JPH0567003B2 - - Google Patents

Info

Publication number
JPH0567003B2
JPH0567003B2 JP11859885A JP11859885A JPH0567003B2 JP H0567003 B2 JPH0567003 B2 JP H0567003B2 JP 11859885 A JP11859885 A JP 11859885A JP 11859885 A JP11859885 A JP 11859885A JP H0567003 B2 JPH0567003 B2 JP H0567003B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
refractive power
cemented surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11859885A
Other languages
Japanese (ja)
Other versions
JPS61275812A (en
Inventor
Hiroshi Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP11859885A priority Critical patent/JPS61275812A/en
Publication of JPS61275812A publication Critical patent/JPS61275812A/en
Publication of JPH0567003B2 publication Critical patent/JPH0567003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、顕微鏡用の対物レンズ、特に、カバ
ーガラスの厚さが変化した場合の収差変動を補正
し得る所謂補正環付対物レンズに関する。 〔発明の背景〕 一般に、生物分野において、顕微鏡標本を作成
する場合には、血液などの塗抹標本などを除けば
ほとんどの場合が、スライドグラスの上に試料を
置き、その上にカバーガラスをのせて封入する、
いわゆるカバーガラス付の標本である。このカバ
ーガラスの厚みや屈折率はJISにも規定されてお
り、通常は、0.17mmの厚さを、設計にあたつて基
準厚としている。このカバーガラスの厚みや屈折
率の誤差が収差に影響を与えることは既に公知の
ことであり、油浸系対物レンズの場合は、厚みと
屈折率の誤差が、乾燥系の場合には特に厚みの誤
差が大きく影響を与える。この影響は開口数
(N.A.)が大きくなる程顕著であり、N.A.が0.8
を越える場合にはいわゆる補正環機構を付けて、
収差の変動を打消す必要がある。開口数が0.9を
越えると特に変動が著しく、補正環機構なしでは
もはや使用不可能と言わざるを得ない。とりわ
け、最近は高解像のレンズが望まれており、しか
も写真撮影や検鏡能率の向上の為、超広視野まで
像面の平坦性の良いレンズが求められている。 補正環付対物レンズとしては、例えば、特開昭
51−87056号公報に開示されたものがある。その
実施例1は倍率60×でN.A.が0.95、カバーガラス
補正範囲が0.14〜0.19mmであり、実施例2は倍率
40×でN.A.が0.85、カバーガラス補正範囲が0.14
〜0.19mmである。この実施例1はN.A.が0.95で解
像力は十分であるがペツツヴアール和が0.6(f=
1の時)と、極端に大きく像の平坦性が良くな
い。これでは、視野の中心しかピントが合わず周
辺を同時に観察や写真撮影することができない。
また、実施例2はペツツヴアール和が0.03(f=
1の時)で、実施例1よりは改良されており、平
坦性は良くなつているが、N.A.が0.85で解像力の
点では物足りない。そして、両者ともカバーガラ
スの補正範囲が0.14〜0.19であり、未だ十分とは
いえない。なぜなら、カバーガラスの厚みのバラ
ツキの他に、実際には、標本自体の厚みと封入剤
の厚みが加わるためそれらを含めた場合の平行平
面層の厚みは、少なくとも0.13〜0.21までは変わ
ると考えられるからである。 このように、高い解像力と平坦な像面とを同時
に有する補正環付対物レンズを得ることは困難な
ことであつたが、その理由としては、次のような
ものがある。 一つは、まず、色収差の補正であり、これは、
単に軸上の色収差のみでなく、大きな開口にわた
つて、即ち、高次の球面収差においても色による
乱れをなくすことが困難であつたからである。そ
して、もう一つの理由は像面の平坦性の問題であ
る。この問題は、像面湾曲を補正することである
が、ペツツヴアール和を小さくすると色収差が悪
くなる為、色収差と像面湾曲とを同時に補正する
ことは、開口数が大きくなるにつれて、飛躍的に
難しくなつてくる。カバーガラスの厚さが基準の
0.17mmでさえも収差補正が困難であるのに、厚み
が変化した場合にも、その収差の変動を打消すよ
うに各群に収差の補正量を分担させるのは、更に
困難であることは容易に想像できよう。 〔発明の目的〕 本発明の目的は、開口数を0.95という乾燥系と
しては最大にまで大きくし、かつ像面の平坦性を
極めて良好に維持しつつ、カバーガラスの厚さの
大きな変化に対しても優れた結像性能を維持し得
るプランアポクロマート対物レンズを提供するこ
とにある。 〔発明の概要〕 本発明は、第1図に示す如く、全体を3つの群
に分け、物体O側から順に、物体側に凹面を向け
た正メニスカスレンズを有して物体面からの光線
束を収斂光束に変換する正屈折力の第1レンズ群
G1、発散性の接合面を有する貼合せレンズ成分
と収斂性の接合面を有する貼合せレンズ成分とを
有し合成で正屈折力を持つ第2レンズ群G2、接
合面を有する負屈折力の第3レンズ群G3から成
つている。そして、物体面と第1レンズ群G1
の間に配置される平行平面板P(通常はカバーガ
ラス)の厚みの変化による収差の変動を、第1レ
ンズ群G1に対して第2レンズ群G2と第3レンズ
群G3を相対的に移動することによつて補正する
ものである。具体的には、平行平面板Pの厚さが
基準状態よりも小さい場合には、第1レンズ群
G1と第2レンズ群G2との間隔が小さくなるよう
に第2レンズ群G2と第3レンズ群G3とを移動し、
平行平面板Pの厚さが基準状態よりも大きい場合
には、第1レンズ群G1と第2レンズ群G2との間
隔が大きくなるように第2レンズ群G2と第3レ
ンズ群G3とを移動することによつて、良好な補
正が達成される。 ここで、全系の合成焦点距離をF、第1レンズ
群G1の焦点距離をf1、第2レンズ群G2の焦点距
離をf2、第1レンズ群G1と第2レンズ群G2との
空気間隔をD1とするとき、 1.1<f1/F<4 (1) 0.2<D1/F<1.5 (2) 5<f2/F<20 (3) の各条件を満足することが必要である。 このような本発明の構成により、従来のものに
比べ開口数(N.A.)が大きくて解像力が高く、
色収差も良好に補正され、像面の平坦性に優れた
プランアポクロマート対物レンズであつて、カバ
ーガラスの補正範囲も従来より一層大きくするこ
とが可能となつた。 本発明では全体を上述のごとき3つの群に分け
て、各々の群に収差の補正を分担させている。そ
こで、各レンズ群の収差特性について説明する。 まず、各レンズ群G1であるが、これは収斂作
用を有して物体面からの発散光束を収斂光束に変
換し、第2レンズ群G2に入射する光束にある程
度の角度をもたせている。この光線の角度が光軸
に平行であれば、第1レンズ群G1と第2レンズ
群G2とが相対的に移動しても第2レンズ群G2
入射する光線の高さが変わらないので、収差の変
動はほとんどなく収差補正機構としては役に立た
ない。逆に、光線の角度が強すぎると少しの移動
で収差補正が可能ではあるが第1レンズ群G1
屈折力の負担が大きすぎて、収差の補正そのもの
が困難になる。より具体的には、第1レンズ群
G1としての倍率は10〜15倍が適当であり、第2
レンズ群G2以降で更に4倍程度の倍率をかけて、
総合で倍率40倍〜60倍とするのが望ましい。この
ためにも、第1レンズ群G1としてのパワーは上
記(1)式で示す程度であることが必要である。 この第1レンズ群G1から出たある傾きを有す
る収斂光束の第2群に入射する高さを、第2、第
3群を第1群に対して相対的に移動させることに
より変えて、第2、第3群で発生する球面収差を
はじめとする諸収差の量を変化させて、平行平面
板の厚み誤差による収差変動を打消しているわけ
である。これらのことは、後掲のザイデルの収差
係数からもわかるであろう。それによれば、平行
平面板で発生する球面収差が、その厚みにより大
きく異なるのに対して、第1群自体で発生する球
面収差の量は平行平面板の厚みが変わつてもほと
んど変化しないことがわかる。 次に第2レンズ群G2と第3レンズ群G3につい
てであるが、これらの群においては、平行平面板
の厚みが異なる場合には発生する収差量が異なつ
てくる。これは、第2レンズ群G2に入射する光
束の高さが(厳密に言うと、その傾きも少し変わ
る)、第2群と第3群とを移動することにより変
わるからである。これらの収差の変動量と平行平
面板による収差の変動量とが互いに打消し合つ
て、全系としての収差変動を補正しているわけで
ある。 以下に上記の各条件式について説明する。 (1)式の条件は、第1レンズ群G1の屈折力の適
切な範囲を定めるものであり、収差の上では主に
球面収差の補正に影響を与え、またW.D.(作動距
離)にも関連している。この条件の下限を外れる
と、第1レンズ群G1の焦点距離f1が相対的に小さ
くなつて、第1群の光束の収斂作用が強くなりす
ぎる為、W.D.が小さくなり、実用的ではなくな
る。また、球面収差が補正不足になり特に、高次
の短波長についての球面収差が大きく残存してし
まう。更に、負の非対称収差も発生し、これも同
様に短波長側で特に大きく残存する。像面弯曲に
関して言えばf1が、小さくなることにより、ペツ
ツヴアール和は逆に大きくなる為、像面弯曲も大
きくなり平坦性が悪くなる。 逆に、この条件の上限を越えると、f1が大きく
なつて、第1レンズ群G1を射出する光束の収斂
作用は弱まる。従つて光束が大きく広がり、球面
収差が大きくなつて、後群としての第2、第3群
での補正が困難になつてくる。 条件式(2)は第1レンズ群G1と第2レンズ群G2
との空気間隔の適切な値を規定するものである。
平行平面板の厚みが基準厚よりも小さくなると、
負の球面収差が生じる。この為、第2、第3群を
物体側に移動させ、即ち第1群と第2群との空気
間隔を小さくして、第2群への光線の入射高が小
さくならないうちに、第2、第3群に入射させる
ことによつて第2レンズ群G2と第3レンズ群G3
とで正の球面収差を発生させ、全系としての球面
収差の変動を打消すことができる。 ところが、第1レンズ群G1と第2レンズ群G2
との空気間隔D1が小さくなつて条件(2)の下限を
越えると収差的には打消すことができても、物理
的に第1群の後側のレンズ支持金物と第2群の前
側のレンズ支持金物とが接触してしまう。また、
この空気間隔D1の収差に対する効き方を大きく
する為に、第1レンズ群G1の焦点距離f1を小さく
して、第1群から第2群への光束の傾きを強くす
ると(1)式についても述べたように、短波長側での
高次の球面収差の補正が困難になる。 条件(2)の上限を越えると、第1群の収斂作用が
強いままで第1レンズ群G1と第2レンズ群G2
の空気間隔D1を大きくすると、第2レンズ群G2
への光線の入射高が小さくなつて全長が短かくな
つてしまう。全長が短くなる場合に、全系を比例
拡大するとレンズの合成中心厚が長くなつて、同
焦点性を維持できなくなつてしまう。そこで、全
長を長くするために、第1群の収斂作用を弱める
と、球面収差の変動を打ち消すためには第1レン
ズ群G1と第2レンズ群G2との空気間隔を大きく
変化させることが必要となつてしまい十分な補正
が困難になる。この場合、軸上の収差は打消せて
も軸外の収差が打消すことができず、主に非対称
の収差が補正しきれなくなる。 第2レンズ群G2の屈折力の適切な配分を規定
する条件(3)は、第2レンズ群G2における収差補
正作用を他の群との関係で適正状態に維持するも
のであり、第2レンズ群G2中の接合面は主に色
収差の補正のために設けられたものである。即
ち、第2レンズ群G2は第1レンズ群G1では補正
しきれなかつた倍率の色収差を大きく補正し、第
1群において短波長側での高次の球面収差がオー
バーに行きすぎた分を第2群で補正している。 この条件(3)の下限を越えて、第2群の屈折力を
強くすると第1群からの収斂光束が更に強く収レ
ンされる為、所定の倍率にするには、これを受け
る第3群の負の屈折力を強くせざるを得なくな
る。ところが、この第2群の正屈折力が強くなり
すぎると第2群を出て第3群への入射高が低くな
りすぎて、全長が短かくなつてしまう。また、負
の球面収差が大きくなり、第1群で発生する負の
球面収差と併せて、負の量が大きくなりすぎ第3
群で正の球面収差を発生させて補正するには大き
すぎて良好な補正状態を維持することが難しくな
り、特に高次の球面収差が補正しきれなくなる。 逆に、条件(3)の上限を越えて第2群の屈折力が
弱くなると、収斂作用も弱くなり第3群への入射
高が大きくなり全長が長くなつてしまう。全体を
比例縮小して短かくすると、W.D.が小さくなつ
て操作性が悪くなつてしまう。 さて、以上の如き本発明による基本構成におい
て、第2レンズ群G2の具体的構成としては、物
体側に、物体側に凸面を向けた発散性の接合面を
有する貼合せレンズ成分を設け、続いて像側に凸
面を向けた収斂性の接合面を有する貼合せレンズ
成分を設けることが望ましい。そして、物体側に
凸面を向けた発散性接合面の曲率半径をR1、こ
の発散性接合面を形成する物体側負レンズの屈折
力及びアツベ数をN1o,ν1o、像側正レンズの屈折
力及びアツベ数をN1p,ν1pとし、像側に凸面を向
けた収斂性接合面の曲率半径をR2、この収斂性
接合面を形成する物体側正レンズの屈折力及びア
ツベ数をN2p,ν2p、像側負レンズの屈折力及びア
ツベ数をN2o,ν2oとするとき、 0<(|Φ1|−|Φ2|)×F<0.15 (4) 但し、Φ1=N1o−N1p/R1 Φ2=N2o−N2p/R2 40<ν1p−ν1o (5) 15<ν2o−ν2p (6) の条件を満足することが望ましい。 上記の条件式(4)は、第2レンズ群G2内の2つ
の接合面のパワーに関するものである。 第2群には少なくとも2つの接合面が存在し、
物体側の接合面は色収差補正の作用をし、像側の
接合面は色収差逆補正の作用をしている。これ
は、主に倍率色収差を補正するためである。即
