JPH09236568A - Apparatus for measuring concentration of very small amount of oxygen - Google Patents

Apparatus for measuring concentration of very small amount of oxygen

Info

Publication number
JPH09236568A
JPH09236568A JP8067089A JP6708996A JPH09236568A JP H09236568 A JPH09236568 A JP H09236568A JP 8067089 A JP8067089 A JP 8067089A JP 6708996 A JP6708996 A JP 6708996A JP H09236568 A JPH09236568 A JP H09236568A
Authority
JP
Japan
Prior art keywords
oxygen
gas
electrolyte
electrode
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8067089A
Other languages
Japanese (ja)
Other versions
JP3443230B2 (en
Inventor
Osamu Maruyama
修 丸山
Kiyotaka Asakura
清隆 朝倉
Hiroshi Ogino
博 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP06708996A priority Critical patent/JP3443230B2/en
Publication of JPH09236568A publication Critical patent/JPH09236568A/en
Application granted granted Critical
Publication of JP3443230B2 publication Critical patent/JP3443230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To safely use an apparatus and to simplify the handling thereof by using a neutral salt or a salt near to neutrality as an electrolyte for preparing standard gas. SOLUTION: Sample gas is introduced into a humidifying tank 5 from an introducing pipe 6 to be raised through an electrolyte aq. soln. as air bubbles to be allowed to flow into a measuring chamber 10 and oxygen in the sample gas is electrolytically reduced by the detection electrode 2 of a measuring electrode 1 and the concn. of oxygen in the sample gas is measured from the current value at this time. At a time of calibration, a current is allowed to flow to an electrolytic electrode 7 to electrolytically generate oxygen and zero gas from which oxygen is perfectly removed is introduced into the humidifying tank 5 from the introducing pipe 6 and oxygen generated by electrolysis is mixed with the zero gas to prepare standard gas with desired concn. to calibrate a measuring apparatus. As an electrolyte preparing the electrolyte aq. soln. necessary for electrolytically generating oxygen in preparing the standard gas, a neutral salt or a salt near to neutrality, that is, sodium sulfate or potassium nitrate is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は微量酸素濃度測定装
置に関し、詳しくは、高純度が要求される産業用ガス等
に微量に含まれる酸素の濃度を測定するための微量酸素
濃度測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a trace oxygen concentration measuring device, and more particularly to a trace oxygen concentration measuring device for measuring the concentration of a small amount of oxygen contained in industrial gases requiring high purity. Is.

【0002】[0002]

【従来の技術】従来より、各種産業分野において純度が
高められた種々の産業用ガスが用いられているが、近年
における技術の進歩やその高度化に伴い、半導体産業を
中心に産業用ガスの高純度化に対する要求が益々強まっ
てきている。そして、超高純度ガスといわれるものにい
たってはppbのオーダーで不純物濃度を保証するよう
求められており、不純物のなかでも特に酸素(O2 )が
含まれないようにすることは重要な保証項目の一つであ
る。このため、かかるガス中の酸素濃度を管理すべく、
不純物として微量に含まれる酸素の迅速、且つ正確な濃
度測定が可能な各種の微量酸素濃度測定装置が提案され
ている。
2. Description of the Related Art Conventionally, various industrial gases with high purity have been used in various industrial fields. With the advancement of technology and its sophistication in recent years, the industrial gas mainly used in the semiconductor industry has been used. The demand for high purification is increasing more and more. And, it is required to guarantee the impurity concentration in the order of ppb for what is called ultra-high purity gas, and it is an important guarantee that oxygen (O 2 ) is not contained in the impurities. It is one of the items. Therefore, in order to control the oxygen concentration in such gas,
Various types of trace oxygen concentration measuring devices have been proposed which can measure the concentration of oxygen contained in a trace amount as impurities quickly and accurately.

