JPH09236753A - Microscope objective lens - Google Patents

Microscope objective lens

Info

Publication number
JPH09236753A
JPH09236753A JP8067223A JP6722396A JPH09236753A JP H09236753 A JPH09236753 A JP H09236753A JP 8067223 A JP8067223 A JP 8067223A JP 6722396 A JP6722396 A JP 6722396A JP H09236753 A JPH09236753 A JP H09236753A
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
negative
cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8067223A
Other languages
Japanese (ja)
Inventor
Masayuki Mizusawa
聖幸 水澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP8067223A priority Critical patent/JPH09236753A/en
Priority to US08/805,472 priority patent/USH1763H/en
Publication of JPH09236753A publication Critical patent/JPH09236753A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives

Abstract

PROBLEM TO BE SOLVED: To satisfactorily compensate the fluctuation in various aberrations caused by the changes in the thickness of a cover glass by specifying the relationships among the refractive indexes of negative and positive lenses with respect to a 'd' line, the on-axis space interval between first and second lens groups and the focal distance of the entire system. SOLUTION: A second lens group G2 is a combined lens made of a negative lens L2n and a positive lens L2p and has a joined lens L21 having a negative refractive power joined surface and a joint lens L22 having a positive refractive power joined surface. Various aberrations (especially spherical surface aberration) caused by the changes in the thickness of a cover glass are compensated for by the movement of the compensation lens group and adjusting the height of the incident light means with respect to the joined surface which constitutes an F surface. Also conditional equations 0.33<N2n-N2p and 0.02<D12/f<1.3 (where, N2n and N2p are the refractive indexes of the lenses L2n and L2p with respect to the d line, D12 is the on-axis space interval between the lens groups G1 and G2 and f is the focal distance of the entire system) are satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は顕微鏡対物レンズに
関し、特にカバーガラスの厚さの変化に起因する諸収差
の変動を補正することのできるアポクロマ−ト級顕微鏡
対物レンズに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microscope objective lens, and more particularly to an apochromat microscope objective lens capable of correcting variations in various aberrations caused by changes in the cover glass thickness.

【0002】[0002]

【従来の技術】一般に、顕微鏡対物レンズは、所定の厚
さを有するカバーガラス(標本と対物レンズとの間に配
置される透明な平行平面板)に対して設計されている。
しかしながら、実際に使用されるカバーガラスの厚さに
は多少のばらつきがあり、このカバーガラスの厚さの変
化が結像性能に影響を及ぼす。カバーガラスの厚さの変
化による結像性能への影響は、たとえば開口数NAが
0.5以下では小さいが、たとえば開口数NAが0.7
5を超えると顕在化してくる。
2. Description of the Related Art Generally, a microscope objective lens is designed with respect to a cover glass (a transparent plane-parallel plate disposed between a specimen and an objective lens) having a predetermined thickness.
However, there are some variations in the thickness of the cover glass that is actually used, and this change in the thickness of the cover glass affects the imaging performance. The influence of the change in the thickness of the cover glass on the imaging performance is small when the numerical aperture NA is 0.5 or less, for example, but the numerical aperture NA is 0.7.
When it exceeds 5, it becomes apparent.

【0003】さらに、たとえば開口数NAが0.85を
超えるような高開口数を有する対物レンズでは、カバー
ガラスの厚さの変化による結像性能の悪化が著しく、そ
のままの状態では対物レンズの使用が不可能になってし
まう。したがって、開口数NAが0.85を超えるよう
な高開口数を有する明るい顕微鏡対物レンズでは、カバ
ーガラスの厚さの変化に起因する収差変動を補正するた
めの補正レンズ群を備えた、いわゆる補正環付き対物レ
ンズが必要になってくる。
Further, in an objective lens having a high numerical aperture, for example, a numerical aperture NA exceeding 0.85, the image forming performance is significantly deteriorated due to a change in the thickness of the cover glass, and the objective lens is used as it is. Becomes impossible. Therefore, in a bright microscope objective lens having a high numerical aperture with a numerical aperture NA exceeding 0.85, a so-called correction lens group that includes a correction lens group for correcting the aberration variation caused by the change in the thickness of the cover glass is used. An objective lens with a ring is needed.

【0004】補正環付き対物レンズとしては、たとえば
特開昭61−275812号公報、特開平3−5051
7号公報、特開平5−119263号公報に開示された
顕微鏡対物レンズが知られている。
As the objective lens with a correction ring, for example, JP-A-61-275812 and JP-A-3-5051 are known.
The microscope objective lens disclosed in Japanese Patent Laid-Open No. 7 and Japanese Patent Laid-Open No. 5-119263 is known.

