位発生応
力を演算手段を介して取得する。
Next, the indenter 25 and the weight 27 for adjusting the load.
The load generated when the load is applied, that is, the relationship between the decomposed shear stress and the dislocation generation, the dislocation generation stress at the evaluation temperature is acquired through the calculation means.

【0022】図2には上述した方法で取得されたシリコ
ンウェハの転位発生応力と温度との関係が示されてい
る。縦軸には応力を、横軸には温度を示す。実線は転位
発生領域と転位非発生領域を分ける曲線である。転位発
生応力は温度が上がるほど低下する傾向を示しているこ
とが判る。
FIG. 2 shows the relationship between dislocation generation stress and temperature of the silicon wafer obtained by the above method. The vertical axis represents stress and the horizontal axis represents temperature. The solid line is a curve dividing the dislocation generation region and the dislocation generation region. It can be seen that the dislocation generation stress tends to decrease as the temperature increases.

【0023】このように、本発明方法では、室温下に置
かれている半導体基板23に圧子25を介して所定の荷
重を印加し、この状態で評価温度まで昇温させるように
しているので、半導体基板23と圧子25との間の温度
勾配を図5に示した従来例より小さくできる。また、予
め圧子25を介して所定の荷重を半導体基板23に印加
しているので、押込み速度、つまり歪み速度も限りなく
ゼロに近付けることができる。したがって、半導体製造
工程にフィードバックして歩留まりの向上に寄与できる
正確な転位発生応力を簡単に取得できる。
As described above, according to the method of the present invention, a predetermined load is applied to the semiconductor substrate 23 placed at room temperature through the indenter 25, and the temperature is raised to the evaluation temperature in this state. The temperature gradient between the semiconductor substrate 23 and the indenter 25 can be made smaller than in the conventional example shown in FIG. In addition, since a predetermined load is applied to the semiconductor substrate 23 via the indenter 25 in advance, the pushing speed, that is, the strain speed can be brought close to zero without limit. Therefore, it is possible to easily obtain the accurate dislocation generation stress that can be fed back to the semiconductor manufacturing process and contribute to the improvement of the yield.

【0024】なお、図3および図4に示すような荷重印
加形態で試験を行ってもよい。図3に示す例では、ー枚
の半導体基板23の上に複数個、たとえば3個の荷重印
加具24a,24b,24cを載置している。荷重印加
具24a,24b,24cは、それぞれ図1に示した例
と同様に構成されており、それぞれ独立している。した
がって、一度に多くの荷重条件で試験を行うことができ
るので、試験の効率を向上させることができる。なお、
圧子25による接触応力は、接触中心から約10μm程度
で急激に減衰するため、各々の圧子25間で相互に影響
することはない。
The test may be conducted in a load application mode as shown in FIGS. In the example shown in FIG. 3, a plurality of, for example, three load applying tools 24a, 24b, 24c are mounted on a single semiconductor substrate 23. The load applying tools 24a, 24b, and 24c are configured similarly to the example shown in FIG. 1 and are independent of each other. Therefore, the test can be performed under a large number of load conditions at one time, so that the efficiency of the test can be improved. In addition,
The contact stress due to the indenters 25 is abruptly attenuated at about 10 μm from the contact center, so that there is no mutual influence between the indenters 25.

【0025】図4に示す例では、−枚の半導体基板23
上に3個の圧子25を載せ、さらにその上に荷重調整用
円板29を載せている。荷重調整用円板29には、図4
(b)に示すように、圧子25のー部を固定するための円
錐形の凹部30が同一円周上の120 度等配位置に設けら
れている。この荷重調整用円板29は、圧子25と同様
に高温でも強度が保てるような金属、セラミックスまた
は石英などで形成されている。半導体基板23上の3箇
所の負荷箇所には、圧子22の重量と荷重調整用円板2
9の3分のlの重量との和の重量が試験荷重として印加
される。なお、荷重印加系の途中に断熱材を介在した構
成であれば、駆動機構を使って試験荷重を印加する方式
を採用してもよい。
In the example shown in FIG. 4, one semiconductor substrate 23
Three indenters 25 are placed on top, and a load adjusting disc 29 is placed on top of that. The load adjusting disc 29 is shown in FIG.
As shown in (b), conical recesses 30 for fixing the negative part of the indenter 25 are provided at 120 ° equidistant positions on the same circumference. Like the indenter 25, the load adjusting disc 29 is made of metal, ceramics, quartz, or the like that can maintain its strength even at high temperatures. At the three load points on the semiconductor substrate 23, the weight of the indenter 22 and the load adjusting disc 2 are provided.
The weight of 9 plus the weight of 1/3 is applied as the test load. If a heat insulating material is interposed in the middle of the load applying system, a method of applying a test load using a drive mechanism may be adopted.