【0003】このような測定装置としては、例えば図1
に示すようなオープンカソード型ガルバニ電池式のもの
が利用されている。これはサンプルガス中に含まれる酸
素を電解還元してその酸素濃度に応じた出力電流を得る
ものであり、かかる測定装置にあっては、測定電極1に
おいて、銀、炭素、白金等からなる検知極2で下記
(1)式 O2 + 2H2 O + 4e- → 4OH- ・・・(1) の反応が、鉛、カドミウム等からなる対極3で下記
(2)式 2Pb + 4OH- → 2Pb(OH)2 + 4e- ・・・(2) の反応がそれぞれ進行し、これによって検知極2と対極
3との間で酸素濃度に比例した酸素還元電流が流れるた
め、この電流を検知することにより酸素濃度を測定する
ことができる。
An example of such a measuring device is shown in FIG.
The open cathode type galvanic cell type as shown in FIG. This is a method for electrolytically reducing oxygen contained in a sample gas to obtain an output current according to the oxygen concentration, and in such a measuring device, in the measuring electrode 1, detection of silver, carbon, platinum or the like is performed. pole 2 by the following equation (1) O 2 + 2H 2 O + 4e - → 4OH - the reaction of (1) is lead, the following (2) the counter electrode 3 made of cadmium formula 2Pb + 4OH - → 2Pb (OH) 2 + 4e - ··· (2) reaction proceeds each, whereby the oxygen reduction current in proportion to the oxygen concentration flows between the detecting electrode 2 and the counter electrode 3, to detect the current The oxygen concentration can be measured by.

【0004】また、例示したオープンカソード型ガルバ
ニ電池式の測定装置において、電解効率を損なうことな
く上記(1)、(2)式の反応を安定に進行させるため
には、検知極2と対極3との間の電解液部4に常に強ア
ルカリ性の電解液が保持されていることが必要であり、
且つ検知極2の表面には常に水分を保持させておくこと
が必要である。一般に利用されている測定装置は、図示
するように、加湿槽5に導入管6からサンプルガスを導
入し、かかるサンプルガスを気泡として水中を上昇させ
て測定室10内に流入せしめることにより、水蒸気で測
定電極1が加湿されるように構成されている。尚、図中
11はサンプルガス排出口である。
Further, in the open cathode type galvanic cell type measuring device illustrated above, in order to stably proceed the reactions of the above formulas (1) and (2) without impairing the electrolysis efficiency, the detection electrode 2 and the counter electrode 3 are used. It is necessary that the electrolytic solution portion 4 between and is always holding a strongly alkaline electrolytic solution,
In addition, it is necessary to keep moisture on the surface of the detection electrode 2 at all times. As shown in the figure, a commonly used measuring apparatus introduces a sample gas into a humidification tank 5 through an introduction pipe 6, and raises water in the measuring chamber 10 by using the sample gas as bubbles to raise the water vapor. The measuring electrode 1 is configured to be humidified. In the figure, 11 is a sample gas discharge port.

【0005】ここで、サンプルガス中に微量に含まれて
いる酸素の濃度を安定的に測定するためには、測定装置
の校正を精密に行なう必要がある。測定装置の校正をす
るにあたり、所望濃度の標準ガスを得ることができれば
これを外部から供給して当該標準ガスにより校正をすれ
ば良いが、極めて微量な濃度の標準ガスを得ることは一
般に困難である。このため通常は、水の電気分解により
装置内で酸素を発生させて微量酸素濃度の標準ガスを調
製している。そして、この電気分解を容易に行なわせる
ために、電解質水溶液として濃度の高いアルカリ性水溶
液が用いられており、具体的には図1に示すように、加
湿槽5に貯えたアルカリ性水溶液に電解電極7を浸漬
し、この電極に電流を流して酸素を電解発生させるとと
もに、脱酸素剤等により酸素が完全に取り除かれたゼロ
ガスをサンプルガス導入管6より加湿槽5に導入し、こ
のゼロガスに電解発生させた酸素を混合することによっ
て所望濃度の標準ガスを調製している。
Here, in order to stably measure the concentration of oxygen contained in a small amount in the sample gas, it is necessary to precisely calibrate the measuring device. In calibrating the measuring device, if a standard gas with a desired concentration can be obtained, it may be supplied from the outside and calibrated with the standard gas, but it is generally difficult to obtain a standard gas with an extremely small concentration. is there. For this reason, normally, oxygen is generated in the apparatus by electrolysis of water to prepare a standard gas having a trace oxygen concentration. In order to facilitate this electrolysis, an alkaline aqueous solution having a high concentration is used as the electrolytic aqueous solution. Specifically, as shown in FIG. 1, the alkaline aqueous solution stored in the humidifying tank 5 is added to the electrolytic electrode 7. Is immersed, and an electric current is passed through this electrode to electrolyze oxygen, and a zero gas from which oxygen has been completely removed by a deoxidizer or the like is introduced into the humidification tank 5 through the sample gas introduction pipe 6, and electrolysis is generated in this zero gas. A standard gas having a desired concentration is prepared by mixing the oxygen thus prepared.