【0005】[0005]

【発明が解決しようとする課題】まず、特開昭61−2
75812号公報に開示された従来の顕微鏡対物レンズ
は、正屈折力の第1レンズ群と、発散性(負屈折力)の
接合面および収れん性(正屈折力)の接合面を有する第
2レンズ群と、負屈折力の第3レンズ群とからなる。そ
して、第2レンズ群と第3レンズ群とが、光軸に沿って
移動する補正レンズ群を構成している。この顕微鏡対物
レンズでは、開口数NAが0.95と乾燥系としてはほ
ぼ最高の明るさを確保しながら、カバーガラスの厚さの
変化として0.11から0.23までの広い変化範囲に
対応可能となっている。しかしながら、補正レンズ群の
移動に伴う色の球面収差の補正が十分ではない。
[Problems to be Solved by the Invention] First, JP-A-61-2
The conventional microscope objective lens disclosed in Japanese Patent No. 75812 is a second lens having a first lens group having a positive refracting power, a divergent (negative refracting power) cemented surface, and a convergent (positive refractive power) cemented surface. And a third lens unit having a negative refractive power. Then, the second lens group and the third lens group constitute a correction lens group that moves along the optical axis. This microscope objective lens has a numerical aperture NA of 0.95, which is almost the maximum brightness for a dry system, while supporting a wide range of changes in the cover glass thickness from 0.11 to 0.23. It is possible. However, the correction of the spherical aberration of color due to the movement of the correction lens group is not sufficient.

【0006】また、特開平3−50517号公報に開示
された従来の顕微鏡対物レンズは、物体側から順に、正
・正・負の3群構成を有し、第2レンズ群が光軸に沿っ
て移動する補正レンズ群を構成している。しかしなが
ら、第2レンズ群は、4つのレンズ成分(3つの接合レ
ンズおよび1つの単レンズ)からなり、補正レンズ群と
してはレンズ枚数が多すぎる。また、レンズ径が大きい
ため、偏心(特に光軸に対するシフト)により収差が悪
化し易い構成になっている。さらに、色の球面収差も残
存している。
The conventional microscope objective lens disclosed in Japanese Patent Laid-Open No. 3-50517 has a positive, positive, and negative three-group structure in order from the object side, and the second lens group is along the optical axis. And a correction lens group that moves by moving. However, the second lens group includes four lens components (three cemented lenses and one single lens), and the number of lenses is too large for the correction lens group. Further, since the lens diameter is large, the aberration is likely to be deteriorated due to decentering (particularly shift with respect to the optical axis). Furthermore, chromatic spherical aberration also remains.

【0007】また、特開平5−119263号公報に開
示された従来の顕微鏡対物レンズでは、1枚のダブレッ
トレンズだけで補正レンズ群を構成しており、開口数N
Aも0.93と大きい。しかしながら、レンズ全系の構
成レンズ枚数が、13以上もあり多すぎる。
In the conventional microscope objective lens disclosed in Japanese Patent Laid-Open No. 5-119263, only one doublet lens constitutes the correction lens group, and the numerical aperture N
A is as large as 0.93. However, the number of lenses constituting the entire lens system is 13 or more, which is too many.

【0008】本発明は、前述の課題に鑑みてなされたも
のであり、カバーガラスの厚さの変化に起因する諸収差
の変動を良好に補正することのできる、構成レンズ枚数
が比較的少ない高開口数のアポクロマ−ト級顕微鏡対物
レンズを提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and is capable of satisfactorily correcting fluctuations in various aberrations caused by changes in the thickness of the cover glass. It is an object of the present invention to provide a numerical aperture apochromatic grade microscope objective lens.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
に、本発明においては、物体側から順に、正の屈折力を
有する第1レンズ群G1と、正の屈折力を有する第2レ
ンズ群G2と、負の屈折力を有する第3レンズ群G3と
を備え、前記第1レンズ群G1は、物体側に凹面を向け
た正メニスカスレンズを含み、前記第2レンズ群G2
は、負レンズL2nと正レンズL2pとの貼り合わせからな
り負屈折力の接合面を有する接合レンズL21と、正屈折
力の接合面を有する接合レンズL22とを有し、前記第3
レンズ群G3は、少なくとも1つの接合レンズを有し、
前記第1レンズ群G1に対して前記第2レンズ群G2お
よび前記第3レンズ群G3を光軸に沿って相対移動させ
て、カバーガラスの厚さの変化に起因する収差変動を補
正し、前記負レンズL2nのd線に対する屈折率をN2nと
し、前記正レンズL2pのd線に対する屈折率をN2pと
し、前記第1レンズ群G1と前記第2レンズ群G2との
間の軸上空気間隔をD12とし、全系の焦点距離をfとし
たとき、 0.33<N2n−N2p 0.02<D12/f<1.3 の条件を満足することを特徴とする顕微鏡対物レンズを
提供する。
In order to solve the above problems, according to the present invention, a first lens group G1 having a positive refractive power and a second lens group having a positive refractive power are arranged in order from the object side. G2 and a third lens group G3 having a negative refractive power, the first lens group G1 includes a positive meniscus lens having a concave surface facing the object side, and the second lens group G2.
Includes a cemented lens L21 having a cemented surface with a negative refractive power and a cemented lens L22 having a cemented surface with a positive refractive power, which is formed by bonding a negative lens L2n and a positive lens L2p.
The lens group G3 has at least one cemented lens,
The second lens group G2 and the third lens group G3 are relatively moved with respect to the first lens group G1 along the optical axis to correct aberration variation caused by a change in the thickness of the cover glass, The refractive index of the negative lens L2n for the d line is N2n, the refractive index of the positive lens L2p for the d line is N2p, and the axial air gap between the first lens group G1 and the second lens group G2 is D12. And a focal length of the entire system is f, the microscope objective lens is characterized by satisfying the following condition: 0.33 <N2n-N2p 0.02 <D12 / f <1.3.

