JPH09236118A - Floating bearing - Google Patents

Floating bearing

Info

Publication number
JPH09236118A
JPH09236118A JP4459696A JP4459696A JPH09236118A JP H09236118 A JPH09236118 A JP H09236118A JP 4459696 A JP4459696 A JP 4459696A JP 4459696 A JP4459696 A JP 4459696A JP H09236118 A JPH09236118 A JP H09236118A
Authority
JP
Japan
Prior art keywords
cylinder
vertical groove
bearing bush
groove
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4459696A
Other languages
Japanese (ja)
Other versions
JP3824098B2 (en
Inventor
Takeshi Mitsubori
健 三堀
Yukiteru Sekida
幸照 関田
Tsutomu Sakai
勉 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4459696A priority Critical patent/JP3824098B2/en
Publication of JPH09236118A publication Critical patent/JPH09236118A/en
Application granted granted Critical
Publication of JP3824098B2 publication Critical patent/JP3824098B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1065Grooves on a bearing surface for distributing or collecting the liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To properly arrange an oil groove in the inner surface of a cylinder and set the size thereof to a proper value. SOLUTION: A floating bearing consists a cylinder 2 having an inner surface fitted in a rotary shaft 1 and an outer surface fitted in a bearing bush 3 and a feed oil port 5 is radially formed in the inner surface of the bearing bush 3 and a feed oil socket 4 radially extending through in a position corresponding to the feed oil port 5 is formed in the cylinder 2. A lateral groove 6 axially extending from the feed oil socket 4 is formed in the inner surface of the cylinder 2, and a vertical groove 7 is peripherally formed from the feed oil socket 4. In which case, provided L is the length of a cylinder, L1 is the width of the vertical groove, D1 is the depth of the vertical groove, D2 is the depth of a lateral groove, C1 is a gap on one side between the outer peripheral surface of a shaft and the inner surface of a cylinder, and C2 is a gap on one side between the inner surface of a bearing bush and the outer surface of a cylinder, width L1 of the vertical groove and depth D1 of the vertical groove is D1 are set within a range of a formula 1 of 0.1L<=L1<=0.3L and a formula 2 of (D2+ C1+C2)<=D1<=(C1+C21).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は回転機械の軸受に用
いられるフローティングベアリングに関する。
TECHNICAL FIELD The present invention relates to a floating bearing used as a bearing of a rotary machine.

【0002】[0002]

【従来の技術】過給機はディーゼル機関などの内燃機関
からの排気ガスによりタービンを回転してコンプレッサ
を回し、圧縮空気を生成して内燃機関に供給する。この
過給機は高回転数で運転され、ラジアル軸受としてフロ
ーティングベアリングが用いられる。フローティングベ
アリングは内面が過給機の回転軸と嵌合し、外面が軸受
ブッシュと嵌合し、各嵌合面に注入された潤滑油の油膜
により軸からの荷重を軸受ブッシュに伝達する。
2. Description of the Related Art A supercharger rotates a turbine with an exhaust gas from an internal combustion engine such as a diesel engine to rotate a compressor to generate compressed air and supply the compressed air to the internal combustion engine. This supercharger operates at a high rotational speed, and a floating bearing is used as a radial bearing. The inner surface of the floating bearing is fitted to the rotary shaft of the turbocharger, the outer surface is fitted to the bearing bush, and the load from the shaft is transmitted to the bearing bush by the oil film of the lubricating oil injected into each fitting surface.

【0003】図8は従来用いられているフローティング
ベアリングの一例の断面図である。フローティングベア
リングを構成する円筒2の内面には回転軸1が嵌合し、
外面は軸受ブッシュ3の内面と嵌合している。軸受ブッ
シュ3には給油口5が設けられ、円筒2にはこれに対応
する位置に給油受口4が設けられている。軸受ブッシュ
3は固定であり、円筒2は回転するので給油受口4が給
油口5の位置に来た時円筒2内に潤滑油が注入される。
一方円筒2外面には給油口5より常時潤滑油が供給され
ている。
FIG. 8 is a sectional view of an example of a conventional floating bearing. The rotary shaft 1 is fitted to the inner surface of the cylinder 2 that constitutes the floating bearing,
The outer surface is fitted with the inner surface of the bearing bush 3. The bearing bush 3 is provided with an oil supply port 5, and the cylinder 2 is provided with an oil supply port 4 at a position corresponding thereto. Since the bearing bush 3 is fixed and the cylinder 2 rotates, lubricating oil is injected into the cylinder 2 when the oil supply port 4 comes to the position of the oil supply port 5.
On the other hand, lubricating oil is constantly supplied to the outer surface of the cylinder 2 from the oil supply port 5.

【0004】[0004]

【発明が解決しようとする課題】給油受口4より流入し
た潤滑油は回転軸1が矢印のように回転すると、F1で
示すように流れるとともに一部はF2で示すように流れ
る。しかしPで示す範囲は潤滑油が回り難い。なお潤滑
油には遠心力が作用するため回転軸1の回りに回り難く
なっている。このため円筒内面の軸方向や円周方向に溝
を設け、潤滑油が円筒内面に均一に分布するようにして
いるが十分ではなかった。油膜の分布が不均一となり油
膜が不足する部分が生じるとホワール軸振動が大きくな
る。ホワール軸振動とは図5のAに示すように軸の回転
数が変わっても振動数があまり変化しない低周期の振動
であり、油膜が薄くなると油膜による減衰効果が少なく
なり、振動が大きくなる。ホワール軸振動が大きくなる
と回転軸1と円筒2の内面が接触しメタルの摩耗や焼き
付きを生じ、回転軸1と円筒2の寿命が短かくなると言
う問題が発生する。
When the rotary shaft 1 rotates as indicated by the arrow, the lubricating oil flowing from the oil supply port 4 flows as indicated by F1 and a part thereof as indicated by F2. However, it is difficult for the lubricating oil to rotate in the range indicated by P. It is difficult for the lubricating oil to rotate around the rotating shaft 1 because centrifugal force acts on the lubricating oil. For this reason, grooves are provided in the inner surface of the cylinder in the axial direction and the circumferential direction so that the lubricating oil is evenly distributed on the inner surface of the cylinder, but this is not sufficient. When the distribution of the oil film becomes non-uniform and there is a portion where the oil film is insufficient, the whirl shaft vibration becomes large. The whirl shaft vibration is a low-cycle vibration in which the frequency does not change much even if the rotation speed of the shaft changes as shown in A of FIG. . When the vibration of the whirl shaft becomes large, the rotating shaft 1 and the inner surface of the cylinder 2 come into contact with each other to cause metal wear and seizure, which causes a problem that the life of the rotating shaft 1 and the cylinder 2 becomes short.

【0005】本発明は、上述の問題点に鑑みてなされた
もので、円筒内面の油溝の配置と寸法を適正なものとす
ることにより、ホワール軸振動を少なくしたフローティ
ングベアリングを提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a floating bearing in which whirl shaft vibration is reduced by appropriately arranging and dimensioning the oil grooves on the inner surface of the cylinder. To aim.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
請求項1の発明では、内面で軸と嵌合し外面で軸受ブッ
シュと嵌合した円筒よりなり、軸受ブッシュ内面には半
径方向に給油口があり、前記円筒には、該給油口に対応
した位置に半径方向に貫通した給油受口が設けられ、円
筒内面には該給油受口より軸方向に横溝が設けられ、さ
らに該給油受口より円周方向に縦溝が設けられ、Lを円
筒長さ、L1を縦溝の幅、D1を縦溝の深さ、D2を横
溝の深さ、C1を軸外面と円筒内面との片側隙間、C2
を軸受ブッシュ内面と円筒外面との片側隙間とすると、 0.1L≦L1≦0.3L …(1) (D2+C1+C2)≦D1≦10(C1+C2) …(2) 前記縦溝の幅L1と縦溝の深さD1は前記(1)式と
(2)式で表されるようにする。
In order to achieve the above object, the invention of claim 1 comprises a cylinder having an inner surface fitted with a shaft and an outer surface fitted with a bearing bush, and the bearing bush inner surface is lubricated in a radial direction. There is a port, the cylinder is provided with a refueling port penetrating in a radial direction at a position corresponding to the refueling port, a lateral groove is provided on the inner surface of the cylinder in the axial direction from the refueling port, and the refueling port is further provided. A longitudinal groove is provided in the circumferential direction from the mouth, where L is the length of the cylinder, L1 is the width of the longitudinal groove, D1 is the depth of the longitudinal groove, D2 is the depth of the lateral groove, and C1 is one side of the outer surface of the shaft and the inner surface of the cylinder. Gap, C2
Is a one-side gap between the inner surface of the bearing bush and the outer surface of the cylinder: 0.1L ≦ L1 ≦ 0.3L (1) (D2 + C1 + C2) ≦ D1 ≦ 10 (C1 + C2) (2) The width L1 of the vertical groove and the vertical groove The depth D1 is defined by the above equations (1) and (2).

【0007】円筒内面に設けられた横溝は円筒内面の軸
方向の油分布に関係し、縦溝は円周方向の分布の油分布
に関係する。この縦溝が効果的に働き円周方向の分布を
適切とし、ホワール軸振動を少なくするためには、縦溝
の幅L1を(1)式の範囲とし、縦軸の深さD1を
(2)式の範囲とすればよいことが実験的に分かった。
なお、C1,C2は片側隙間を表すが、これは両側隙間
の1/2の値である。
The lateral grooves provided on the inner surface of the cylinder are related to the oil distribution in the axial direction of the inner surface of the cylinder, and the vertical grooves are related to the oil distribution in the circumferential distribution. In order to make the flutes work effectively and to make the distribution in the circumferential direction appropriate and to reduce the whirl shaft vibration, the flute width L1 is set to the range of the formula (1), and the depth D1 of the vertical axis is set to (2). It was experimentally found that the range of the formula) should be set.
It should be noted that C1 and C2 represent a gap on one side, which is a half of the gap on both sides.

【0008】請求項2の発明では、前記軸受ブッシュの
給油口は1個であり、前記円筒の給油受口は縦溝上に等
間隔で3個設けられている。このような配置とすること
により適切な油膜がえられ、ホワール軸振動が減少す
る。
According to the second aspect of the invention, the bearing bush has one oil supply port, and the cylindrical oil supply ports are provided on the vertical groove at three equal intervals. With such an arrangement, an appropriate oil film is obtained, and the whirl shaft vibration is reduced.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は本発明のフローティ
ングベアリングを備える過給機の縦断面図である。回転
軸1は一方の端部にコンプレッサ翼C、他方の端部にタ
ービン翼Tを有する。ベアリングハウジング12は回転
軸1を軸支するとともにコンプレッサ翼C側でサポート
リング13を介してコンプレッサハウジング14と結合
し、タービン翼T側でタービンハウジング15と結合
し、過給機を構成する。過給機はサポートリング13の
取付脚13aでエンジン16に取付けられる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical sectional view of a supercharger including a floating bearing of the present invention. The rotary shaft 1 has a compressor blade C at one end and a turbine blade T at the other end. The bearing housing 12 supports the rotating shaft 1 and is connected to the compressor housing 14 via the support ring 13 on the compressor blade C side and is connected to the turbine housing 15 on the turbine blade T side to form a supercharger. The supercharger is attached to the engine 16 by the attachment legs 13a of the support ring 13.

【0010】ベアリングハウジング12はジャーナル軸
受17とスラスト軸受18により回転軸1を軸支する。
また内部には給油路19と排油路20が設けられ、給油
路19より両軸受17、18に給油し、排油路20に自
由落下させる。ジャーナル軸受17はフローティングベ
アリングを構成する円筒2とこの円筒2を軸支しする軸
受ブッシュ3よりなり、軸受ブッシュ3には給油口5が
設けられ、給油路19からの油を円筒2に供給する。
The bearing housing 12 supports the rotary shaft 1 by a journal bearing 17 and a thrust bearing 18.
Further, an oil supply passage 19 and an oil discharge passage 20 are provided inside, and oil is supplied from the oil supply passage 19 to both bearings 17 and 18 to allow the bearings 17 and 18 to freely fall into the oil discharge passage 20. The journal bearing 17 is composed of a cylinder 2 that constitutes a floating bearing and a bearing bush 3 that axially supports the cylinder 2. The bearing bush 3 is provided with an oil supply port 5 and supplies oil from an oil supply passage 19 to the cylinder 2. .

【0011】図2はフローティングベアリングを構成す
る円筒2の縦断面図を示し、図3は図2のX−X断面図
を示す。円筒2の長さLの中央の円周状上には等間隔
(120°の間隔)に給油受口4が設けられ、各給油受
口4では軸方向に横溝6が両端まで設けられ、円周方向
に3個の給油受口4を連結して縦溝7が設けられてい
る。
FIG. 2 is a vertical sectional view of a cylinder 2 which constitutes a floating bearing, and FIG. 3 is a sectional view taken along line XX of FIG. Refueling receiving ports 4 are provided at equal intervals (120 ° intervals) on the central circumference of the length L of the cylinder 2, and each of the refueling receiving ports 4 is provided with lateral grooves 6 to both ends in the axial direction. A vertical groove 7 is provided by connecting three refueling ports 4 in the circumferential direction.

【0012】図4は回転軸1、円筒2、および軸受ブッ
シュ3の関係を示す図である。円筒2はその給油受口4
が軸受ブッシュ3の給油口5と一致するように配置され
る。L1は縦溝7の幅、D1は縦溝の深さを示す。な
お、D2は図2に示すように横溝6の深さを示す。横溝
6の幅は油の円周方向の分布に関し縦溝7の寸法とあま
り関係しないので特に規定しないが、給油受口4の直径
に応じた値とする。C1は回転軸1の外面と円筒2の内
面との片側間隙、C2は軸受ブッシュ3の内面と円筒2
の外面との片側間隙であり、C1は円筒2の内径と回転
軸1の外径の差の1/2であり、C2は軸受ブッシュ3
の内径と円筒2の外径の差の1/2である。
FIG. 4 is a view showing the relationship between the rotary shaft 1, the cylinder 2 and the bearing bush 3. The cylinder 2 has its refueling port 4
Are arranged so as to coincide with the oil supply port 5 of the bearing bush 3. L1 indicates the width of the vertical groove 7, and D1 indicates the depth of the vertical groove. Note that D2 indicates the depth of the lateral groove 6 as shown in FIG. The width of the lateral groove 6 is not particularly specified because it has little relation to the size of the vertical groove 7 regarding the distribution of oil in the circumferential direction, but is set to a value corresponding to the diameter of the oil supply port 4. C1 is a one-side gap between the outer surface of the rotating shaft 1 and the inner surface of the cylinder 2, and C2 is the inner surface of the bearing bush 3 and the cylinder 2.
Is a gap on one side from the outer surface of C2, C1 is 1/2 the difference between the inner diameter of the cylinder 2 and the outer diameter of the rotary shaft 1, and C2 is the bearing bush 3
1/2 the difference between the inner diameter of the cylinder and the outer diameter of the cylinder 2.

【0013】次に軸振動の実験結果について説明する。
実験は円筒2の縦溝の寸法を系統的に変えた円筒を複数
製作し、過給機の回転数を変え、発生する軸振動の周期
と振幅を計測する。円筒2の形状は図2、3に示す形状
とする。図5は縦溝7を設けず次の寸法とした場合であ
る。 D1=0(縦溝なし) D2=3.9(C1+C2)
Next, the experimental result of the shaft vibration will be described.
In the experiment, a plurality of cylinders in which the dimensions of the vertical groove of the cylinder 2 are systematically changed are manufactured, the rotation speed of the supercharger is changed, and the cycle and amplitude of the generated shaft vibration are measured. The shape of the cylinder 2 is the shape shown in FIGS. FIG. 5 shows the case where the vertical groove 7 is not provided and the following dimensions are obtained. D1 = 0 (without vertical groove) D2 = 3.9 (C1 + C2)

【0014】図5において横軸は毎分当たりの回転数
(RPM)、縦軸は振動の周期(Hz)を示し、丸の大
きさは振幅の大きさを示す。図6、7も同様である。過
給機の設計回転数は約40000回転であるが、実験は
50000回転まで行った。Aはホワール軸振動を示
し、Bは1次軸振動を示す。ホワール軸振動Aは低周期
の振動で回転数に比例して周期が増加するが、増加率は
極めて小さい。
In FIG. 5, the horizontal axis represents the number of revolutions per minute (RPM), the vertical axis represents the cycle of vibration (Hz), and the size of the circle represents the amplitude. The same applies to FIGS. The design rotation speed of the supercharger is about 40,000 rotations, but the experiment was performed up to 50,000 rotations. A indicates whirl shaft vibration, and B indicates primary shaft vibration. The whirl shaft vibration A is a low-cycle vibration and its cycle increases in proportion to the rotation speed, but the rate of increase is extremely small.

【0015】図6は浅い縦溝を設けた場合で、次の寸法
を有する。 D1=2.7(C1+C2) =0.54(D2+C1+C2) L1=0.2L
FIG. 6 shows a case where a shallow vertical groove is provided and has the following dimensions. D1 = 2.7 (C1 + C2) = 0.54 (D2 + C1 + C2) L1 = 0.2L

【0016】図6の場合、ホワール軸振動Aは図5の場
合と殆ど変わらず浅い縦溝は効果がないことを示してい
る。しかし1次振動の振幅は減少している。
In the case of FIG. 6, the whirl axis vibration A is almost the same as in the case of FIG. 5, and it is shown that the shallow vertical groove has no effect. However, the amplitude of the primary vibration is decreasing.

【0017】図7は適正な縦溝を設けた場合で、次の寸
法をゆうする。 D1=8(C1+C2) =1.6(D2+C1+C2) L1=0.2L
FIG. 7 shows the case where proper vertical grooves are provided, and the following dimensions are confirmed. D1 = 8 (C1 + C2) = 1.6 (D2 + C1 + C2) L1 = 0.2L

【0018】図7の場合、ホワール軸振動は大幅に減少
し、周期は回転数に無関係で一定となっている。250
00回転までは発生せず、45000回転までに小さな
振動が発生する程度で、実用的には殆ど発生しない状態
である。1次振動も図5にくらべ振幅が減少している。
In the case of FIG. 7, the whirl shaft vibration is greatly reduced, and the cycle is constant regardless of the rotation speed. 250
The vibration does not occur up to 00 rotations, and a small vibration occurs up to 45000 rotations, which is a state in which it practically hardly occurs. The amplitude of the primary vibration is smaller than that in Fig. 5.

【0019】このような実験結果を整理し、図7に示す
ように、実用的にはホワール軸振動が殆ど発生しない状
態となるようにし、軸受としての設計条件も考慮して縦
溝の深さD1と幅L1を定めたのが、下記の(1)式と
(2)式である。 0.1L≦L1≦0.3L …(1) (D2+C1+C2)≦D1≦10(C1+C2) …(2) ここで、Lは円筒長さ、L1は縦溝の幅、D1は縦溝の
深さ、D2は横溝の深さ、C1は軸外面と円筒内面との
片側隙間、C2は軸受ブッシュ内面と円筒外面との片側
隙間である。
By arranging the results of such an experiment, as shown in FIG. 7, the depth of the vertical groove should be made practically in such a state that almost no vibration of the whirl shaft occurs and the design condition as the bearing is taken into consideration. The D1 and the width L1 are defined by the following equations (1) and (2). 0.1L ≦ L1 ≦ 0.3L (1) (D2 + C1 + C2) ≦ D1 ≦ 10 (C1 + C2) (2) where L is the cylinder length, L1 is the vertical groove width, and D1 is the vertical groove depth. , D2 is the depth of the lateral groove, C1 is a one-side gap between the shaft outer surface and the cylinder inner surface, and C2 is a one-side gap between the bearing bush inner surface and the cylinder outer surface.

【0020】[0020]

【発明の効果】以上の説明より明らかなように、本発明
は、フローティングベアリングを構成する円筒内面の縦
溝の寸法を(1)式と(2)式で示すようにすることに
より、ホワール軸振動を大幅に減少させることができ
る。またこの減少により軸とその軸受の寿命を延ばすこ
とができる。
As is apparent from the above description, according to the present invention, the dimensions of the vertical groove on the inner surface of the cylinder forming the floating bearing are represented by the equations (1) and (2). Vibration can be greatly reduced. This reduction also extends the life of the shaft and its bearings.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフローティングベアリングを用いる過
給機の縦断面図である。
FIG. 1 is a vertical sectional view of a supercharger using a floating bearing of the present invention.

【図2】本実施の形態のフローティングベアリングを構
成する円筒の縦断面図である。
FIG. 2 is a vertical cross-sectional view of a cylinder that constitutes the floating bearing of the present embodiment.

【図3】図2のX−X断面図である。FIG. 3 is a sectional view taken along line XX of FIG. 2;

【図4】回転軸、円筒および軸受ブッシュの関係を示す
図である。
FIG. 4 is a diagram showing a relationship between a rotary shaft, a cylinder, and a bearing bush.

【図5】実験結果を示す図で縦溝が無い場合を示す。FIG. 5 is a diagram showing experimental results showing the case where there is no vertical groove.

【図6】実験結果を示す図で縦溝が浅い場合を示す。FIG. 6 is a diagram showing experimental results showing a case where a vertical groove is shallow.

【図7】実験結果を示す図で縦溝が適正な寸法の場合を
示す。
FIG. 7 is a diagram showing experimental results, showing a case where the vertical groove has an appropriate dimension.

【図8】従来のフローティングベアリングの一例を示す
図である。
FIG. 8 is a diagram showing an example of a conventional floating bearing.

【符号の説明】[Explanation of symbols]

1 回転軸 2 円筒 3 軸受ブッシュ 4 給油受口 5 給油口 6 横溝 7 縦溝 12 ベアリングハウジング 14 コンプレッサハウジング 15 タービンハウジング 17 ジャーナル軸受 18 スラスト軸受 19 給油路 20 排油路 DESCRIPTION OF SYMBOLS 1 rotating shaft 2 cylinder 3 bearing bush 4 oil supply port 5 oil supply port 6 lateral groove 7 vertical groove 12 bearing housing 14 compressor housing 15 turbine housing 17 journal bearing 18 thrust bearing 19 oil supply passage 20 oil drainage passage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内面で軸と嵌合し外面で軸受ブッシュと
嵌合した円筒よりなり、軸受ブッシュ内面には半径方向
に給油口があり、前記円筒には、該給油口に対応した位
置に半径方向に貫通した給油受口が設けられ、円筒内面
には該給油受口より軸方向に横溝が設けられ、さらに該
給油受口より円周方向に縦溝が設けられ、Lを円筒長
さ、L1を縦溝の幅、D1を縦溝の深さ、D2を横溝の
深さ、C1を軸外面と円筒内面との片側隙間、C2を軸
受ブッシュ内面と円筒外面との片側隙間とすると、 0.1L≦L1≦0.3L …(1) (D2+C1+C2)≦D1≦10(C1+C2) …(2) 前記縦溝の幅L1と縦溝の深さD1は前記(1)式と
(2)式で表されることを特徴とするフローティングベ
アリング。
1. A cylinder having an inner surface fitted with a shaft and an outer surface fitted with a bearing bush, and an inner surface of the bearing bush has a lubrication port in a radial direction, and the cylinder has a position corresponding to the lubrication port. A refueling port penetrating in the radial direction is provided, a lateral groove is provided on the inner surface of the cylinder in the axial direction from the refueling port, and a vertical groove is provided in the circumferential direction from the refueling port, and L is the length of the cylinder. , L1 is the width of the vertical groove, D1 is the depth of the vertical groove, D2 is the depth of the horizontal groove, C1 is the one-side gap between the shaft outer surface and the cylinder inner surface, and C2 is the one-side gap between the bearing bush inner surface and the cylinder outer surface. 0.1L ≦ L1 ≦ 0.3L (1) (D2 + C1 + C2) ≦ D1 ≦ 10 (C1 + C2) (2) The width L1 of the flute and the depth D1 of the flute are the above formula (1) and (2). Floating bearing characterized by being expressed by a formula.
【請求項2】 前記軸受ブッシュの給油口は1個であ
り、前記円筒の給油受口は縦溝上に等間隔で3個設けら
れていることを特徴とする請求項1記載のフローティン
グベアリング。
2. The floating bearing according to claim 1, wherein the bearing bush has one oil supply port, and three cylindrical oil supply ports are provided on the vertical groove at equal intervals.
JP4459696A 1996-03-01 1996-03-01 Floating bearing Expired - Lifetime JP3824098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4459696A JP3824098B2 (en) 1996-03-01 1996-03-01 Floating bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4459696A JP3824098B2 (en) 1996-03-01 1996-03-01 Floating bearing

Publications (2)

Publication Number Publication Date
JPH09236118A true JPH09236118A (en) 1997-09-09
JP3824098B2 JP3824098B2 (en) 2006-09-20

Family

ID=12695849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4459696A Expired - Lifetime JP3824098B2 (en) 1996-03-01 1996-03-01 Floating bearing

Country Status (1)

Country Link
JP (1) JP3824098B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208249A1 (en) * 2018-04-27 2019-10-31 株式会社Ihi Bearing and supercharger
WO2021235031A1 (en) * 2020-05-21 2021-11-25 株式会社Ihi Bearing and supercharger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208249A1 (en) * 2018-04-27 2019-10-31 株式会社Ihi Bearing and supercharger
CN112041573A (en) * 2018-04-27 2020-12-04 株式会社Ihi Bearing and supercharger
JPWO2019208249A1 (en) * 2018-04-27 2021-05-13 株式会社Ihi Bearings and turbochargers
US11493052B2 (en) 2018-04-27 2022-11-08 Ihi Corporation Bearing and turbocharger
WO2021235031A1 (en) * 2020-05-21 2021-11-25 株式会社Ihi Bearing and supercharger

Also Published As

Publication number Publication date
JP3824098B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US4427309A (en) Turbocharger shaft bearing
JP3125227B2 (en) Turbocharger bearing device
EP1273765B1 (en) Turbocharger shaft dual phase seal
JP4874491B2 (en) bearing
US4719818A (en) Turbocharger planetary drive
CN103597227B (en) The bearing means of turbosupercharger
KR102044173B1 (en) Axial bearing arrangement
CN104204451B (en) There is the turbocharger of the thrust bearing of the bearing of journals and thrust bearing function of providing combination
WO2008011400A2 (en) Floating bearing cartridge for a turbocharger shaft
CN105492739A (en) Flexure pivot tilting pad journal bearing for use in a turbocharger
WO2014105377A1 (en) Fluid film conical or hemispherical floating ring bearings
JP2011153668A (en) Bearing device
JP2007285252A (en) Turbo charger
US4209207A (en) Thrust bearing assembly
US4560325A (en) Bearing support for turbochargers
US20020073714A1 (en) Gas turbine engine with offset shroud
JP5359206B2 (en) Floating bush bearing type bearing device and internal combustion engine supercharger having the same
CN209457988U (en) Full floating bearing and turbocharger including full floating bearing
JP2007113708A (en) Rotation stop structure of bearing, and supercharger using the same
JP2003527523A (en) Integrated ball bearing turbocharger rotor assembly
JP2011021623A (en) Outer ring of roller bearing, and roller bearing
JP2010138753A (en) Bearing device for supercharger
JP6704107B2 (en) Thrust collar and thrust bearing device
JPH09236118A (en) Floating bearing
JP2010127240A (en) Fitting structure of impeller

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

EXPY Cancellation because of completion of term