【0006】即ち、アルカリ性水溶液中における酸素の
電解発生は、陽極9で下記(3)式 4OH- → 2H2 O + O2 + 4e- ・・・(3) の反応が、陰極8で下記(5)式 4H3 + + 4e- → 4H2 O + 2H2 ・・・(4) の反応がそれぞれ進行することによるものであり、この
とき加湿槽5に導入するゼロガスの濃度をF(cc/m
in.)、調製しようとする標準ガスの濃度をX(pp
m)、酸素の電解発生における電解効率を100%とす
ると、電解電極7に流すべき電流値I(μA)は下記
(5)式 I = 0.267FX ・・・(5) で表され、上記(5)式によって演算した所定量の電流
を電解電極7に流して酸素を発生させるとともに、ゼロ
ガスを所定の流量で加湿槽5に導入すれば所望濃度の標
準ガスを調製することができ、この標準ガスにより測定
装置の校正が行なわれている。
Namely, the electrolytic generation of oxygen in an alkaline aqueous solution, following the anode 9 (3) 4OH - → 2H 2 O + O 2 + 4e - The reaction of (3) is below the cathode 8 ( 5) The reaction of the formula 4H 3 O + + 4e → 4H 2 O + 2H 2 (4) respectively proceeds, and the concentration of the zero gas introduced into the humidification tank 5 at this time is F (cc / M
in. ), The concentration of the standard gas to be prepared is X (pp
m), assuming that the electrolysis efficiency in the electrolysis of oxygen is 100%, the current value I (μA) to be passed through the electrolysis electrode 7 is represented by the following equation (5) I = 0.267FX (5) A standard gas of a desired concentration can be prepared by introducing a predetermined amount of current calculated by the equation (5) into the electrolytic electrode 7 to generate oxygen and introducing zero gas into the humidification tank 5 at a predetermined flow rate. The measuring device is calibrated with standard gas.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記したよ
うな測定装置において加湿槽5に貯えられる電解質水溶
液には、電解電極7における電解効率を高くすることが
き、反応性のあるガスが発生することもない等の理由か
ら、水酸化ナトリウムや水酸化カリウム等の強アルカリ
性の電解質が一般に用いられており、測定装置の取り扱
いには慎重な対応が強いられてきた。即ち、測定装置の
保守、修理等において強アルカリ性水溶液が作業者の身
体に飛沫、付着してしまうと皮膚等がおかされてしま
い、特に眼球に付着した場合には失明の危険もあるため
充分な注意を払う必要があった。また、加湿槽5や電解
電極7等の材質には、強アルカリ性の水溶液に対して耐
性のあるものを充分に検討して選択しなければならず使
用可能な材料も限られていた。
By the way, the electrolytic solution stored in the humidifying tank 5 in the measuring device as described above can increase the electrolysis efficiency in the electrolysis electrode 7 and generate a reactive gas. For the reason that there is nothing, strong alkaline electrolytes such as sodium hydroxide and potassium hydroxide are generally used, and careful handling has been required in handling the measuring device. That is, if the strong alkaline aqueous solution is splashed or adhered to the operator's body during maintenance or repair of the measuring device, the skin or the like may be damaged. I needed to pay attention. Further, as materials for the humidifying tank 5, the electrolytic electrode 7, etc., materials having resistance to a strongly alkaline aqueous solution must be thoroughly studied and selected, and usable materials are limited.