【0026】[0026]

【発明の効果】以上説明したように、本発明に係る試験
方法およびその装置によれば、半導体基板表面の正確な
転位発生応力を取得することができる。したがって、こ
の転位発生応力データを半導体デバイス製造工程にフィ
ードバックして上記応力を越えないように工程を制御す
ることにより、製造工程での転位発生を防止でき、製品
歩留まりの向上に寄与できる。
As described above, according to the test method and the apparatus therefor of the present invention, it is possible to obtain accurate dislocation generation stress on the surface of the semiconductor substrate. Therefore, by feeding back this dislocation generation stress data to the semiconductor device manufacturing process and controlling the process so as not to exceed the above stress, dislocation generation in the manufacturing process can be prevented and the product yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する装置のー形態例を示す断
面図
FIG. 1 is a sectional view showing an example of an apparatus for carrying out the method of the present invention.

【図2】本発明方法で取得された転移発生応力特性の一
例を示す図
FIG. 2 is a diagram showing an example of dislocation generation stress characteristics obtained by the method of the present invention.

【図3】本発明方法を実施する装置の別の形態例を示す
断面図
FIG. 3 is a cross-sectional view showing another embodiment of the apparatus for carrying out the method of the present invention.

【図4】(a) は本発明方法を実施する装置のさらに別の
形態例を示す断面図で、(b) は同装置で用いられる荷重
調整用円板の平面図
FIG. 4 (a) is a sectional view showing still another embodiment of the apparatus for carrying out the method of the present invention, and FIG. 4 (b) is a plan view of a load adjusting disc used in the apparatus.

【図5】従来の方法を実施する装置の断面図FIG. 5 is a cross-sectional view of an apparatus for performing a conventional method.

【符号の説明】[Explanation of symbols]

21…試験用の加熱炉(試料容器) 22…試料支持台 23…半導体基板 24,24a〜24d…荷重印加具 25…圧子 26…保持筒体 27…荷重調整用の重り 28…真空ポンプ 29…荷重調整用円板 21 ... Test heating furnace (sample container) 22 ... Sample support 23 ... Semiconductor substrate 24, 24a to 24d ... Load applying tool 25 ... Indenter 26 ... Holding cylinder 27 ... Load adjusting weight 28 ... Vacuum pump 29 ... Disc for load adjustment