ち、第2群の前方成分で軸上色収差と倍率色収差
とを大きく補正し、第2群の後方成分で軸上色収
差をもとに戻し、倍率色収差を少し戻す。そし
て、最終的には第3群の逆色消しで、全系として
の球面収差と軸上色収差及び倍率色収差のバラン
スを補正することとなる。 この条件(4)の下限を越えると、前方成分の接合
面のパワーが弱くなり、球面収差と軸上色収差、
倍率色収差の補正量が小さくなる。この為、第2
群全体としての球面収差の補正量が小さくなり、
第3群の負担が大きくなりすぎてしまう。この結
果第3群の接合面のパワーが強くなつて、軸上色
収差が大きく補正不足となつてしまう。逆に、上
限を越えると、前方成分の接合面のパワーが強く
なりすぎて、球面収差が補正過剰になり、第3群
の接合面のパワーを弱くする結果軸上色収差が補
正過剰となつてしまう。 上記条件(5)は第2群色消しに関する。(4)式にお
いて述べたように、第2群の前群の接合面は、色
消しと、球面収差の補正に大きく寄与している。
球面収差の補正量は前記(4)式により接合面の曲率
半径Rに大きく依存するが、色収差の補正量は、
更に、これに加えて、この接合レンズを構成する
正レンズ、負レンズのアツベ数が大きく関与す
る。この条件式(5)は、色収差を補正する為の第2
群の前方成分の接合レンズを構成する正レンズの
アツベ数ν1pと、負レンズのアツベ数ν1oの関係を
与えるものである。この条件式を外れる場合に
は、アツベ数の差が小さくなり、色補正の量は小
さくなる。その結果、第2群の後群、第3群での
逆色消しの量も小さくせざるを得ず、結局倍率色
収差が大きく残存してしまう。これは、倍率色収
差の補正が第1群及び第2群の前方成分での色消
しに大きく依存しており、そこで補正過剰になつ
た軸上色収差を第2群の後方成分と第3群とで戻
している為である。尚、アツベ数の差の小さいの
を、接合面の曲率を強くすることにより、カバー
しようとすると、球面収差が補正過剰になり、特
に短波長側で高次の球面収差がオーバーに行きす
ぎてしまう。 上記(6)式の条件は、第2レンズ群G2中の後方
成分における逆色消しに関する条件である。前に
述べたように、第2群は前方成分と後方成分とか
ら構成されており、前方成分は色消し、後方成分
は逆色消しとして、軸上色収差はほぼ打消し合つ
ている。これに対して、倍率色収差は前方成分で
大きく補正し、後方成分で少し戻しているが、ま
だ補正不足であり、その分は第3群で補正してい
る。 従つて、条件(6)を外れ、第2群の後方成分を構
成する正レンズ、負レンズのアツベ数の差が小さ
くなるということは、第2群の後方成分の逆色消
しの量が小さくなることであり、その分の負担が
倍率色収差の補正効果の大きい、第3にかかつて
くる為、倍率色収差が補正過剰になつてしまう。
また、後方成分の接合面の曲率を強くすることに
より逆色消しの量を大きくすると、ここでの球面
収差が大きく補正不足となり、第3群で更に大き
く補正せねばならず、やはり倍率色収差が補正過
剰となつてしまう。 〔実施例〕 以下に、本発明による実施例について説明す
る。第1図に示した本発明による第1実施例は、
倍率40倍、N.A.0.95を有するプランアポクロマー
ト対物レンズである。図中には、軸上物点からの
光線の様子を実線にて示した。この第1実施例で
は、第1レンズ群G1は物体側から順に、物体側
に凹面を向けた正メニスカスレンズL1、同じく
物体側に凹面を向けた正メニスカスレンズL2
像側による曲率の強い面を向けた正レンズL3
び像側により曲率の強い面を向けた貼合せの正レ
ンズL4から構成され、第2レンズ群G2は物体側
に凸面をむけた負メニスカスレンズと物体側によ
り強い曲率の面を向けた正レンズとの接合からな
る前方成分L5と像側により強い曲率の面を向け
た正レンズと物体側により曲率の強い面を向けた
負レンズとの接合からなる後方成分L6とで構成
されている。そして、第3レンズ群G3は像側に
凹面を向けた貼合せ負レンズ成分L7で構成され
ており、この負レンズ成分L7は両凸正レンズと
両凹負レンズとの接合で形成されている。 以下の表1に上記第1実施例の諸元を示す。表
中、左端の数字は物体側からの順序を表し、屈折
率及びアツベ数はd線(λ=587.6nm)対する値
である。また、d0は平行平面板(カバーガラス)
の対物レンズ側の面から対物レンズの第1面の頂
点までの距離である。 尚、以下の実施例では、いずれも物体面と第1
レンズ群G1との間に配置される平行平面板Pの
厚さをt、d線に対する屈折率及びアツベ数をそ
れぞれ、nd、νdとするとき、 t=0.17 nd=1.522 νd=58.8 であるものとしてこの状態を基準に設計され、平
行平面板Pの厚さtが変化した場合の補正を行う
ものとして設計されている。
[Technical Field of the Invention] The present invention relates to an objective lens for a microscope, and particularly to a so-called objective lens with a correction ring capable of correcting aberration fluctuations when the thickness of a cover glass changes. [Background of the Invention] Generally, in the biological field, when preparing a microscopic specimen, in most cases, except for smears such as blood, the specimen is placed on a slide glass and a cover glass is placed on top of it. and enclose it,
This is a so-called specimen with a cover glass. The thickness and refractive index of this cover glass are also specified by JIS, and a thickness of 0.17 mm is usually used as the standard thickness for design. It is already known that errors in the thickness and refractive index of this cover glass affect aberrations. error has a large influence. This effect becomes more pronounced as the numerical aperture (NA) increases, and NA is 0.8.
When exceeding
It is necessary to cancel fluctuations in aberrations. When the numerical aperture exceeds 0.9, the fluctuation is particularly significant, and it must be said that it is no longer usable without a correction ring mechanism. In particular, high-resolution lenses are desired these days, and lenses with good image plane flatness over an ultra-wide field of view are also required in order to improve the efficiency of photography and microscopy. As an objective lens with a correction ring, for example,
There is one disclosed in Publication No. 51-87056. The first example has a magnification of 60 × , the NA is 0.95, and the cover glass correction range is 0.14 to 0.19 mm, and the second example has a magnification of 60×.
NA is 0.85 at 40 × , cover glass correction range is 0.14
~0.19mm. In Example 1, the NA is 0.95 and the resolution is sufficient, but the Petzval sum is 0.6 (f =
1), it is extremely large and the flatness of the image is not good. With this, only the center of the field of view is in focus, making it impossible to observe or photograph the periphery at the same time.
In addition, in Example 2, the Petzvaar sum is 0.03 (f=
1), which is an improvement over Example 1, and the flatness is better, but the NA is 0.85, which is unsatisfactory in terms of resolution. In both cases, the correction range of the cover glass is 0.14 to 0.19, which is still not sufficient. This is because in addition to variations in the thickness of the cover glass, the thickness of the specimen itself and the thickness of the mounting medium are actually added, so when these are included, the thickness of the parallel plane layer will vary by at least 0.13 to 0.21. This is because it will be done. As described above, it has been difficult to obtain an objective lens with a correction ring that has high resolving power and a flat image plane at the same time, and the reasons for this are as follows. One is the correction of chromatic aberration, which is
This is because it has been difficult to eliminate color disturbances not only in axial chromatic aberrations but also in high-order spherical aberrations over a large aperture. Another reason is the problem of flatness of the image plane. The problem is to correct curvature of field, but as the Petzvaar sum decreases, chromatic aberration worsens, so it becomes dramatically more difficult to correct chromatic aberration and curvature of field at the same time as the numerical aperture increases. I'm getting old. The thickness of the cover glass is the standard
It is difficult to correct aberrations even at 0.17mm, but even when the thickness changes, it is even more difficult to have each group share the amount of aberration correction so as to cancel out the fluctuations in aberrations. It's easy to imagine. [Object of the Invention] The object of the present invention is to increase the numerical aperture to 0.95, the maximum for a dry system, and to maintain extremely good flatness of the image plane, while also being able to withstand large changes in the thickness of the cover glass. It is an object of the present invention to provide a plan apochromat objective lens that can maintain excellent imaging performance even when the temperature is low. [Summary of the Invention] As shown in FIG. 1, the present invention divides the entire body into three groups, and sequentially from the object O side, includes a positive meniscus lens with a concave surface facing the object side. The first lens group has a positive refractive power that converts the light into a convergent light beam.