【0008】[0008]

【課題を解決するための手段】本発明は上記の如き問題
に鑑みなされたものであり、本発明微量酸素濃度測定装
置は、電解質水溶液を電気分解して発生させた酸素によ
り所定濃度の標準ガスを調製し、かかる標準ガスで校正
を行なうオープンカソード型ガルバニ電池式の微量酸素
濃度測定装置において、低濃度酸素の標準ガスを調製す
るのに必要な電解質水溶液を調製する電解質として中
性、若しくは中性に近い塩を用いたことを特徴とする。
The present invention has been made in view of the above problems, and a trace oxygen concentration measuring device of the present invention is a standard gas having a predetermined concentration by oxygen generated by electrolyzing an aqueous electrolyte solution. In an open-cathode galvanic cell type trace oxygen concentration measuring device that calibrates the standard gas, a neutral or neutral electrolyte is prepared to prepare the aqueous electrolyte solution necessary to prepare the low-concentration oxygen standard gas. It is characterized by using a salt close to the sex.

【0009】[0009]

【発明の実施の形態】本発明微量酸素濃度測定装置は、
電解質水溶液が貯えられた加湿槽5に導入管6からサン
プルガスを導入し、かかるサンプルガスを気泡として電
解質水溶液中を上昇させて測定室10内に流入せしめる
ことにより、電解質水溶液の蒸気で測定電極1を加湿す
るとともに、サンプルガス中に含まれる酸素を測定電極
1の検知極2で電解還元し、このときに流れる電流を検
知することによってサンプルガス中の酸素濃度を測定す
るものである。そして、電解質水溶液中には電気分解に
より酸素を発生させるための電解電極7が浸漬されてお
り、この電極に電流を流して酸素を電解発生させるとと
もに、脱酸素剤等により酸素が完全に取り除かれたゼロ
ガスをサンプルガス導入管6より加湿槽5に導入し、こ
のゼロガスに電解発生させた酸素を混合することによっ
て所望濃度の標準ガスを調製し、かかる標準ガスにより
測定装置の校正をすることができるよう構成されている
(図1参照)。
BEST MODE FOR CARRYING OUT THE INVENTION
The sample gas is introduced into the humidification tank 5 in which the electrolyte aqueous solution is stored from the introduction pipe 6, and the sample gas is caused to rise in the electrolyte aqueous solution as bubbles to flow into the measurement chamber 10. 1 is humidified, oxygen contained in the sample gas is electrolytically reduced by the detection electrode 2 of the measurement electrode 1, and the current flowing at this time is detected to measure the oxygen concentration in the sample gas. An electrolytic electrode 7 for generating oxygen by electrolysis is immersed in the aqueous electrolyte solution. A current is passed through this electrode to generate oxygen electrolytically, and the oxygen is completely removed by a deoxidizer or the like. It is possible to prepare a standard gas having a desired concentration by introducing the zero gas into the humidifying tank 5 through the sample gas introduction pipe 6, and mixing the zero gas with the electrolyzed oxygen to calibrate the measuring device. It is configured to be capable (see FIG. 1).

【0010】本発明では低酸素濃度の標準ガスを調製す
るにあたり、酸素を電解発生させるのに必要な電解質水
溶液を調製する電解質として、中性、若しくは中性に近
い塩を用いるが、本発明において用いられる電解質は、
以下の条件を満足するもであることが必要である。
In the present invention, when preparing a standard gas having a low oxygen concentration, a neutral or near-neutral salt is used as an electrolyte for preparing an aqueous electrolyte solution necessary for electrolytically generating oxygen. The electrolyte used is
It is necessary that the following conditions are satisfied.