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】評価温度より低い温度に保たれている半導
体基板の表面に圧子を介して試験荷重を印加し、この状
態で半導体基板を評価温度まで昇温させて一定時間保持
した後に降温させ、しかる後に上記半導体基板における
結晶格子の乱れを検出する手段で転位の発生状況を確認
し、評価温度と印加荷重による接触応力と転位発生状況
との相関から上記半導体基板の転位発生応力を取得する
ことを特徴とする半導体基板の試験方法。
1. A test load is applied to the surface of a semiconductor substrate, which is kept at a temperature lower than the evaluation temperature, through an indenter, and in this state, the semiconductor substrate is heated to the evaluation temperature and held for a certain period of time and then cooled. After that, the dislocation generation state is confirmed by means for detecting the disorder of the crystal lattice in the semiconductor substrate, and the dislocation generation stress of the semiconductor substrate is acquired from the correlation between the evaluation temperature and the contact stress due to the applied load and the dislocation generation state. A method for testing a semiconductor substrate, comprising:
【請求項2】前記試験荷重の印加は、前記半導体基板上
への前記圧子の載置あるいは上記圧子と荷重調整用重り
との載置で行うことを特徴とする請求項1に記載の半導
体基板の試験方法。
2. The semiconductor substrate according to claim 1, wherein the test load is applied by placing the indenter on the semiconductor substrate or placing the indenter and a weight for weight adjustment. Test method.
【請求項3】内部に半導体基板を支持する支持台を備え
た試料容器と、 前記支持台に支持される前記半導体基板に接触して該半
導体基板へ所定の荷重を印加するための荷重印加手段
と、 前記半導体基板を加熱するための加熱手段と、 前記荷重印加手段で荷重を印加した状態で前記半導体基
板を評価温度まで昇温させて所定時間保持した後に降温
させるように前記加熱手段を制御する加熱制御手段と、 前記降温後の半導体基板における転位の発生状況を検出
する検出手段と、 前記評価温度と前記印加荷重による接触応力と前記転位
発生状況との相関から前記半導体基板の転位発生応力を
求める演算手段とを備えたことを特徴とする半導体基板
の試験装置。
3. A sample container having a support base for supporting a semiconductor substrate therein, and a load applying means for contacting the semiconductor substrate supported by the support base and applying a predetermined load to the semiconductor substrate. And heating means for heating the semiconductor substrate, and controlling the heating means to raise the temperature of the semiconductor substrate to an evaluation temperature with a load applied by the load applying means, hold the semiconductor substrate for a predetermined time, and then lower the temperature. Heating control means, detecting means for detecting the occurrence of dislocations in the semiconductor substrate after the temperature decrease, and the dislocation occurrence stress of the semiconductor substrate from the correlation between the evaluation temperature, the contact stress due to the applied load and the dislocation occurrence An apparatus for testing a semiconductor substrate, comprising: an arithmetic means for obtaining
JP4142696A 1996-02-28 1996-02-28 Method and device for testing semiconductor substrate Pending JPH09237813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142696A JPH09237813A (en) 1996-02-28 1996-02-28 Method and device for testing semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142696A JPH09237813A (en) 1996-02-28 1996-02-28 Method and device for testing semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH09237813A true JPH09237813A (en) 1997-09-09

Family

ID=12608045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142696A Pending JPH09237813A (en) 1996-02-28 1996-02-28 Method and device for testing semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH09237813A (en)

Similar Documents

Publication Publication Date Title
KR101871534B1 (en) Methods for reducing the metal content in the device layer of soi structures and soi structures produced by such methods
JP3563224B2 (en) Semiconductor wafer evaluation method, heat treatment method, and heat treatment apparatus
JPH02185038A (en) Thermal treatment equipment
JPH11507473A (en) Wafer temperature control method and apparatus
US7767596B2 (en) Wafer support pin for preventing slip dislocation during annealing of water and wafer annealing method using the same
US20080277768A1 (en) Silicon member and method of manufacturing the same
US20110312156A1 (en) Controlled temperature implantation
KR20030019471A (en) Method and apparatus for forming a silicon wafer with a denuded zone
JP2001127041A (en) Plasma processor for board, and plasma processing method
CN117059528B (en) Wafer stripping device
Pearce et al. A new approach to lattice damage gettering
JPH09237813A (en) Method and device for testing semiconductor substrate
US7943402B2 (en) Ion implantation process characterization method
JP2000269150A (en) Semiconductor wafer heating tool and semiconductor wafer heater using the same
JP5569392B2 (en) Silicon wafer manufacturing method
CN107706122B (en) Detection method of annealing process
TW200413581A (en) SOI wafer and method for manufacturing SOI wafer
JP2003324106A (en) Heat-treatment apparatus, manufacturing method of semiconductor device, and manufacturing method of substrate
JP2020504439A (en) Process for smoothing the surface of a semiconductor-on-insulator substrate
JPH1012689A (en) Method for inspecting semiconductor substrate and semiconductor substrate for monitoring used therefor
JP3896919B2 (en) Method for evaluating Ni contamination of silicon wafer
US4201623A (en) Method for making epitaxial silicon crystals with uniform doping levels
JPH06169008A (en) Electrostatic chucking device and method
JP3896927B2 (en) Epitaxial growth method
JPH05152304A (en) Manufacture of semiconductor substrate