【0010】[0010]

【発明の実施の形態】一般に、像面の平坦性を良好にす
るには、ぺッツバール和をほぼ0にすれば良いことが知
られている。また、比較的簡素な構成でぺッツバール和
を良好に補正することができるレンズ系として、望遠タ
イプのレンズ系が知られている。なお、望遠タイプのレ
ンズ系は、正屈折力の前群と負屈折力の後群とからな
り、あまり大きな画角を確保することができない。そこ
で、画角の比較的小さな高倍の対物レンズにおいて、望
遠タイプのレンズ系が良く用いられている。本発明にお
いても、比較的高倍の乾燥系対物レンズに対して、この
望遠タイプのレンズ系を採用している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS It is generally known that the Petzval sum may be set to almost zero in order to improve the flatness of the image plane. Further, a telephoto type lens system is known as a lens system capable of favorably correcting Petzval sum with a relatively simple configuration. It should be noted that the telephoto type lens system includes a front group having a positive refractive power and a rear group having a negative refractive power, and cannot secure a very large angle of view. Therefore, in a high-magnification objective lens having a relatively small angle of view, a telephoto type lens system is often used. Also in the present invention, this telephoto type lens system is adopted for a relatively high-power dry objective lens.

【0011】また、第2レンズ群G2は、負レンズL2n
と正レンズL2pとの貼り合わせからなり負屈折力の接合
面を有する接合レンズL21と、正屈折力の接合面を有す
る接合レンズL22とを有する。すなわち、本発明では、
補正レンズ群である第2レンズ群G2および第3レンズ
群G3中において、接合レンズL21の負屈折力の接合面
がいわゆるF面を構成している。
The second lens group G2 has a negative lens L2n.
And a positive lens L2p, and a cemented lens L21 having a cemented surface of negative refractive power and a cemented lens L22 having a cemented surface of positive refractive power. That is, in the present invention,
In the second lens group G2 and the third lens group G3, which are the correction lens groups, the cemented surface of the cemented lens L21 having the negative refracting power constitutes a so-called F surface.

【0012】ここで、F面とは強い負の屈折力を有する
接合面のことを指し、一般的には、F面に対する入射光
線の高さを調整することによって、カバーガラスの厚さ
の変化に起因する球面収差の変動を補正している。本発
明では、補正レンズ群自体がF面を備え、補正レンズ群
をひいてはF面を光軸に沿って移動させることによっ
て、F面に対する入射光線の高さを調整している。
Here, the F surface refers to a cemented surface having a strong negative refractive power, and generally, the thickness of the cover glass is changed by adjusting the height of the incident light ray with respect to the F surface. The variation of spherical aberration due to is corrected. In the present invention, the correction lens group itself is provided with the F surface, and the height of the incident light ray with respect to the F surface is adjusted by moving the correction lens group and thus the F surface along the optical axis.

【0013】そして、補正レンズ群の移動により、F面
を構成する接合面に対する入射光線の高さを調整するこ
とによって、カバーガラスの厚さの変化に起因した諸収
差(特に球面収差)を補正している。球面収差は光線の
高さに比例するので、本発明の方法では、F面の有効径
が大きいほど補正レンズ群の移動量を少なくすることが
できる利点がある。
Then, by moving the correction lens group, the height of the incident light ray with respect to the cemented surface forming the F surface is adjusted to correct various aberrations (particularly spherical aberration) due to the change in the thickness of the cover glass. doing. Since the spherical aberration is proportional to the height of the light ray, the method of the present invention has an advantage that the larger the effective diameter of the F surface, the smaller the amount of movement of the correction lens group can be.