【0011】即ち、本発明で用いる電解質は、1)その
水溶液が中性、若しくは中性に近いものであること、
2)高い電解効率を示すとともに、電解電極7に流した
電流に対して相当量の酸素を発生させることができるも
のであること、3)水に対する溶解度が大きく析出し難
いものであること、4)長期にわたって安定であり、電
気分解によって塩化水素(HCl)、塩素(Cl2 )、
亜硫酸(SO2 )等の反応性のあるガスが発生しないも
のであること、5)測定電極1の検知極2と反応して当
該電極1の特性を損なわせてしまう虞のないものである
こと、が必要である。
That is, the electrolyte used in the present invention is 1) its aqueous solution is neutral or close to neutral,
2) High electrolysis efficiency, capable of generating a considerable amount of oxygen with respect to the electric current applied to the electrolysis electrode 3) 3) Solubility in water is large and precipitation is difficult. ) It is stable over a long period of time, and by electrolysis hydrogen chloride (HCl), chlorine (Cl 2 ),
Reactive gas such as sulfurous acid (SO 2 ) should not be generated, and 5) it should not react with the detection electrode 2 of the measurement electrode 1 to impair the characteristics of the electrode 1. ,is required.

【0012】本発明で用いられる中性、若しくは中性に
近い塩は、これらの条件を満足するものであれば特に制
限されることはないが、本発明者らは、かかる条件を満
足する電解質としていくつかの無機塩類について検討し
てみたところ、本発明で用いる電解質としては、本発明
者らが検討したもののなかでは硫酸ナトリウム(Na2
SO4 )、硝酸カリウム(KNO3 )、炭酸水素カリウ
ム(KHCO3 )が好適であることを以下に示す実験か
ら見出した。また、電解質水溶液の濃度は、測定電極1
の加湿による水の蒸発や温度変化によって電解質が析出
したりせず、電気分解に必要な電流を流すことが可能で
あれば特に制限されないが、例えば硫酸ナトリウム(N
2 SO4 )を電解質とした場合、その濃度は20〜1
00g/lであるのが好ましかった。
The neutral or near-neutral salt used in the present invention is not particularly limited as long as it satisfies these conditions, but the present inventors have found that an electrolyte satisfying such conditions is used. As a result of studying some inorganic salts as the electrolyte, sodium sulfate (Na 2) was selected as the electrolyte used in the present invention.
It was found from the following experiment that SO 4 ), potassium nitrate (KNO 3 ) and potassium hydrogen carbonate (KHCO 3 ) are suitable. In addition, the concentration of the electrolyte aqueous solution is measured electrode 1
There is no particular limitation as long as the electrolyte does not precipitate due to evaporation of water or temperature change due to humidification and the current required for electrolysis can be passed. For example, sodium sulfate (N
When a 2 SO 4 ) is used as the electrolyte, its concentration is 20 to 1
It was preferred to be 00 g / l.