G 1 , a second lens group G 2 having a composite positive refractive power, which includes a laminated lens component having a diverging cemented surface and a laminated lens component having a convergent cemented surface; a negative refracting lens having a cemented surface; It consists of a third lens group G3 . Then, variations in aberration due to changes in the thickness of the parallel plane plate P (usually a cover glass) disposed between the object plane and the first lens group G1 are adjusted to the second lens with respect to the first lens group G1 . This is corrected by relatively moving the group G2 and the third lens group G3 . Specifically, when the thickness of the parallel plane plate P is smaller than the reference state, the first lens group
moving the second lens group G 2 and the third lens group G 3 so that the distance between G 1 and the second lens group G 2 becomes smaller;
When the thickness of the parallel plane plate P is larger than the reference state, the second lens group G 2 and the third lens group G are adjusted so that the distance between the first lens group G 1 and the second lens group G 2 becomes larger. A good correction is achieved by moving 3 and 3 . Here, the combined focal length of the entire system is F, the focal length of the first lens group G1 is f1 , the focal length of the second lens group G2 is f2 , and the first lens group G1 and the second lens group G When the air distance between the It is necessary to. Due to the configuration of the present invention, the numerical aperture (NA) is larger and the resolution is higher than that of conventional ones.
It is a plan apochromatic objective lens with excellent correction of chromatic aberration and excellent flatness of the image plane, and it has become possible to make the correction range of the cover glass even wider than before. In the present invention, the entire lens is divided into three groups as described above, and each group is responsible for correcting aberrations. Therefore, the aberration characteristics of each lens group will be explained. First, each lens group G1 has a converging effect, converting a divergent light beam from the object surface into a convergent light beam, and makes the light beam incident on the second lens group G2 have a certain angle. . If the angle of this ray is parallel to the optical axis, even if the first lens group G 1 and the second lens group G 2 move relative to each other, the height of the ray that enters the second lens group G 2 will change. Since there is no aberration, there is almost no variation in aberrations, making it useless as an aberration correction mechanism. On the other hand, if the angle of the light ray is too strong, although aberrations can be corrected with a small amount of movement, the burden on the refractive power of the first lens group G1 is too large, making it difficult to correct the aberrations themselves. More specifically, the first lens group
The appropriate magnification for G 1 is 10 to 15 times, and the second
Applying an additional 4x magnification to lens group G 2 and beyond,
A total magnification of 40x to 60x is desirable. For this reason as well, it is necessary that the power of the first lens group G1 be as shown in the above equation (1). By changing the height at which the convergent light flux having a certain inclination that comes out of the first lens group G1 enters the second group, by moving the second and third groups relative to the first group, By changing the amount of various aberrations including spherical aberration occurring in the second and third groups, aberration fluctuations due to thickness errors of the plane parallel plates are canceled out. These facts can also be understood from Seidel's aberration coefficients, which will be described later. According to this, while the spherical aberration generated in a plane-parallel plate varies greatly depending on its thickness, the amount of spherical aberration generated in the first group itself hardly changes even if the thickness of the plane-parallel plate changes. Recognize. Next, regarding the second lens group G2 and the third lens group G3 , in these groups, if the thicknesses of the parallel plane plates are different, the amount of aberration generated will be different. This is because the height of the light beam incident on the second lens group G2 (strictly speaking, its slope also changes slightly) changes by moving the second and third groups. The amount of variation in these aberrations and the amount of variation in aberration due to the plane-parallel plate cancel each other out, thereby correcting the aberration variation as a whole system. Each of the above conditional expressions will be explained below. The condition of equation (1) determines the appropriate range of the refractive power of the first lens group G1 , and in terms of aberrations, it mainly affects the correction of spherical aberration, and also affects the WD (working distance). Related. If the lower limit of this condition is exceeded, the focal length f 1 of the first lens group G 1 becomes relatively small, and the convergence effect of the light flux of the first lens group becomes too strong, resulting in a small WD, making it impractical. . In addition, spherical aberration is insufficiently corrected, and in particular, a large amount of spherical aberration remains at high-order short wavelengths. Furthermore, negative asymmetric aberration also occurs, and this similarly remains particularly large on the short wavelength side. Regarding the field curvature, as f 1 becomes smaller, the Petzvaar sum becomes larger, so the field curvature also becomes larger and the flatness deteriorates. Conversely, when the upper limit of this condition is exceeded, f 1 increases and the convergence effect of the light beam exiting the first lens group G 1 weakens. Therefore, the light beam spreads greatly, and spherical aberration increases, making it difficult to correct it with the second and third rear groups. Conditional expression (2) is the first lens group G 1 and the second lens group G 2
It specifies the appropriate value for the air spacing between the
When the thickness of the parallel plane plate becomes smaller than the standard thickness,
Negative spherical aberration occurs. For this reason, the second and third groups are moved toward the object side, that is, the air gap between the first group and the second group is reduced, and the second group is , the second lens group G 2 and the third lens group G 3
It is possible to generate positive spherical aberration and cancel out fluctuations in spherical aberration as a whole system. However, the first lens group G 1 and the second lens group G 2
If the air distance D 1 becomes smaller and exceeds the lower limit of condition (2), even if the aberrations can be canceled, physically contact with the lens support hardware. Also,
In order to increase the effect of this air distance D 1 on aberrations, the focal length f 1 of the first lens group G 1 is made smaller and the inclination of the light flux from the first group to the second group is increased (1) As described with respect to the formula, it becomes difficult to correct higher-order spherical aberration on the short wavelength side. When the upper limit of condition (2) is exceeded, if the air distance D 1 between the first lens group G 1 and the second lens group G 2 is increased while the convergence effect of the first lens group remains strong, the second lens group G 2
The height of incidence of the light beam on the lens becomes smaller, and the total length becomes shorter. When the total length is shortened, if the entire system is expanded proportionally, the composite center thickness of the lens increases, making it impossible to maintain parfocality. Therefore, if the convergence effect of the first lens group is weakened in order to increase the overall length, the air distance between the first lens group G 1 and the second lens group G 2 must be greatly changed in order to cancel out the fluctuations in spherical aberration. is required, making it difficult to make sufficient correction. In this case, even if axial aberrations can be canceled, off-axis aberrations cannot be canceled, and mainly asymmetric aberrations cannot be completely corrected. Condition (3), which defines the appropriate distribution of refractive power of the second lens group G2 , is to maintain the aberration correction effect in the second lens group G2 in an appropriate state in relation to other groups. The cemented surface in the second lens group G2 is provided mainly to correct chromatic aberration. In other words, the second lens group G 2 largely corrects the chromatic aberration of magnification that could not be completely corrected by the first lens group G 1 , and compensates for the excessive high-order spherical aberration on the short wavelength side in the first lens group. is corrected by the second group. If the refractive power of the second group is strengthened beyond the lower limit of this condition (3), the convergent light beam from the first group will be converged even more strongly. The negative refractive power of the lens must be strengthened. However, if the positive refractive power of the second group becomes too strong, the height of incidence from the second group to the third group becomes too low, resulting in a short overall length. In addition, the negative spherical aberration becomes large, and together with the negative spherical aberration that occurs in the first lens group, the negative amount becomes too large and the third lens group becomes larger.
It is too large to generate and correct positive spherical aberration in the group, making it difficult to maintain a good correction state, and in particular, high-order spherical aberration cannot be corrected completely. Conversely, if the upper limit of condition (3) is exceeded and the refractive power of the second group becomes weak, the convergence effect will also become weak, the height of incidence on the third group will increase, and the total length will become longer. If you reduce the overall length proportionally and make it shorter, the WD will become smaller and the operability will deteriorate. Now, in the basic configuration according to the present invention as described above, the specific configuration of the second lens group G2 is to provide a bonded lens component having a diverging cemented surface with a convex surface facing the object side on the object side, Subsequently, it is desirable to provide a laminated lens component having a convergent cemented surface with a convex surface facing the image side. Then, the radius of curvature of the diverging cemented surface with the convex surface facing the object side is R 1 , the refractive power and Atsube number of the negative lens on the object side forming this diverging cemented surface are N 1o , ν 1o , and the positive lens on the image side is The refractive power and Atsube number are N 1p and ν 1p , the radius of curvature of the convergent cemented surface with the convex surface facing the image side is R 2 , and the refractive power and Atsube number of the object-side positive lens forming this convergent cemented surface are When N 2p , ν 2p , and the refractive power and Atsube number of the image side negative lens are N 2o , ν 2o , 0<(|Φ 1 |−|Φ 2 |)×F<0.15 (4) However, Φ 1 =N 1o −N 1p /R 1 Φ 2 =N 2o −N 2p /R 2 40<ν 1p −ν 1o (5) It is desirable to satisfy the following conditions: 15<ν 2o −ν 2p (6). The above conditional expression (4) relates to the power of the two cemented surfaces in the second lens group G2 . There are at least two joint surfaces in the second group,
The object-side cemented surface functions to correct chromatic aberration, and the image-side cemented surface functions to reverse chromatic aberration correction. This is mainly for correcting lateral chromatic aberration. That is, the front component of the second group greatly corrects the longitudinal chromatic aberration and the chromatic chromatic aberration of magnification, and the rear component of the second group returns the axial chromatic aberration to its original state and slightly returns the chromatic aberration of magnification. Finally, the balance between spherical aberration, longitudinal chromatic aberration, and lateral chromatic aberration as a whole system is corrected by reverse achromatic aberration in the third group. When the lower limit of condition (4) is exceeded, the power of the cemented surface of the front component becomes weaker, causing spherical aberration and axial chromatic aberration.
The amount of correction for lateral chromatic aberration becomes smaller. For this reason, the second
The amount of spherical aberration correction for the group as a whole becomes smaller,
The burden on the third group becomes too great. As a result, the power of the cemented surface of the third group becomes strong, and the longitudinal chromatic aberration becomes large and undercorrected. Conversely, if the upper limit is exceeded, the power of the cemented surface of the front component becomes too strong, resulting in over-correction of spherical aberration, and as a result of weakening the power of the cemented surface of the third group, axial chromatic aberration becomes over-corrected. Put it away. The above condition (5) relates to second group achromatization. As stated in equation (4), the cemented surface of the front group of the second group greatly contributes to achromatization and correction of spherical aberration.
The amount of correction for spherical aberration depends largely on the radius of curvature R of the cemented surface according to equation (4) above, but the amount of correction for chromatic aberration is
Furthermore, in addition to this, the Abbe numbers of the positive lens and negative lens that make up this cemented lens are greatly involved. This conditional expression (5) is the second condition for correcting chromatic aberration.
This gives the relationship between the Abbe number ν 1p of the positive lens constituting the cemented lens of the front component of the group and the Abbe number ν 1o of the negative lens. When this conditional expression is not satisfied, the difference in Abbe's numbers becomes small and the amount of color correction becomes small. As a result, the amount of reverse achromatization in the rear group of the second group and the third group has to be reduced, and as a result, large lateral chromatic aberration remains. This is because the correction of lateral chromatic aberration is largely dependent on achromatization in the front components of the first and second groups, and the overcorrected longitudinal chromatic aberration is corrected by the rear components of the second group and the third group. This is because it is returned with In addition, if we try to compensate for the small difference in Atsube number by increasing the curvature of the cemented surface, the spherical aberration will be overcorrected, and the higher-order spherical aberration will be excessively excessive, especially on the short wavelength side. Put it away. The condition of equation (6) above is a condition regarding reverse achromatization in the rear component in the second lens group G2 . As mentioned above, the second group is composed of a front component and a rear component, and the front component is achromatic and the rear component is reverse achromatic, so that the longitudinal chromatic aberrations almost cancel each other out. On the other hand, although the lateral chromatic aberration is largely corrected in the front component and slightly restored in the rear component, it is still insufficiently corrected, and the third group corrects that amount. Therefore, if condition (6) is violated and the difference in Abbe numbers between the positive and negative lenses that make up the rear component of the second group becomes small, this means that the amount of reverse achromatization in the rear component of the second group becomes small. This burden is placed on the third lens, which has a greater effect of correcting chromatic aberration of magnification, resulting in over-correction of chromatic aberration of magnification.
Furthermore, if the amount of reverse achromatization is increased by increasing the curvature of the cemented surface of the rear component, the spherical aberration here will be large and under-corrected, and the third group will have to compensate even more, which will also result in lateral chromatic aberration. This results in over-correction. [Example] Examples according to the present invention will be described below. The first embodiment according to the present invention shown in FIG.
It is a plan apochromat objective lens with a magnification of 40x and an NA of 0.95. In the figure, the state of the light ray from the on-axis object point is shown by a solid line. In this first embodiment, the first lens group G 1 includes, in order from the object side, a positive meniscus lens L 1 with a concave surface facing the object side, a positive meniscus lens L 2 with a concave surface facing the object side,
Consists of a positive lens L3 with a surface with a strong curvature facing the image side and a bonded positive lens L4 with a surface with a strong curvature facing the image side, and the second lens group G2 has a convex surface facing the object side. The front component L5 consists of a negative meniscus lens and a positive lens with a surface with a stronger curvature facing the object side, and a positive lens with a surface with a stronger curvature facing the image side with a negative lens with a surface with a stronger curvature facing the object side. It consists of a posterior component L6 consisting of a junction with a lens. The third lens group G3 is composed of a bonded negative lens component L7 with the concave surface facing the image side, and this negative lens component L7 is formed by bonding a biconvex positive lens and a biconcave negative lens. has been done. Table 1 below shows the specifications of the first embodiment. In the table, the leftmost number represents the order from the object side, and the refractive index and Abbe number are values for the d-line (λ=587.6 nm). Also, d 0 is a parallel plane plate (cover glass)
This is the distance from the objective lens side surface to the vertex of the first surface of the objective lens. In addition, in the following examples, the object plane and the first
When the thickness of the parallel plane plate P disposed between the lens group G1 is t, and the refractive index and Abbe number for the d-line are nd and νd, respectively, t=0.17 nd=1.522 νd=58.8. It is designed based on this state as a standard, and is designed to perform correction when the thickness t of the parallel plane plate P changes.

【表】 上記の第1実施例についての諸収差図を、第2
A〜第2C図に示す。第2A図は、カバーガラス
が基準厚の状態(t=0.17mm)、第2B図はカバ
ーガラスが基準よりも薄い状態(t=0.11mm)、
第2C図はカバーガラスが基準よりも厚い状態
(t=0.23mm)である。 また、第3図にレンズ構成図を示す第2実施例
は、倍率60倍を有する高倍率対物レンズであり、
第3レンズ群G3の構成を除いて上記第1実施例
とほぼ同様の構成を有している。第3レンズ群
G3は、物体側に凹面を向けた負レンズと像側に
より曲率の強い面を向けた正レンズと、物体側に
より曲率の強い面を向けた両凹負レンズとの3枚
のレンズの接合からなつている。 以下の表2に、上記の第1実施例と同様に第2
実施例の諸元を示す。
[Table] Various aberration diagrams for the first example above are shown in the second example.
Shown in Figures A to 2C. Figure 2A shows a state in which the cover glass has the standard thickness (t = 0.17 mm), Figure 2B shows a state in which the cover glass is thinner than the standard (t = 0.11 mm),
FIG. 2C shows a state in which the cover glass is thicker than the standard (t=0.23 mm). Further, the second embodiment, whose lens configuration diagram is shown in FIG. 3, is a high-magnification objective lens having a magnification of 60 times,
It has almost the same configuration as the first embodiment described above except for the configuration of the third lens group G3 . 3rd lens group
G 3 is a combination of three lenses: a negative lens with a concave surface facing the object side, a positive lens with a surface with a stronger curvature facing the image side, and a biconcave negative lens with a surface with a stronger curvature facing the object side. It is made up of Table 2 below shows the second example as well as the first example above.
The specifications of the example are shown.