【0014】以下、本発明の各条件式について説明す
る。本発明では、以下の条件式(1)および(2)を満
足する。 0.33<N2n−N2p (1) 0.02<D12/f<1.3 (2)
Hereinafter, the conditional expressions of the present invention will be described. In the present invention, the following conditional expressions (1) and (2) are satisfied. 0.33 <N2n-N2p (1) 0.02 <D12 / f <1.3 (2)

【0015】ここで、 N2n:負レンズL2nのd線に対する屈折率 N2p:正レンズL2pのd線に対する屈折率 D12:第1レンズ群G1と第2レンズ群G2との間の軸
上空気間隔 f :全系の焦点距離 なお、第1レンズ群G1と第2レンズ群G2との間の軸
上空気間隔とは、第1レンズ群G1の最も像側の面と第
2レンズ群G2の最も物体側の面との間の光軸に沿った
距離である。
Here, N2n: Refractive index of the negative lens L2n with respect to the d line N2p: Refractive index of the positive lens L2p with respect to the d line D12: On-axis air gap f between the first lens group G1 and the second lens group G2 : Focal length of entire system The axial air distance between the first lens group G1 and the second lens group G2 is the most image-side surface of the first lens group G1 and the most object of the second lens group G2. The distance along the optical axis between the side surface.

【0016】条件式(1)は、第2レンズ群G2におい
て負屈折力の接合面(F面)を形成する負レンズL2nと
正レンズL2pとの屈折率の差について適切な範囲を規定
している。条件式(1)の下限値を下回ると、負レンズ
L2nと正レンズL2pとの屈折率差が小さくなりすぎて、
球面収差の変動を良好に補正するには、F面を構成する
接合面の曲率を強くしなければならず、その結果、新た
に高次の色の球面収差が発生しまう。
Conditional expression (1) defines an appropriate range for the difference in refractive index between the negative lens L2n and the positive lens L2p forming the cemented surface (F surface) of negative refractive power in the second lens group G2. There is. If the lower limit of conditional expression (1) is not reached, the refractive index difference between the negative lens L2n and the positive lens L2p becomes too small,
In order to satisfactorily correct the fluctuation of spherical aberration, it is necessary to increase the curvature of the cemented surface forming the F surface, and as a result, new spherical aberration of higher color is generated.

【0017】条件式(2)は、補正レンズ群の移動範囲
に関する条件式であって、第1レンズ群G1と第2レン
ズ群G2との軸上空気間隔について適切な範囲を規定し
ている。条件式(2)の上限値を上回ると、第1レンズ
群G1と第2レンズ群G2との間隔が大きくなりすぎ
て、倍率の色収差のバランスが崩れ、補正レンズ群の移
動に伴って倍率色収差が変動してしまう。また、第1レ
ンズ群G1と第2レンズ群G2とが接近しすぎると、製
造上不都合である。なお、本発明では、第1レンズ群G
1および第2レンズ群G2においてそれぞれ単独に倍率
色収差が良好に補正されていることが好ましい。
Conditional expression (2) is a conditional expression concerning the moving range of the correction lens group, and defines an appropriate range for the axial air gap between the first lens group G1 and the second lens group G2. If the upper limit of conditional expression (2) is exceeded, the distance between the first lens group G1 and the second lens group G2 becomes too large, and the chromatic aberration of magnification is unbalanced. Fluctuates. Further, if the first lens group G1 and the second lens group G2 are too close to each other, it is inconvenient in manufacturing. In the present invention, the first lens group G
It is preferable that the chromatic aberration of magnification is satisfactorily corrected independently in each of the first and second lens groups G2.

【0018】[0018]

【実施例】以下、本発明の実施例を、添付図面に基づい
て説明する。各実施例において、本発明の顕微鏡対物レ
ンズは、物体側から順に、正の屈折力を有する第1レン
ズ群G1と、正の屈折力を有する第2レンズ群G2と、
負の屈折力を有する第3レンズ群G3とを備えている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. In each of the examples, the microscope objective lens of the present invention includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a positive refractive power, and
A third lens group G3 having a negative refractive power.

【0019】第1レンズ群G1は、物体側に凹面を向け
た正メニスカスレンズを含んでいる。また、第2レンズ
群G2は、負レンズL2nと正レンズL2pとの貼り合わせ
からなり負屈折力の接合面を有する接合レンズL21と、
正屈折力の接合面を有する接合レンズL22とを有する。
さらに、第3レンズ群G3は、少なくとも1つの接合レ
ンズを有する。
The first lens group G1 includes a positive meniscus lens having a concave surface facing the object side. The second lens group G2 includes a cemented lens L21 having a cemented surface having a negative refractive power, which is formed by bonding a negative lens L2n and a positive lens L2p.
And a cemented lens L22 having a cemented surface of positive refractive power.
Further, the third lens group G3 has at least one cemented lens.

【0020】なお、各実施例において、顕微鏡対物レン
ズの像側には、150mmの軸上空気間隔を隔てて結像
レンズ(第2対物レンズ)が配置されている。そして、
顕微鏡対物レンズと結像レンズとの組み合わせにより、
有限光学系が形成されている。なお、以下の各実施例に
おいて示す諸収差図は、顕微鏡対物レンズと結像レンズ
との軸上空気間隔が150mmの場合の諸収差図であ
る。ただし、軸上空気間隔がある程度変化しても、収差
の変動がほとんどないことを本発明者は検証している。
In each embodiment, an image forming lens (second objective lens) is arranged on the image side of the microscope objective lens with an axial air distance of 150 mm. And
By combining the microscope objective lens and the imaging lens,
A finite optical system is formed. The various aberration diagrams shown in each of the following examples are various aberration diagrams when the axial air gap between the microscope objective lens and the imaging lens is 150 mm. However, the present inventors have verified that even if the on-axis air gap changes to some extent, there is almost no change in aberration.

【0021】各実施例における結像レンズは、物体側か
ら順に、両凸レンズと両凹レンズとの接合正レンズG4
と、両凸レンズと両凹レンズとの接合正レンズG5とか
ら構成されている。次の表(1)に、各実施例における
結像レンズの諸元の値を掲げる。表(1)において、左
端の数字は物体側からの各レンズ面の順序を、rは各レ
ンズ面の曲率半径を、dは各レンズ面間隔を、nおよび
νはそれぞれd線(λ=587.6nm)に対する屈折
率およびアッベ数を示している。
The image forming lens in each embodiment is a cemented positive lens G4 composed of a biconvex lens and a biconcave lens in order from the object side.
And a cemented positive lens G5 composed of a biconvex lens and a biconcave lens. The following table (1) lists values of specifications of the imaging lens in each example. In Table (1), the number at the left end indicates the order of each lens surface from the object side, r indicates the radius of curvature of each lens surface, d indicates the distance between the lens surfaces, and n and ν indicate d lines (λ = 587). .6 nm).

【0022】[0022]

【表1】 [Table 1]

【0023】〔実施例1〕図1は、本発明の第1実施例
にかかる顕微鏡対物レンズの構成を示す図である。図示
の顕微鏡対物レンズにおいて、第1レンズ群G1は、物
体側から順に、物体側に凹面を向けた負メニスカスレン
ズ、物体側に凹面を向けた正メニスカスレンズ、物体側
に凹面を向けた正メニスカスレンズ、および物体側に凸
面を向けた負メニスカスレンズと両凸レンズとの接合正
レンズから構成されている。
Example 1 FIG. 1 is a diagram showing the structure of a microscope objective lens according to Example 1 of the present invention. In the illustrated microscope objective lens, the first lens group G1 includes, in order from the object side, a negative meniscus lens having a concave surface facing the object side, a positive meniscus lens having a concave surface facing the object side, and a positive meniscus lens having a concave surface facing the object side. It is composed of a lens and a cemented positive lens composed of a negative meniscus lens having a convex surface directed toward the object side and a biconvex lens.

【0024】また、第2レンズ群G2は、物体側から順
に、物体側に凸面を向けた負メニスカスレンズL2nと両
凸レンズL2pとの接合正レンズL21、および両凸レンズ
と両凹レンズとの接合負レンズL22から構成されてい
る。なお、接合正レンズL21の接合面は負の屈折力を、
接合負レンズL22の接合面は正の屈折力を有する。さら
に、第3レンズ群G3は、物体側から順に、両凹レンズ
と両凸レンズとの接合負レンズから構成されている。
The second lens group G2 includes, in order from the object side, a cemented positive lens L21 composed of a negative meniscus lens L2n having a convex surface facing the object side and a biconvex lens L2p, and a cemented negative lens composed of a biconvex lens and a biconcave lens. It is composed of L22. The cemented surface of the cemented positive lens L21 has a negative refractive power,
The cemented surface of the cemented negative lens L22 has a positive refractive power. Further, the third lens group G3 is composed of, in order from the object side, a cemented negative lens composed of a biconcave lens and a biconvex lens.

【0025】次の表(2)に、本発明の実施例1の諸元
の値を掲げる。表(2)において、fは顕微鏡対物レン
ズのみの焦点距離を、NAは開口数を、βは結像レンズ
を含めた系の倍率を、WDは作動距離をそれぞれ表して
いる。さらに、左端の数字は物体側からの各レンズ面の
順序を、rは各レンズ面の曲率半径を、dは各レンズ面
間隔を、nおよびνはそれぞれd線(λ=587.63
m)に対する屈折率およびアッベ数を示している。
The following table (2) lists the values of specifications of the first embodiment of the present invention. In Table (2), f is the focal length of only the microscope objective lens, NA is the numerical aperture, β is the magnification of the system including the imaging lens, and WD is the working distance. Further, the leftmost number is the order of the lens surfaces from the object side, r is the radius of curvature of each lens surface, d is the distance between each lens surface, and n and ν are d lines (λ = 587.63).
m) shows the refractive index and Abbe number.

【0026】[0026]

【表2】f =5.0 NA=0.95 β =40× WD=0.14 (収差変動の補正における可変間隔) カバーガラスの厚さ 可変間隔d9 0.11 0.65 0.17 1.785 0.23 3.19 (条件対応値) (1)N2n−N2p=0.37 (2)D12/f =0.13〜0.638[Table 2] f = 5.0 NA = 0.95 β = 40 × WD = 0.14 (Variable Interval in Correcting Aberration Variation) Cover Glass Thickness Variable Interval d9 0.11 0.65 0.17 1.785 0.23 3.19 (Value Corresponding to Condition) (1) N2n-N2p = 0.37 (2) D12 / f = 0.13 to 0.638

【0027】図2は、第1実施例における球面収差図で
ある。そして、(a)はカバーガラスの厚さが0.11
である場合の球面収差を、(b)はカバーガラスの厚さ
が0.17である場合の球面収差を、(c)はカバーガ
ラスの厚さが0.23である場合の球面収差をそれぞれ
示している。各球面収差図において、NAは開口数を、
dはd線(λ=587.6nm)を、CはC線(λ=6
56.3nm)を、FはF線(λ=486.1nm)を
それぞれ示している。各球面収差図から明らかなよう
に、本実施例では、カバーガラスの厚さの変化に起因す
る球面収差の変動が良好に補正されていることがわか
る。
FIG. 2 is a spherical aberration diagram of the first embodiment. And, in (a), the thickness of the cover glass is 0.11.
, (B) shows the spherical aberration when the cover glass has a thickness of 0.17, and (c) shows the spherical aberration when the cover glass has a thickness of 0.23. Shows. In each spherical aberration diagram, NA is the numerical aperture,
d is the d line (λ = 587.6 nm) and C is the C line (λ = 6 nm).
56.3 nm) and F indicates the F line (λ = 486.1 nm). As is clear from each spherical aberration diagram, in this example, it is understood that the variation of the spherical aberration due to the change of the thickness of the cover glass is well corrected.

【0028】〔実施例2〕図3は、本発明の第2実施例
にかかる顕微鏡対物レンズの構成を示す図である。図示
の顕微鏡対物レンズにおいて、第1レンズ群G1は、物
体側から順に、物体側に凹面を向けた負メニスカスレン
ズ、物体側に凹面を向けた正メニスカスレンズ、物体側
に凹面を向けた正メニスカスレンズ、および物体側に凸
面を向けた負メニスカスレンズと両凸レンズとの接合正
レンズから構成されている。
[Embodiment 2] FIG. 3 is a diagram showing the structure of a microscope objective lens according to a second embodiment of the present invention. In the illustrated microscope objective lens, the first lens group G1 includes, in order from the object side, a negative meniscus lens having a concave surface facing the object side, a positive meniscus lens having a concave surface facing the object side, and a positive meniscus lens having a concave surface facing the object side. It is composed of a lens and a cemented positive lens composed of a negative meniscus lens having a convex surface directed toward the object side and a biconvex lens.

【0029】また、第2レンズ群G2は、物体側から順
に、物体側に凸面を向けた負メニスカスレンズL2nと両
凸レンズL2pとの接合正レンズL21、および物体側に凹
面を向けた正メニスカスレンズと両凹レンズとの接合負
レンズL22から構成されている。なお、接合正レンズL
21の接合面は負の屈折力を、接合負レンズL22の接合面
は正の屈折力を有する。さらに、第3レンズ群G3は、
物体側から順に、両凸レンズと両凹レンズとの接合負レ
ンズから構成されている。
The second lens group G2 includes, in order from the object side, a positive lens L21 cemented with a negative meniscus lens L2n having a convex surface facing the object side and a biconvex lens L2p, and a positive meniscus lens having a concave surface facing the object side. And a biconcave lens cemented with a negative lens L22. The cemented positive lens L
The cemented surface of 21 has a negative refractive power, and the cemented surface of the cemented negative lens L22 has a positive refractive power. Furthermore, the third lens group G3
It is composed of a cemented negative lens composed of a biconvex lens and a biconcave lens in order from the object side.

【0030】次の表(3)に、本発明の実施例2の諸元
の値を掲げる。表(3)において、fは顕微鏡対物レン
ズのみの焦点距離を、NAは開口数を、βは結像レンズ
を含めた系の倍率を、WDは作動距離をそれぞれ表して
いる。さらに、左端の数字は物体側からの各レンズ面の
順序を、rは各レンズ面の曲率半径を、dは各レンズ面
間隔を、nおよびνはそれぞれd線(λ=587.63
m)に対する屈折率およびアッベ数を示している。
The following table (3) lists the values of specifications of the second embodiment of the present invention. In Table (3), f is the focal length of only the microscope objective lens, NA is the numerical aperture, β is the magnification of the system including the imaging lens, and WD is the working distance. Further, the leftmost number is the order of the lens surfaces from the object side, r is the radius of curvature of each lens surface, d is the distance between each lens surface, and n and ν are d lines (λ = 587.63).
m) shows the refractive index and Abbe number.

【0031】[0031]

【表3】f =5.0 NA=0.9 β =40× WD=0.14 (収差変動の補正における可変間隔) カバーガラスの厚さ 可変間隔d9 0.08 0.39 0.17 1.89 0.3 4.8 (条件対応値) (1)N2n−N2p=0.37 (2)D12/f =0.078〜0.96[Table 3] f = 5.0 NA = 0.9 β = 40 x WD = 0.14 (Variable Interval in Correction of Aberration Variation) Cover Glass Thickness Variable Interval d9 0.08 0.39 0.17 1.89 0.3 4.8 (Condition-Compliant Value) (1) N2n-N2p = 0.37 (2) D12 / f = 0.078-0.96

【0032】図4は、第2実施例における球面収差図で
ある。そして、(a)はカバーガラスの厚さが0.08
である場合の球面収差を、(b)はカバーガラスの厚さ
が0.17である場合の球面収差を、(c)はカバーガ
ラスの厚さが0.3である場合の球面収差をそれぞれ示
している。各球面収差図において、NAは開口数を、d
はd線(λ=587.6nm)を、CはC線(λ=65
6.3nm)を、FはF線(λ=486.1nm)をそ
れぞれ示している。各球面収差図から明らかなように、
本実施例では、カバーガラスの厚さの変化に起因する球
面収差の変動が良好に補正されていることがわかる。
FIG. 4 is a spherical aberration diagram of the second embodiment. And in (a), the cover glass has a thickness of 0.08.
, (B) shows the spherical aberration when the cover glass has a thickness of 0.17, and (c) shows the spherical aberration when the cover glass has a thickness of 0.3. Shows. In each spherical aberration diagram, NA is the numerical aperture, d
Is the d-line (λ = 587.6 nm) and C is the C-line (λ = 65 nm).
6.3 nm) and F indicates the F line (λ = 486.1 nm). As is clear from each spherical aberration diagram,
In this example, it can be seen that the variation in spherical aberration due to the change in the thickness of the cover glass is well corrected.

【0033】[0033]

【効果】以上説明したように、本発明によれば、倍率が
40倍程度で、開口数NAが大きく、カバーガラスの厚
さの変化に起因する諸収差(特に球面収差)の変動を良
好に補正することのできる、構成レンズ枚数の少ないア
ポクロマ−ト級顕微鏡対物レンズを実現することができ
る。
As described above, according to the present invention, the magnification is about 40 times, the numerical aperture NA is large, and the fluctuations of various aberrations (particularly spherical aberration) due to the change of the thickness of the cover glass can be improved. It is possible to realize an apochromat-class microscope objective lens that can be corrected and has a small number of constituent lenses.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例にかかる顕微鏡対物レンズ
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a microscope objective lens according to a first example of the present invention.

【図2】第1実施例における球面収差図であって、
(a)はカバーガラスの厚さが0.11である場合の球
面収差を、(b)はカバーガラスの厚さが0.17であ
る場合の球面収差を、(c)はカバーガラスの厚さが
0.23である場合の球面収差をそれぞれ示している。
FIG. 2 is a spherical aberration diagram of the first embodiment,
(A) shows the spherical aberration when the cover glass has a thickness of 0.11, (b) shows the spherical aberration when the cover glass has a thickness of 0.17, and (c) shows the thickness of the cover glass. The spherical aberrations are shown when the value is 0.23.

【図3】本発明の第2実施例にかかる顕微鏡対物レンズ
の構成を示す図である。
FIG. 3 is a diagram showing a configuration of a microscope objective lens according to a second example of the present invention.

【図4】第2実施例における球面収差図であって、
(a)はカバーガラスの厚さが0.08である場合の球
面収差を、(b)はカバーガラスの厚さが0.17であ
る場合の球面収差を、(c)はカバーガラスの厚さが
0.3である場合の球面収差をそれぞれ示している。
FIG. 4 is a spherical aberration diagram of the second embodiment,
(A) shows the spherical aberration when the thickness of the cover glass is 0.08, (b) shows the spherical aberration when the thickness of the cover glass is 0.17, and (c) shows the thickness of the cover glass. The spherical aberrations are shown in the case where is 0.3.

【符号の説明】[Explanation of symbols]

G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群 G1 First lens group G2 Second lens group G3 Third lens group

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、正の屈折力を有する第
1レンズ群G1と、正の屈折力を有する第2レンズ群G
2と、負の屈折力を有する第3レンズ群G3とを備え、 前記第1レンズ群G1は、物体側に凹面を向けた正メニ
スカスレンズを含み、 前記第2レンズ群G2は、負レンズL2nと正レンズL2p
との貼り合わせからなり負屈折力の接合面を有する接合
レンズL21と、正屈折力の接合面を有する接合レンズL
22とを有し、 前記第3レンズ群G3は、少なくとも1つの接合レンズ
を有し、 前記第1レンズ群G1に対して前記第2レンズ群G2お
よび前記第3レンズ群G3を光軸に沿って相対移動させ
て、カバーガラスの厚さの変化に起因する収差変動を補
正し、 前記負レンズL2nのd線に対する屈折率をN2nとし、前
記正レンズL2pのd線に対する屈折率をN2pとし、前記
第1レンズ群G1と前記第2レンズ群G2との間の軸上
空気間隔をD12とし、全系の焦点距離をfとしたとき、 0.33<N2n−N2p 0.02<D12/f<1.3 の条件を満足することを特徴とする顕微鏡対物レンズ。
1. A first lens group G1 having a positive refractive power and a second lens group G having a positive refractive power in order from the object side.
2 and a third lens group G3 having negative refractive power, the first lens group G1 includes a positive meniscus lens having a concave surface facing the object side, and the second lens group G2 includes a negative lens L2n. And positive lens L2p
And a cemented lens L21 having a cemented surface of negative refractive power and a cemented lens L having a cemented surface of positive refractive power.
22 and the third lens group G3 has at least one cemented lens, and the second lens group G2 and the third lens group G3 are arranged along the optical axis with respect to the first lens group G1. To correct the aberration variation caused by the change in the thickness of the cover glass, the refractive index of the negative lens L2n for the d line is N2n, and the refractive index of the positive lens L2p for the d line is N2p, When the axial air distance between the first lens group G1 and the second lens group G2 is D12 and the focal length of the entire system is f, 0.33 <N2n-N2p 0.02 <D12 / f A microscope objective lens characterized by satisfying the condition of <1.3.
JP8067223A 1996-02-28 1996-02-28 Microscope objective lens Pending JPH09236753A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8067223A JPH09236753A (en) 1996-02-28 1996-02-28 Microscope objective lens
US08/805,472 USH1763H (en) 1996-02-28 1997-02-25 Microscope objective lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8067223A JPH09236753A (en) 1996-02-28 1996-02-28 Microscope objective lens

Publications (1)

Publication Number Publication Date
JPH09236753A true JPH09236753A (en) 1997-09-09

Family

ID=13338705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8067223A Pending JPH09236753A (en) 1996-02-28 1996-02-28 Microscope objective lens

Country Status (2)

Country Link
US (1) USH1763H (en)
JP (1) JPH09236753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093530A1 (en) * 2008-01-23 2009-07-30 Nikon Corporation Microscope system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890631B (en) * 2012-07-03 2016-08-24 奥林巴斯株式会社 Objective lens optical system for endoscope
CN114488504B (en) * 2021-12-31 2024-01-16 宁波永新光学股份有限公司 Apochromatic objective lens with large numerical aperture

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799680A (en) * 1972-01-03 1974-03-26 Kollmorgen Corp Photometer optical system having viewing magnification and light attenuation means
US4666256A (en) * 1982-11-30 1987-05-19 Nippon Kogaku K. K. Microscope objective lens
JPS61275812A (en) * 1985-05-31 1986-12-05 Nippon Kogaku Kk <Nikon> Microscope objective
JP3313163B2 (en) * 1992-12-10 2002-08-12 オリンパス光学工業株式会社 Microscope objective lens
JP3254786B2 (en) * 1993-02-24 2002-02-12 株式会社ニコン Microscope objective lens
JPH07230038A (en) * 1994-02-17 1995-08-29 Nikon Corp Microscope objective

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093530A1 (en) * 2008-01-23 2009-07-30 Nikon Corporation Microscope system
JPWO2009093530A1 (en) * 2008-01-23 2011-05-26 株式会社ニコン Microscope insemination observation method and microscope system for microinsemination
US8098427B2 (en) 2008-01-23 2012-01-17 Nikon Corporation Microscopic insemination viewing method

Also Published As

Publication number Publication date
USH1763H (en) 1998-12-01

Similar Documents

Publication Publication Date Title
JPH10274742A (en) Immersion microscopic objective lens
JPH0933803A (en) Image forming lens
JP5445898B2 (en) Immersion microscope objective lens
JPH0990224A (en) Zoom lens
JP2003015047A (en) Immersion system microscope objective
JPH07199070A (en) Zoom lens
JP2007133071A (en) Microscope objective lens of liquid immersion system
JPH10227977A (en) Spherical aberration correction optical system
JPH09127415A (en) Two-group zoom lens
JPH05150160A (en) Zoom lens
JPH09138352A (en) Immersion microscopic objective lens
JP4032502B2 (en) Large aperture ratio in-focus super telephoto lens
JP2002098903A (en) Immersion system microscopic objective lens
US5889618A (en) Object lens for microscope
JPH09222565A (en) Microscope objective
JPH10333044A (en) Microscope objective lens
JPH09236753A (en) Microscope objective lens
JP3724521B2 (en) Microscope objective lens
JPH0567003B2 (en)
JPH09105862A (en) Zoom lens system with finite conjugate distance
JPH0821952A (en) Zoom lens for finite distance
JPH09138351A (en) Low-magnification microscopic object lens
JP2000338400A (en) Zoom lens
JP2004212541A (en) Zoom lens
JPH0567002B2 (en)