【0013】実験1 硫酸ナトリウム(Na2 SO4 )、硝酸カリウム(KN
3 )、炭酸水素カリウム(KHCO3 )を電解質とし
て用い、表1に示す濃度で電解質水溶液を調製してこれ
を電気分解した。そして、電解電極に流した電流に相当
して発生すべき酸素の理論値を求め、これと実際に発生
した酸素の値とを対比して、各電解質水溶液の電解効率
を調べた。その結果を表1に示す。
Experiment 1 Sodium sulfate (Na 2 SO 4 ) and potassium nitrate (KN
O 3 ) and potassium hydrogen carbonate (KHCO 3 ) were used as electrolytes to prepare an aqueous electrolyte solution at the concentration shown in Table 1, and this was electrolyzed. Then, the theoretical value of oxygen to be generated corresponding to the current passed through the electrolytic electrode was obtained, and this was compared with the value of oxygen actually generated to examine the electrolysis efficiency of each aqueous electrolyte solution. Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】実験2 72g/lのNa2 SO4 水溶液を電気分解したときに
電極に流れた電解電流の値と、このときに発生した酸素
の濃度との関係を調べた。その結果を図2にグラフで示
す。図2からも判るように、電解電流値と酸素濃度とは
正比例の関係にあり、電解電極に流れた電流の値にもと
づいて発生した酸素の濃度を知ることができる。従っ
て、酸素を所望濃度で発生させるには、これに対応する
電解電流値に調節すれば良く、これによって発生する酸
素の濃度を任意に変えられることが判った。尚、KNO
3 、KHCO3 を電解質として用いた場合も同様の結果
が得られた。
Experiment 2 The relationship between the value of the electrolytic current flowing through the electrode when the 72 g / l Na 2 SO 4 aqueous solution was electrolyzed and the concentration of oxygen generated at this time was investigated. The result is shown by a graph in FIG. As can be seen from FIG. 2, the electrolysis current value and the oxygen concentration are in direct proportion, and the oxygen concentration generated can be known based on the value of the current flowing through the electrolysis electrode. Therefore, it was found that in order to generate oxygen at a desired concentration, the electrolytic current value corresponding to the oxygen concentration should be adjusted, and the concentration of oxygen generated can be arbitrarily changed. KNO
Similar results were obtained when 3 and KHCO 3 were used as electrolytes.

【0016】実験3 72g/lのNa2 SO4 水溶液を電気分解するとき
の、時間の経過に伴う電解電流値の変化を調べた。その
結果を図3にグラフで示す。図3からも判るように、電
気分解をする際に電極に流れる電流は安定していた。
尚、KNO3 、KHCO3 を電解質として用いた場合も
同様の結果が得られた。
Experiment 3 The change in the electrolytic current value with the passage of time was investigated when electrolysis of a 72 g / l Na 2 SO 4 aqueous solution was carried out. The results are shown graphically in FIG. As can be seen from FIG. 3, the current flowing through the electrode during electrolysis was stable.
Similar results were obtained when KNO 3 and KHCO 3 were used as electrolytes.

【0017】実験4 50g/lのNa2 SO4 水溶液を電気分解するとき
の、時間の経過に伴う電解効率の変化を調べた。その結
果を図4にグラフで示す。図4からも判るように、電解
効率は長期にわたって安定したものであった。尚、KN
3 、KHCO3を電解質として用いた場合も同様の結
果が得られた。
Experiment 4 The change in electrolysis efficiency with the passage of time during electrolysis of a 50 g / l Na 2 SO 4 aqueous solution was examined. The results are shown in a graph in FIG. As can be seen from FIG. 4, the electrolysis efficiency was stable over a long period of time. Incidentally, KN
Similar results were obtained when O 3 and KHCO 3 were used as electrolytes.

【0018】[0018]

【発明の効果】以上説明したように、本発明微量酸素濃
度測定装置は、電解質水溶液を調製する電解質として中
性、若しくは中性に近い塩を用いているため、強アルカ
リ性塩を用いていた従来のものに比べて人体等に対する
危険が激減し、安全に使用することができ、且つ取り扱
いも簡便である。その上、加湿槽や電解電極等の材質を
選択するにあたり特別な制限が課されることもなく、ま
た、廃液を処理する上で、かかる廃液について中和処理
等を施す必要もない。
As described above, the trace oxygen concentration measuring apparatus of the present invention uses a neutral or near-neutral salt as an electrolyte for preparing an aqueous electrolyte solution. Compared with the above, the danger to the human body is drastically reduced, it can be used safely, and the handling is simple. Moreover, no particular restrictions are imposed on the selection of the material for the humidifying tank, the electrolytic electrode, and the like, and it is not necessary to neutralize the waste liquid when treating the waste liquid.

【図面の簡単な説明】[Brief description of drawings]

【図1】ガルバニ電池式の微量酸素濃度測定装置の概略
を示す図面である。
FIG. 1 is a diagram schematically showing a galvanic cell type trace oxygen concentration measuring apparatus.