【表】 上記の第2実施例についての諸収差図を、第4
A〜第4C図に示す。第4A図は、カバーガラス
が基準厚の状態(t=0.17mm)、第4B図はカバ
ーガラスが基準よりも薄い状態(t=0.13mm)、
第4C図はカバーガラスが基準よりも厚い状態
(t=0.21mm)である。 また、以下の表3及び表4には、それぞれ前記
の第1実施例及び第2実施例について、球面収差
の三次収差係数を、カバーガラスの厚さが変化し
た場合について示す。各表中、左端の数字は物体
側からの順序を表し、カバーガラスPにおける値
を示すと共に、各レンズ群についての小計と全系
の合計値も併記した。
[Table] Various aberration diagrams for the second example above are shown in the fourth example.
Shown in FIGS. A to 4C. Figure 4A shows a state in which the cover glass has the standard thickness (t = 0.17 mm), Figure 4B shows a state in which the cover glass is thinner than the standard (t = 0.13 mm),
FIG. 4C shows a state in which the cover glass is thicker than the standard (t=0.21 mm). Furthermore, Tables 3 and 4 below show the third-order aberration coefficients of spherical aberration for the first and second examples, respectively, when the thickness of the cover glass changes. In each table, the numbers at the left end represent the order from the object side, and indicate the values on the cover glass P, as well as the subtotals for each lens group and the total value for the entire system.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、開口数を0.95と
乾燥系としては最大にまで大きくし、かつ像面の
平坦性を極めて良好に維持しつつ、カバーガラス
の厚さが、従来よりも大きな範囲で変化しても優
れた結像性能を維持し得るプランアポクロマート
対物レンズが実現される。
As described above, according to the present invention, the numerical aperture is increased to 0.95, which is the maximum for a dry system, and the thickness of the cover glass is increased compared to the conventional one while maintaining extremely good flatness of the image plane. A plan apochromatic objective lens that can maintain excellent imaging performance even when changing over a range is realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第1実施例のレンズ構成
図、第2A図、第2B図及び第2C図は第1実施
例についてカバーガラス厚が変化した場合におけ
る諸収差図、第3図は第2実施例のレンズ構成
図、第4A図、第4B図及び第4C図は第2実施
例についてカバーガラス厚が変化した場合におけ
る諸収差図である。 主要部分の符号の説明、G1……第1レンズ群、
G2……第2レンズ群、G3……第3レンズ群、P
……カバーガラス。
FIG. 1 is a lens configuration diagram of the first embodiment according to the present invention, FIGS. 2A, 2B, and 2C are various aberration diagrams for the first embodiment when the cover glass thickness changes, and FIG. The lens configuration diagrams of the second embodiment, FIG. 4A, FIG. 4B, and FIG. 4C are diagrams of various aberrations when the cover glass thickness changes in the second embodiment. Explanation of symbols of main parts, G 1 ... first lens group,
G 2 ... 2nd lens group, G 3 ... 3rd lens group, P
……cover glass.

Claims (1)

【特許請求の範囲】 1 物体側から順に、物体側に凹面を向けた正メ
ニスカスレンズを有し物体面からの光束を収斂光
束に変換する正屈折力の第1レンズ群G1、発散
性の接合面を有する貼合せレンズ成分と収斂性の
接合面を有する貼合せレンズ成分とを有し合成で
正屈折力を持つ第2レンズ群G2、接合面を有す
る負屈折力の第3レンズ群G3からなり、前記物
体面上に配置される平行平面板の厚さの変化に伴
う収差変動を補正するために前記第1レンズ群
G1に対して前記第2レンズ群G2と前記第3レン
ズ群G3とが相対的に移動可能であり、全系の合
成焦点距離をF、前記第1レンズ群G1の焦点距
離f1、前記第2レンズ群G2の焦点距離をf2、前記
第1レンズ群G1と前記第2レンズ群G2との空気
間隔をD1とするとき、 1.1<f1/F<4 (1) 0.2<D1/F<1.5 (2) 5<f2/F<20 (3) の各条件を満足することを特徴とする顕微鏡対物
レンズ。 2 前記第2レンズ群G2中の貼合せレンズ成分
の発散性の接合面は物体側に凸面を向け、前記第
2レンズ群G2中の貼合せレンズ成分の収斂性の
接合面は像側に凸面を向けており、前記物体側に
凸面を向けた発散性接合面の曲率半径をR1、前
記発散性接合面を形成する物体側負レンズの屈折
力及びアツベ数をN1o,ν1o、像側正レンズの屈折
力及びアッベ数をN1p,ν1pとし、前記像側に凸面
を向けた収斂性接合面の曲率半径をR2、前記収
斂性接合面を形成する物体側正レンズの屈折力及
びアツベ数をN2p,ν2p、像側負レンズの屈折力及
びアツベ数をN2o,ν2oとするとき、 0<(|Φ1|−|Φ2|)×F<0.15 (4) 但し、Φ1=N1o−N1p/R1 Φ2=N2o−N2p/R2 40<ν1p−ν1o (5) 15<ν2o−ν2p (6) の条件を満足することを特徴とする特許請求の範
囲第1項記載の顕微鏡対物レンズ。
[Claims] 1. In order from the object side, a first lens group G 1 having a positive meniscus lens with a concave surface facing the object side and having a positive refractive power that converts a light beam from the object surface into a convergent light beam; A second lens group G 2 having a composite positive refractive power, which includes a laminated lens component having a cemented surface and a laminated lens component having a convergent cemented surface, and a third lens group having a negative refractive power and having a cemented surface. G3 , and the first lens group is configured to correct aberration fluctuations caused by changes in the thickness of the parallel plane plate disposed on the object surface.
The second lens group G2 and the third lens group G3 are movable relative to G1, and the combined focal length of the entire system is F, and the focal length of the first lens group G1 is f. 1. When the focal length of the second lens group G 2 is f 2 and the air distance between the first lens group G 1 and the second lens group G 2 is D 1 , 1.1<f 1 /F<4. A microscope objective lens that satisfies the following conditions: (1) 0.2<D 1 /F<1.5 (2) 5<f 2 /F<20 (3). 2 The divergent cemented surface of the bonded lens component in the second lens group G 2 faces the object side, and the convergent cemented surface of the bonded lens component in the second lens group G 2 faces the image side. The radius of curvature of the diverging cemented surface with the convex surface facing the object side is R 1 , and the refractive power and Atsube number of the negative lens on the object side forming the diverging cemented surface are N 1o , ν 1o , the refractive power and Abbe number of the image-side positive lens are N 1p and ν 1p , the radius of curvature of the convergent cemented surface with the convex surface facing the image side is R 2 , and the object-side positive lens forming the convergent cemented surface When the refractive power and Atsube number of the lens are N 2p , ν 2p , and the refractive power and Atsube number of the image side negative lens are N 2o , ν 2o , 0<(|Φ 1 |−|Φ 2 |)×F<0.15 (4) However, Φ 1 =N 1o −N 1p /R 1 Φ 2 =N 2o −N 2p /R 2 40<ν 1p −ν 1o (5) 15<ν 2o −ν 2p (6) Microscope objective according to claim 1, characterized in that it satisfies the requirements of claim 1.
JP11859885A 1985-05-31 1985-05-31 Microscope objective Granted JPS61275812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11859885A JPS61275812A (en) 1985-05-31 1985-05-31 Microscope objective

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11859885A JPS61275812A (en) 1985-05-31 1985-05-31 Microscope objective

Publications (2)

Publication Number Publication Date
JPS61275812A JPS61275812A (en) 1986-12-05
JPH0567003B2 true JPH0567003B2 (en) 1993-09-24

Family

ID=14740538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11859885A Granted JPS61275812A (en) 1985-05-31 1985-05-31 Microscope objective

Country Status (1)

Country Link
JP (1) JPS61275812A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3280402B2 (en) * 1991-10-28 2002-05-13 オリンパス光学工業株式会社 Microscope objective lens
JP3313163B2 (en) * 1992-12-10 2002-08-12 オリンパス光学工業株式会社 Microscope objective lens
JPH09236753A (en) * 1996-02-28 1997-09-09 Nikon Corp Microscope objective lens
JPH10227977A (en) * 1997-02-14 1998-08-25 Nikon Corp Spherical aberration correction optical system
JP2001264637A (en) * 2000-03-21 2001-09-26 Nikon Corp Spherical aberration compensating optical system and device, and optical observation device equipped with compensating optical system or device
KR20020004820A (en) * 2000-07-05 2002-01-16 시마무라 테루오 Object lens for microscope

Also Published As

Publication number Publication date
JPS61275812A (en) 1986-12-05

Similar Documents

Publication Publication Date Title
JP3559623B2 (en) Imaging lens
JP4692698B2 (en) Immersion microscope objective lens
JPH10274742A (en) Immersion microscopic objective lens
US8199408B2 (en) Immersion microscope objective lens
JPH0644102B2 (en) Microscope objective lens
US5978147A (en) Immersion microscope objective
JPH09138352A (en) Immersion microscopic objective lens
US6128139A (en) Microscope objective lens
JPH0567003B2 (en)
US5889618A (en) Object lens for microscope
JPH0358492B2 (en)
JP4032502B2 (en) Large aperture ratio in-focus super telephoto lens
JP3724521B2 (en) Microscope objective lens
JP4765229B2 (en) Imaging optics
JP4552248B2 (en) Microscope objective lens
JPH0763996A (en) Super-wide visual field eyepiece lens
US4497547A (en) Zoom lens
JPH0567002B2 (en)
JPH09138351A (en) Low-magnification microscopic object lens
JP4207248B2 (en) Imaging lens
USH1763H (en) Microscope objective lens
JP4288394B2 (en) Long working distance microscope objective
JPH0574806B2 (en)
JPS61275813A (en) High magnification microscopic objective lens
JP3414853B2 (en) Microscope objective lens

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term