【図2】実験2の結果を示すグラフである。FIG. 2 is a graph showing the results of experiment 2.

【図3】実験3の結果を示すグラフである。FIG. 3 is a graph showing the results of experiment 3.

【図4】実験4の結果を示すグラフである。FIG. 4 is a graph showing the results of experiment 4.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電解質水溶液を電気分解して発生させた酸
素により所定濃度の標準ガスを調製し、かかる標準ガス
で校正を行なうオープンカソード型ガルバニ電池式の微
量酸素濃度測定装置において、低濃度酸素の標準ガスを
調製するのに必要な電解質水溶液を調製する電解質とし
て中性、若しくは中性に近い塩を用いたことを特徴とす
る微量酸素濃度測定装置。
1. An open cathode type galvanic cell type trace oxygen concentration measuring device for preparing a standard gas having a predetermined concentration by oxygen generated by electrolyzing an aqueous electrolyte solution and calibrating with the standard gas, wherein a low concentration oxygen is used. A trace oxygen concentration measuring device, characterized in that a neutral or near-neutral salt is used as an electrolyte for preparing an electrolyte aqueous solution necessary for preparing the standard gas of.
JP06708996A 1996-02-28 1996-02-28 Trace oxygen concentration measurement device Expired - Fee Related JP3443230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06708996A JP3443230B2 (en) 1996-02-28 1996-02-28 Trace oxygen concentration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06708996A JP3443230B2 (en) 1996-02-28 1996-02-28 Trace oxygen concentration measurement device

Publications (2)

Publication Number Publication Date
JPH09236568A true JPH09236568A (en) 1997-09-09
JP3443230B2 JP3443230B2 (en) 2003-09-02

Family

ID=13334820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06708996A Expired - Fee Related JP3443230B2 (en) 1996-02-28 1996-02-28 Trace oxygen concentration measurement device

Country Status (1)

Country Link
JP (1) JP3443230B2 (en)

Also Published As

Publication number Publication date
JP3443230B2 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
US6106691A (en) Medical instrument sterilizing and washing method and apparatus
EP2219024B1 (en) Electrochemical oxygen sensor
JP2002503330A (en) Micro fuel cell oxygen gas sensor
CN104215679B (en) A kind of measure the electrochemical method of free residual chlorine in water
JP2017156089A (en) Electrolyte analyzer
US20160061791A1 (en) Automatic Ammonium Analyzer
Munichandraiah et al. Kinetics and mechanism of anodic oxidation of chlorate ion to perchlorate ion on lead dioxide electrodes
TW201300761A (en) Method for measuring total concentration of acidic substances, concentration meter for measuring total concentration of acidic substances, and sulfuric acid electrolysis device equipped with same
JP2006194708A (en) Electrochemical oxygen sensor
JP2007212232A (en) Dissolved ozone concentration measuring device and method
JP2008164504A (en) Quantity determination method of oxidizing component in electrolysis sulfuric acid
EP3495810A1 (en) Electrochemical oxygen sensor
ES2767326T3 (en) Procedure to measure and control the concentration of electrolytically active species in aqueous solutions
US11215579B2 (en) Method for cleaning, conditioning, calibration and/or adjustment of an amperometric sensor
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
JP3443230B2 (en) Trace oxygen concentration measurement device
JP2008256604A (en) Device for measuring dissolved ozone concentration, and method therefor
JP6820599B2 (en) Method for measuring dissolved hydrogen content in water
JP6861416B2 (en) Chlorine dioxide gas concentration measuring instrument
JP4217077B2 (en) Stabilization method of diaphragm type electrode
RU2499622C1 (en) Method for controlling degree of electrolyte depletion in combined electrochemical air regeneration systems for submarines
JPS6236554A (en) Electrochemical type acid gas detector
JPH11192484A (en) Electrolytic device
US6617168B1 (en) Evaluation method and evaluation system of free hypohalous acid concentration
JP2005062133A (en) Residual chlorine concentration measuring apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees