JPH09235889A - Base isolation construction method of existing building - Google Patents

Base isolation construction method of existing building

Info

Publication number
JPH09235889A
JPH09235889A JP4318996A JP4318996A JPH09235889A JP H09235889 A JPH09235889 A JP H09235889A JP 4318996 A JP4318996 A JP 4318996A JP 4318996 A JP4318996 A JP 4318996A JP H09235889 A JPH09235889 A JP H09235889A
Authority
JP
Japan
Prior art keywords
vertical
existing building
pillar
wall
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4318996A
Other languages
Japanese (ja)
Inventor
Eiji Ishii
映二 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP4318996A priority Critical patent/JPH09235889A/en
Publication of JPH09235889A publication Critical patent/JPH09235889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base isolation construction method capable of shortening a work execution period, reducing work execution cost and damping earthquake force on an upper layer floor. SOLUTION: A pit retaining wall 32 is constructed in a drilled space by drilling the ground 14 in the circumference of a first basement. Thereafter, a setting space to set a support device 34 is formed in the middle of a pillar 26a of the first basement, and a vertical load of an existing building burdened by the pillar 26a is borne by a reinforced concrete wall 18a of the first basement. Thereafter, the support device 34 free to ealstically deform in the horizontal direction is set in the setting space. Additionally, an opening part 35 is formed in the horizontal direction by breaking concrete of the wall 18a of the first basement, and a vertical reinforcement is made in an exposed state. Thereafter, the whole of the vertical reinforcement is cut off on a lower part side. Thereafter, cut end parts of a specified number of the vertical, reinforcements are inserted into the inside of a plural number of steel pipes fixed on a lower surface of the opening part 35, the vertical reinforcements inserted into the insides of these steel pipes are made into a steel bar damper, and the remaining vertical reinforcements are made into a spare damper.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、既に構築されて
いる既存建物に新たに免震装置を設置する既存建物の免
震化工法に関し、特に、剛性が高く、地震入力の周期が
短い中低層建物に好適な既存建物の免震化工法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation construction method for an existing building in which a seismic isolation device is newly installed in an already constructed existing building. The present invention relates to a seismic isolation construction method suitable for existing buildings.

【0002】[0002]

【従来の技術】既に構築されている中低層建物(例えば
3〜5階建ての建物)は、剛性が1階から最上階まで全
体的に高く、地震発生時の地震入力による変形が1階に
集中してしまい、建物崩壊等の被害が発生するおそれが
ある。
2. Description of the Related Art The middle- and low-rise buildings that have already been constructed (for example, buildings with 3 to 5 floors) have high rigidity from the first floor to the top floor, and the deformation due to the earthquake input on the first floor is on the first floor. Concentration may occur, causing damage such as building collapse.

【0003】既存建物に免震装置を設置する工法とし
て、例えば特開平2−20767号公報に記載された既
存建物の免震化工法が知られている。
As a construction method for installing a seismic isolation device in an existing building, for example, a seismic isolation construction method for an existing building is known, which is described in Japanese Patent Laid-Open No. 20767/1990.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この特
開平2−20767号公報に記載した工法は、地盤深く
に埋設されている支持杭が露出するように大空間の地下
空間を形成しなければならず、この大空間の地下空間の
形成に多くの掘削期間を必要とするとともに、仮受サポ
ート、ジャッキ、鉄骨柱を搬入する作業を行わなければ
ならず、施工期間の短縮化、施工費用の低減を図ること
が難しい。
However, according to the construction method disclosed in Japanese Patent Laid-Open No. 2-20767, a large underground space must be formed so that the support piles buried deep in the ground are exposed. First, it takes a lot of excavation time to form this large underground space, and the work of loading temporary support, jacks and steel columns must be carried out, which shortens the construction period and reduces construction costs. Is difficult to achieve.

【0005】この発明は、上記事情に鑑みてなされたも
のであり、施工期間の短縮化、施工費用の低減を図ると
ともに、簡便な免震構造にも拘わらず上層階の地震力を
すみやかに減衰することが可能な既存建物の免震化工法
を提供することを目的としている。
The present invention has been made in view of the above circumstances, and aims to shorten the construction period and the construction cost, and promptly damp the seismic force of the upper floors in spite of a simple seismic isolation structure. The purpose is to provide a seismic isolation method for existing buildings that can be used.

【0006】[0006]

【課題を解決するための手段】本発明の請求項1記載の
既存建物の免震化工法は、中低層の既存建物に、免震装
置を新たに設置する工法であって、特定の下層階の柱の
途中に、支承装置を設置する設置空間を形成し、前記柱
が負担していた前記既存建物の鉛直荷重を、前記特定の
下層階の鉄筋コンクリート製の壁に受け持たせる工程
と、前記設置空間に、水平方向に弾性変形可能な前記支
承装置を設置する工程と、前記特定下層階の前記壁のコ
ンクリートを破砕して水平方向にスリット状に開口する
開口部を形成し、この開口部内に、前記コンクリート内
部に定着されていた複数本の縦筋をむき出し状態として
鉛直方向に延在させる工程と、前記複数本の縦筋の全て
を下部側で切断して前記支承装置に前記既存建物の鉛直
荷重を導入するとともに、所定本数の縦筋の切断端部を
前記開口部の下面に固定した複数の鋼管内部に挿入し、
これら鋼管内部に挿入した縦筋を、地震発生時の水平方
向の入力によって塑性変形する鋼棒ダンパとし、残りの
縦筋を予備ダンパとする工程とを備えた工法である。
The seismic isolation construction method for an existing building according to claim 1 of the present invention is a construction method for newly installing a seismic isolation device in an existing building of middle and low rises, which is a specific lower floor. In the middle of the pillar, to form an installation space for installing a support device, and the vertical load of the existing building that the pillar has borne, the step of bearing the specific lower floor reinforced concrete wall, In the installation space, a step of installing the supporting device that is elastically deformable in the horizontal direction, and crushing the concrete of the wall of the specific lower floor to form an opening that opens in a slit shape in the horizontal direction, and in this opening In the step of vertically extending a plurality of vertical streaks that have been fixed inside the concrete in a bare state, and cutting all of the plurality of vertical streaks at the lower side to the supporting device to the existing building. When the vertical load of To, insert the cut end of the vertical stripes of a predetermined number within a plurality of steel tubes fixed to the lower surface of the opening,
The method includes a step of using the vertical bars inserted inside these steel pipes as steel rod dampers that are plastically deformed by horizontal input when an earthquake occurs, and using the remaining vertical bars as preliminary dampers.

【0007】また、請求項2記載の既存建物の免震化工
法は、地下階を備えた中低層の既存建物に免震装置を新
たに設置する工法であって、地下1階の周囲の地盤を掘
削して掘削空間にピット擁壁を構築する工程と、前記地
下1階の柱の途中に支承装置を設置する設置空間を形成
し、前記柱が負担していた前記既存建物の鉛直荷重を、
前記地下1階の鉄筋コンクリート製の壁に受け持たせる
工程と、前記設置空間に、水平方向に弾性変形可能な前
記支承装置を設置する工程と、前記地下1階の前記壁の
コンクリートを破砕して水平方向にスリット状に開口す
る開口部を形成し、この開口部内に、前記コンクリート
内部に定着されていた複数本の縦筋をむき出し状態とし
て鉛直方向に延在させる工程と、前記複数本の縦筋の全
てを下部側で切断して前記支承装置に前記既存建物の鉛
直荷重を導入するとともに、所定本数の縦筋の切断端部
を前記開口部の下面に固定した複数の鋼管内部に挿入
し、これら鋼管内部に挿入した縦筋を、地震発生時の水
平方向の入力によって塑性変形する鋼棒ダンパとし、残
りの縦筋を予備ダンパとする工程とを備えた工法であ
る。
Further, the seismic isolation construction method for an existing building according to claim 2 is a construction method in which a seismic isolation device is newly installed in an existing building of a low-middle layer having a basement floor, and the ground around the first basement floor. And constructing a pit retaining wall in the excavation space, and forming an installation space for installing a support device in the middle of the pillar on the first basement floor, and applying the vertical load of the existing building ,
The step of supporting the reinforced concrete wall on the first basement floor, the step of installing the horizontally elastically deformable support device in the installation space, and the crushing of the concrete on the wall of the first basement floor Forming an opening that opens in a slit shape in the horizontal direction, and in the opening, a step of vertically extending a plurality of vertical stripes that have been fixed inside the concrete in a bare state, and a plurality of the vertical lines. While cutting all the muscles on the lower side and introducing the vertical load of the existing building to the supporting device, insert a predetermined number of cut ends of the vertical muscles into a plurality of steel pipes fixed to the lower surface of the opening. The method includes a step of using the vertical bars inserted into these steel pipes as steel rod dampers that are plastically deformed by horizontal input when an earthquake occurs, and using the remaining vertical bars as preliminary dampers.

【0008】また、請求項3記載の発明は、請求項1又
は2記載の既存建物の免震化工法において、前記開口部
内で鉛直方向に延在している前記複数本の鋼棒ダンパの
上部側を、鉛直方向の幅を所定値に設定した帯状の変形
防止部材で固定する工程を備えた工法である。
Further, the invention according to claim 3 is the seismic isolation method for an existing building according to claim 1 or 2, wherein the plurality of steel rod dampers extending vertically in the opening are provided above the dampers. It is a construction method including a step of fixing the side with a belt-shaped deformation preventing member having a vertical width set to a predetermined value.

【0009】さらに、請求項4記載の発明は、請求項1
乃至3の何れかに記載の既存建物の免震化工法におい
て、前記特定の下層階の柱、又は前記地下1階の柱の途
中に前記設置空間を形成する工程の前段階の工程とし
て、前記設置空間が形成される位置を間にした前記柱の
上部位置と下部位置とを、前記既存建物の鉛直荷重を伝
達することが可能な柱連結装置で連結する工程を備えた
こ工法である。
Further, the invention described in claim 4 is the invention according to claim 1.
In the seismic isolation method for the existing building according to any one of 1 to 3, as a step in the preceding step of the step of forming the installation space in the middle of the pillar of the specific lower floor or the pillar of the first basement floor, This is a construction method including a step of connecting an upper position and a lower position of the pillar with a position where an installation space is formed with a pillar connecting device capable of transmitting a vertical load of the existing building.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る一実施形態
を、図1から図10を参照して説明する。図1は、地下
2階を備えた鉄筋コンクリート造の既存建物(中低層建
物)10を示すものであり、この既存建物10は、地上
1階に壁を設けずに独立柱のみを立設したピロティ形式
の建物である。そして、この既存建物10の躯体下部1
2から、既存建物10の鉛直荷重を支持する複数の支持
杭16が地盤14に埋設されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows an existing building (middle- and low-rise building) 10 made of reinforced concrete with two basement floors. This existing building 10 is a piloty where only the independent columns are erected without a wall on the first floor above the ground. It is a type of building. And the lower part of the skeleton of this existing building 10
From 2, the plurality of support piles 16 supporting the vertical load of the existing building 10 are buried in the ground 14.

【0011】また、図2は、既存建物10の地下構造を
示すものであり、地盤14の土圧を受ける地下外壁18
が地下空間を形成している。そして、1階F1の床スラ
ブ20は、地下一階梁24aを介して地下一階B1で立
設する柱26a、28aにより支持されている。また、
地下一階B1の床スラブ22は、地下2階梁24bを介
して地下一階B2で立設する柱26b、28bにより支
持されている。ここで、地下一階B1の外壁18aと一
体化されて立設する柱26aを外柱と称し、地下2階B
2の外壁18bと一体化されて立設する柱26bも外柱
と称する。また、地下1、2階B1、B2の空間内で立
設する柱28a、28bを内柱と称する。
FIG. 2 shows the underground structure of the existing building 10, in which the underground outer wall 18 receives the earth pressure of the ground 14.
Forms an underground space. The floor slab 20 on the first floor F1 is supported by the pillars 26a and 28a standing on the first floor B1 via the underground first floor beam 24a. Also,
The floor slab 22 on the first basement floor B1 is supported by columns 26b and 28b standing on the first basement floor B2 via a beam 24b on the second basement floor. Here, the pillar 26a that is integrally erected with the outer wall 18a of the first basement floor B1 and stands upright is referred to as an outer pillar, and the second basement floor B
The pillar 26b which is integrally formed with the outer wall 18b of the second body and stands upright is also referred to as an outer pillar. In addition, the pillars 28a and 28b that stand upright in the space of the first and second floors B1 and B2 are referred to as inner pillars.

【0012】そして、本実施形態では、図3に示すよう
に、この既存建物10の周囲の土中に止水を兼ねた山止
め壁30を埋設し、この山止め壁30と地下外壁18と
の間の土を、地下1階B1までの深さまで掘削する。次
いで、この掘削箇所に、地下外壁18との間に空間を設
けてピット擁壁32を構築する。
In this embodiment, as shown in FIG. 3, a mountain retaining wall 30 that also serves as a water stop is buried in the soil around the existing building 10, and the mountain retaining wall 30 and the underground outer wall 18 are combined. Excavate the soil between to the depth of B1 on the first basement floor. Next, a space is provided between this excavation site and the underground outer wall 18 to construct the pit retaining wall 32.

【0013】次いで、図4及び図5に示すように、地下
1階B1の外柱26aのコンクリートを破砕するととも
に、露出した鉄筋を除去し、アイソレータ(支承装置)
34を設置する設置空間36を形成する。
Next, as shown in FIGS. 4 and 5, the concrete of the outer pillar 26a on the first basement floor B1 is crushed, the exposed reinforcing bars are removed, and an isolator (supporting device) is used.
An installation space 36 for installing 34 is formed.

【0014】この設置空間36は、地下1階B1の外柱
26aの支持力が抜けても、地下1階梁24aから伝達
される鉛直荷重を、外壁18aが確実に受け持つことが
可能となる位置に形成されている。つまり、地下1階B
1の梁24aに近接する位置、即ち、上端面36aを地
下1階B1の梁24aの下面レベルから僅かに鉛直下方
に下がった所定の長さhの位置とし、この上端面36a
から下方にアイソレータ34の高さに相当する長さHに
離間した位置に下端面36bを設け、外壁18aが鉛直
荷重を充分に受け持つことが可能となるようにしてい
る。
The installation space 36 is located at a position where the outer wall 18a can surely bear the vertical load transmitted from the beam 24a on the first basement floor even if the supporting force of the outer pillar 26a on the first floor B1 is removed. Is formed in. In other words, the first basement B
The position close to the first beam 24a, that is, the upper end surface 36a is set to a position of a predetermined length h slightly vertically downward from the lower surface level of the beam 24a on the first basement floor B1.
A lower end surface 36b is provided at a position spaced apart by a length H corresponding to the height of the isolator 34 from below to enable the outer wall 18a to sufficiently bear the vertical load.

【0015】そして、この設置空間36内にアイソレー
タ34を設置し、その上下フランジ34a、34bを上
下端面36a、36bにボルトを介して固定する。この
アイソレータ34は、例えば鉄板等の金属板とゴムとを
交互に積層した積層ゴム支承が採用されている。
The isolator 34 is installed in the installation space 36, and the upper and lower flanges 34a and 34b thereof are fixed to the upper and lower end surfaces 36a and 36b with bolts. The isolator 34 employs a laminated rubber bearing in which metal plates such as iron plates and rubber are alternately laminated.

【0016】次いで、図6及び図5に示すように、地下
1階B1の外壁18aのコンクリートを水平方向に破砕
していき、スリット状に開口した開口部35内に、鉛直
方向に延在する複数の縦筋37をむき出し状態とする。
ここで、縦筋37をむき出し状態とする開口部35は、
本実施形態では、アイソレータ34を設置した位置と略
同一高さとしているが、ピット擁壁32より上方位置で
あれば、アイソレータ34の高さと一致しなくともよ
い。
Next, as shown in FIGS. 6 and 5, the concrete of the outer wall 18a of the first basement floor B1 is crushed in the horizontal direction, and vertically extends into the slit-shaped opening 35. The plurality of vertical stripes 37 are exposed.
Here, the opening 35 that exposes the vertical stripe 37 is
In this embodiment, the height is substantially the same as the position where the isolator 34 is installed, but the height does not have to match the height of the isolator 34 as long as it is located above the pit retaining wall 32.

【0017】そして、図8に示すように、地下1階B1
の外柱26aの全てにアイソレータ34を設置するとと
もに、外壁18aの水平方向全周にわたって開口部35
を形成し、この開口部35内で縦筋37をむき出し状態
とする。
Then, as shown in FIG. 8, the first basement floor B1
The isolators 34 are installed on all the outer columns 26a of the outer wall of the outer wall 18a and the openings 35 are formed over the entire circumference of the outer wall 18a in the horizontal direction.
Is formed, and the vertical stripe 37 is exposed in the opening 35.

【0018】次いで、図9及び図10に示すように、む
き出し状態とされた縦筋37の全ての下端部を切断す
る。これにより、地下1階B1の外柱26aに設置した
アイソレータ34は、水平方向に弾性変形可能としなが
ら地下1階B1の梁24aから伝達される鉛直荷重を受
ける。
Next, as shown in FIGS. 9 and 10, all the lower end portions of the exposed vertical stripes 37 are cut off. As a result, the isolator 34 installed on the outer pillar 26a of the first basement floor B1 receives the vertical load transmitted from the beam 24a of the first basement floor B1 while being elastically deformable in the horizontal direction.

【0019】そして、図9及び図10に示すように、所
定の縦筋37を、それらの切断端部が外壁18aの内面
側又は外面側に曲げる。ここで、内面側又は外面側に曲
げた縦筋を符号37aで示す予備鋼棒ダンパと称し、曲
げられずに鉛直下方に延在する縦筋を符号37bで示す
鋼棒ダンパと称する。
Then, as shown in FIGS. 9 and 10, the predetermined vertical streaks 37 are bent at their cut ends toward the inner surface or the outer surface of the outer wall 18a. Here, the vertical bar bent to the inner surface side or the outer surface side is referred to as a spare steel rod damper indicated by reference numeral 37a, and the vertical bar extending vertically downward without being bent is referred to as a steel bar damper indicated by reference numeral 37b.

【0020】次いで、開口部35の下面35aに、鋼棒
ダンパ37bの先端部を挿入した複数の鋼管38を固定
する。次いで、開口部35の上面35b側に位置する鋼
棒ダンパ37bの外周に、それら鋼棒ダンパ37bの複
数本を外周側から囲むように帯鋼(変形防止部材)39
を固着する。
Next, a plurality of steel pipes 38 into which the tips of the steel rod dampers 37b are inserted are fixed to the lower surface 35a of the opening 35. Next, on the outer circumference of the steel rod damper 37b located on the upper surface 35b side of the opening 35, a strip steel (deformation preventing member) 39 is formed so as to surround a plurality of the steel rod dampers 37b from the outer circumferential side.
To fix.

【0021】このように本実施形態では、既存建物10
の地下1階B1の外壁18aを取り囲むようにピット擁
壁32が構築されているとともに、地下1階B1の外柱
26aの途中に設置されて既存建物10の鉛直荷重を受
けるアイソレータ34と、地下1階B1の外壁18a内
部からむき出し状態とした複数本の鋼棒ダンパ36bと
で免震装置が構成されている。そして、地震が発生する
と、アイソレータ34が水平方向に所定の変位で弾性変
形するとともに、鋼棒ダンパ37bは、その先端部が鋼
管38内部で摺動した状態で水平方向の曲げ塑性変形を
引き起こす。そして、鋼棒ダンパ37bの曲げ塑性変形
による履歴エネルギーの吸収により地震力をすみやかに
減衰させるとともに、地下1階B1から上部の既存建物
10の水平方向の変位量を、ピット擁壁32内の許容範
囲に抑制する。
As described above, in the present embodiment, the existing building 10
The pit retaining wall 32 is constructed so as to surround the outer wall 18a of the first basement floor B1 and the isolator 34 which is installed in the middle of the outer pillar 26a of the first basement floor B1 and receives the vertical load of the existing building 10, The seismic isolation device is composed of a plurality of steel rod dampers 36b exposed from the inside of the outer wall 18a of the first floor B1. When an earthquake occurs, the isolator 34 elastically deforms in the horizontal direction with a predetermined displacement, and the steel rod damper 37b causes a bending plastic deformation in the horizontal direction with its tip end sliding inside the steel pipe 38. Then, the seismic force is promptly attenuated by absorption of the hysteresis energy due to the bending plastic deformation of the steel rod damper 37b, and the horizontal displacement amount of the existing building 10 above the first basement floor B1 is allowed within the pit retaining wall 32. Suppress to range.

【0022】そして、既存建物の躯体下部の全周を取り
囲むようにピットを構築する従来方法と比較して、本実
施形態は、既存建物10の地下1階B1の外壁18aを
取り囲むだけのピット擁壁32を構築することで土砂の
掘削に要する期間、擁壁の構築期間が短期間で済むの
で、施工期間の短縮、免震化工事のコスト低減が可能と
なる。
In comparison with the conventional method of constructing a pit so as to surround the entire circumference of the lower part of the skeleton of the existing building, in the present embodiment, the pit holding only encloses the outer wall 18a of the basement B1 of the existing building 10. By constructing the wall 32, the period required for excavation of earth and sand and the period for constructing the retaining wall are short, so that the construction period can be shortened and the cost of seismic isolation work can be reduced.

【0023】また、アイソレータ34を外柱26aの途
中に設置する際には、外壁18aが既存建物10の鉛直
荷重を受け持つので、従来方法のように油圧ジャッキ等
の支持装置が不要となり、さらに免震化工事のコスト低
減が可能となる。
Further, when the isolator 34 is installed in the middle of the outer pillar 26a, the outer wall 18a bears the vertical load of the existing building 10. Therefore, unlike the conventional method, a supporting device such as a hydraulic jack is unnecessary, and the isolator 34 is further removed. The cost of seismic work can be reduced.

【0024】そして、ダンパは、外壁18aのコンクリ
ートを破砕して露出した縦筋37を利用しているだけな
のので、簡便な免震装置を提供することができる。ま
た、複数本の鋼棒ダンパ37bの上端部側を囲むように
配設した帯鋼39は、鋼棒ダンパ37bの上端面側の塑
性変形を防止するので、鋼棒ダンパ37bが塑性変形す
る際に、外壁18aのコンクリートに損傷を与えること
がない。そして、この帯鋼39の幅を変更すると鋼棒ダ
ンパ37bの塑性変形領域が増減するので、鋼棒ダンパ
37bの履歴エネルギーを調整することが可能となる。
Since the damper only utilizes the vertical streaks 37 exposed by crushing the concrete of the outer wall 18a, a simple seismic isolation device can be provided. Further, since the strip steel 39 arranged so as to surround the upper end side of the plurality of steel rod dampers 37b prevents plastic deformation of the upper end surface side of the steel rod damper 37b, when the steel rod damper 37b is plastically deformed. Moreover, the concrete of the outer wall 18a is not damaged. When the width of the steel strip 39 is changed, the plastic deformation area of the steel rod damper 37b increases or decreases, so that the hysteresis energy of the steel rod damper 37b can be adjusted.

【0025】さらに、外壁18aの内面側又は外面側
に、切断端部を曲げた予備鋼棒ダンパ37aを、開口部
35の下面35aに固定した鋼管38内に挿入すると、
交換用の鋼棒ダンパとして使用することができる。
Further, when the spare steel rod damper 37a whose cut end is bent is inserted into the steel pipe 38 fixed to the lower surface 35a of the opening 35 on the inner surface side or outer surface side of the outer wall 18a,
It can be used as a replacement steel rod damper.

【0026】次に、図11に示すものは、上記実施形態
の変形例を示すものであり、この実施形態では、地下1
階B1の外柱26aに設置空間36を形成する前段階と
して、設置空間36を形成する位置を上下方向から挟み
込むように柱連結装置40を配設している。
Next, FIG. 11 shows a modification of the above-mentioned embodiment. In this embodiment, the underground 1
As a pre-stage of forming the installation space 36 in the outer column 26a of the floor B1, the column connecting device 40 is arranged so as to sandwich the position forming the installation space 36 from the vertical direction.

【0027】この柱連結装置40は、図12及び図13
に示すように、山形鋼からなる短尺な一対の上部固定部
材42a、42b及び一対の下部固定部材44a、44
bと、山形鋼からなる長尺な連結部材46とで構成され
ている。そして、一対の上部固定部材42a、42b
は、設置空間36の形成位置より上部の互いに直交する
側面に埋設されたアンカボルト48を自身の一辺部に形
成した挿通孔に挿通し、その先端部にナットを螺合する
ことにより固定されている。また、一対の下部固定部材
44a、44bも、設置空間36の形成位置より下部の
互いに直交する側面に埋設したアンカボルトを自身の一
辺部に形成した挿通孔に挿通し、その先端部にナットを
螺合することにより固定されている。
This column connecting device 40 is shown in FIGS.
As shown in FIG. 5, a pair of short upper fixing members 42a and 42b and a pair of lower fixing members 44a and 44 made of angle steel.
b and an elongated connecting member 46 made of angle steel. Then, the pair of upper fixing members 42a and 42b
Is fixed by inserting the anchor bolts 48 buried in the side surfaces orthogonal to each other above the formation position of the installation space 36 into the insertion holes formed in one side portion of the installation space and screwing a nut at the tip portion thereof. There is. Further, the pair of lower fixing members 44a and 44b are also inserted with anchor bolts embedded in side surfaces orthogonal to each other below the formation position of the installation space 36 through insertion holes formed in one side thereof, and a nut is attached to the tip portion thereof. It is fixed by screwing.

【0028】また、連結部材46は、一辺部及び他片部
の長手方向の両端側に挿通孔が形成されている。ここ
で、下部側に形成された挿通孔46aは、鉛直方向に長
軸が延びる長孔形状とされている。
Further, the connecting member 46 has insertion holes formed at both ends in the longitudinal direction of the one side portion and the other piece portion. Here, the insertion hole 46a formed on the lower side has a long hole shape in which the long axis extends in the vertical direction.

【0029】そして、この連結部材46は、前記一対の
上部固定部材42a、42b及び下部固定部材44a、
44bの互いに近接する他片部に、自身の一辺部及び他
片部を当接し、互いに対応する挿通孔に連結ボルト50
を挿通し、その先端部にナット52を螺合することによ
って一対の上部固定部材42a、42b及び下部固定部
材44a、44bと連結されている。
The connecting member 46 includes a pair of upper fixing members 42a and 42b and a lower fixing member 44a.
One side portion and the other piece portion of 44b are brought into contact with the other piece portions close to each other of 44b, and the connecting bolt 50 is inserted into the corresponding insertion holes.
Is inserted, and a nut 52 is screwed into the tip end thereof to be connected to the pair of upper fixing members 42a and 42b and lower fixing members 44a and 44b.

【0030】上記構成の柱連結装置40を設置空間36
の形成位置を上下方向から挟み込むように配設すると、
設置空間36を形成しても既存建物10の鉛直荷重が柱
連結装置40を介して外柱26aの下側に伝達されるの
で、ジャッキ等の柱支持装置を必要とせず、また、図1
から図10で示した実施形態のように外壁18aが支持
力を受け持つように設置空間36の形成位置を限定する
必要がない。
The column connecting device 40 having the above structure is installed in the installation space 36.
If it is arranged so as to sandwich the formation position of from above and below,
Even if the installation space 36 is formed, since the vertical load of the existing building 10 is transmitted to the lower side of the outer pillar 26a through the pillar connecting device 40, a pillar supporting device such as a jack is not required, and FIG.
Therefore, unlike the embodiment shown in FIG. 10, it is not necessary to limit the formation position of the installation space 36 so that the outer wall 18a bears the supporting force.

【0031】また、長孔形状の挿通孔46aに挿通した
ボルト50と螺合しているナット52を緩めると、柱連
結装置40への鉛直荷重の伝達が解除されて設置空間3
6に設置したアイソレータ34が水平方向に弾性変形可
能としながら既存建物10の鉛直荷重を受ける。そし
て、ナット52を緩めた状態で柱連結装置40を配設し
ておくと、連結部材46は、地震発生時の既存建物10
の水平方向の変位量を規制するブレース機能を有する。
Further, when the nut 52 screwed with the bolt 50 inserted into the long hole-shaped insertion hole 46a is loosened, the transmission of the vertical load to the column connecting device 40 is released, and the installation space 3 is installed.
The isolator 34 installed at 6 receives the vertical load of the existing building 10 while being elastically deformable in the horizontal direction. Then, when the column connecting device 40 is arranged with the nut 52 loosened, the connecting member 46 becomes the existing building 10 when the earthquake occurs.
It has a brace function that regulates the amount of horizontal displacement of the.

【0032】したがって、柱連結装置40を使用する
と、アイソレータ34を設置する設置空間36を容易に
形成することができるので、免震化工事のコスト低減が
可能となるとともに、連結部材46がブレース機能を備
えることができる。
Therefore, when the column connecting device 40 is used, the installation space 36 in which the isolator 34 is installed can be easily formed, so that the cost of seismic isolation work can be reduced and the connecting member 46 has the brace function. Can be provided.

【0033】なお、上記実施形態では、地下1階の柱及
び壁に免震装置を設置したが、本発明の要旨がこれに限
るものではなく、例えば、地上2階部分の柱と壁に免震
装置を設置することにより、地震発生時に、地上3階以
降の上層階の剛性を低下させて免震化を行うことによ
り、同様の作用効果を得ることができる。
In the above embodiment, the seismic isolation device is installed on the pillar and wall on the first basement floor, but the gist of the present invention is not limited to this, and for example, the seismic isolation device is installed on the pillar and wall on the second floor above the ground. By installing a seismic device, it is possible to obtain the same effect by seismic isolation by reducing the rigidity of the upper floors of the third floor and above in the event of an earthquake.

【0034】また、上記実施形態では、地下外壁18と
一体化された外柱26aの途中にアイソレータ34を設
置し、地下外壁18の一部のコンクリートの破砕により
露出した縦筋37を鉄筋ダンパとしたが、これに限るも
のではなく、例えば図2に示した内柱28aの途中にア
イソレータ34を設置し、内壁29aの一部のコンクリ
ートの破砕により露出した縦筋37を鉄筋ダンパとして
も、同様の作用効果を得ることができる。
Further, in the above-described embodiment, the isolator 34 is installed in the middle of the outer pillar 26a integrated with the underground outer wall 18, and the vertical bars 37 exposed by the crushing of a part of the concrete of the underground outer wall 18 are used as reinforcing bar dampers. However, the present invention is not limited to this. For example, when the isolator 34 is installed in the middle of the inner column 28a shown in FIG. 2 and the vertical bar 37 exposed by crushing part of the concrete of the inner wall 29a is used as a reinforcing bar damper, The effect of can be obtained.

【0035】[0035]

【発明の効果】以上説明したように、本発明の請求項1
記載の既存建物の免震化工法は、特定の下層階の柱の途
中に支承装置を設置し、その階の鉄筋コンクリート製の
壁のコンクリートに定着されていた縦筋を鋼棒ダンパと
して使用しているので、地震が発生すると、支承装置が
水平方向に所定の変位で弾性変形するとともに、鋼棒ダ
ンパは水平方向の曲げ塑性変形を引き起こし、鋼棒ダン
パの曲げ塑性変形による履歴エネルギーの吸収により地
震力をすみやかに減衰させるので、地震発生時の特定の
下層階より上層階の剛性を低下させることができる。こ
れにより、既に構築されている中低層建物の免震化工法
を確実に行うことができる。
As described above, according to the first aspect of the present invention.
The seismic isolation method for the existing building described above uses a support device installed in the middle of a specific lower-floor pillar, and uses the vertical bars anchored to the concrete of the reinforced concrete wall on that floor as a steel rod damper. Therefore, when an earthquake occurs, the supporting device elastically deforms in the horizontal direction with a predetermined displacement, and the steel rod damper causes bending plastic deformation in the horizontal direction, and the earthquake energy is absorbed by the bending plastic deformation of the steel rod damper. Since the force is quickly attenuated, it is possible to reduce the rigidity of the upper floors above the specific lower floor when an earthquake occurs. As a result, the seismic isolation method for already constructed middle and low-rise buildings can be reliably performed.

【0036】また、本発明は、支承装置を設置する際に
ジャッキ等の支持装置を使用せず、鉄筋コンクリート製
の壁の縦筋を鋼棒ダンパとして使用しているので、従来
の免震化工法と比較して施工期間及び施工費用を大幅に
削減することができる。
Further, according to the present invention, since the supporting device such as a jack is not used when the supporting device is installed, and the vertical bar of the reinforced concrete wall is used as the steel rod damper, the conventional seismic isolation method is used. Compared with, the construction period and construction cost can be significantly reduced.

【0037】一方、請求項2記載の既存建物の免震化方
法は、地下1階の柱の途中に支承装置を設置し、地下1
階の鉄筋コンクリート製の壁のコンクリートに定着され
ていた縦筋を鋼棒ダンパとして使用しているので、地震
が発生すると、支承装置が水平方向に所定の変位で弾性
変形するとともに、鋼棒ダンパは水平方向の曲げ塑性変
形を引き起こし、鋼棒ダンパの曲げ塑性変形による履歴
エネルギーの吸収により地震力をすみやかに減衰させる
ので、地震発生時の地上階の剛性を低下させることがで
きる。これにより、既に構築されている中低層建物の免
震化工法を確実に行うことができる。
On the other hand, in the seismic isolation method for an existing building according to claim 2, a support device is installed in the middle of a pillar on the first basement floor, and
Since the vertical bars that were anchored in the concrete of the reinforced concrete wall on the first floor are used as steel bar dampers, when an earthquake occurs, the supporting device elastically deforms with a predetermined displacement in the horizontal direction, and the steel bar dampers The horizontal bending plastic deformation is caused, and the seismic force is promptly attenuated by absorbing the hysteresis energy due to the bending plastic deformation of the steel rod damper, so that the rigidity of the ground floor at the time of the earthquake can be reduced. As a result, the seismic isolation method for already constructed middle and low-rise buildings can be reliably performed.

【0038】また、本発明は、地下1階の周囲の地盤を
掘削してピット擁壁を構築するだけなので、従来の免震
化工法のように大きな地下空間を形成せず掘削に要する
期間が短期間であり、多数の施工資材を必要としないの
で、資材の搬入搬出に要する期間を省くことができる。
したがって、従来の免震化工法と比較して施工期間及び
施工費用を大幅に削減することができる。
Further, according to the present invention, since the ground around the first basement floor is excavated to construct the pit retaining wall, the period required for excavation does not form a large underground space unlike the conventional seismic isolation method. Since it is a short period and does not require a large number of construction materials, it is possible to omit the period required for loading and unloading of materials.
Therefore, it is possible to significantly reduce the construction period and construction cost as compared with the conventional seismic isolation method.

【0039】また、請求項1及び請求項2記載の発明の
両者は、予備鋼棒ダンパを開口部の下面に固定した鋼管
内部に挿入すると、鋼棒ダンパの減衰力を変更すること
が可能となるとともに、交換用の鋼棒ダンパとして使用
することができる。
In both of the first and second aspects of the invention, when the spare steel rod damper is inserted into the steel pipe fixed to the lower surface of the opening, the damping force of the steel rod damper can be changed. In addition, it can be used as a replacement steel rod damper.

【0040】そして、請求項3記載の発明は、請求項1
又は2記載の既存建物の免震化工法の効果を得ることが
できるとともに、地震発生時に鋼棒ダンパが塑性変形し
ても、鋼棒ダンパの上部側に変形防止部材が固定されて
いるので、鉄筋コンクリート製の壁に損傷を与えること
がない。また、変形防止部材の鉛直方向の幅を適宜変更
すると前記鋼棒ダンパの塑性変形領域が変化するので、
鋼棒ダンパの減衰力を変更することができる。
The invention described in claim 3 is the same as claim 1
Alternatively, the effect of the seismic isolation construction method for the existing building described in 2 can be obtained, and even if the steel rod damper is plastically deformed when an earthquake occurs, the deformation prevention member is fixed to the upper side of the steel rod damper. Does not damage reinforced concrete walls. Moreover, since the plastic deformation region of the steel rod damper changes when the vertical width of the deformation preventing member is changed appropriately,
The damping force of the steel rod damper can be changed.

【0041】さらに、請求項4記載の発明は、請求項1
から3記載の既存建物の免震化工法の効果を得ることが
できるとともに、柱連結装置を配設することによって既
存建物の鉛直荷重の伝達経路が確保されるので、特定の
下層階の柱又は地下1階の柱の途中に形成する設置空間
の高さ位置を限定する必要がない。したがって、さらに
施工期間を短縮することができる。
The invention according to claim 4 is the same as claim 1.
The effect of the seismic isolation method for the existing building described in 3 to 3 can be obtained, and the vertical load transmission path of the existing building is secured by disposing the column connecting device. There is no need to limit the height position of the installation space formed in the middle of the pillar on the first basement floor. Therefore, the construction period can be further shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】地下2階を有する鉄筋コンクリート製の既存建
物を示す図である。
FIG. 1 is a diagram showing an existing building made of reinforced concrete having a second basement floor.

【図2】地下の具体的構造を示す斜視図である。FIG. 2 is a perspective view showing a specific underground structure.

【図3】地下1階の周囲地盤を掘削してピット擁壁を構
築した状態を示す図である。
FIG. 3 is a diagram showing a state in which a pit retaining wall is constructed by excavating the surrounding ground on the first basement floor.

【図4】地下1階の柱の途中に支承装置を設置した状態
を示す図である。
FIG. 4 is a view showing a state in which a support device is installed in the middle of a pillar on the first basement floor.

【図5】図4のV −V 線矢視図である。5 is a view taken along the line VV of FIG.

【図6】地下1階の壁のコンクリートを破砕して縦筋を
露出させた状態を示す図である。
FIG. 6 is a diagram showing a state in which concrete on the wall on the first basement floor is crushed to expose vertical streaks.

【図7】図6のVII −VII 線矢視図である。FIG. 7 is a view taken along line VII-VII of FIG. 6;

【図8】地下1階に免震装置を設置した全体構造を示す
図である。
FIG. 8 is a diagram showing an overall structure in which a seismic isolation device is installed on the first basement floor.

【図9】縦筋からなる鋼棒ダンパ及び予備ダンパを示す
図である。
FIG. 9 is a diagram showing a steel rod damper and vertical dampers each having a vertical bar.

【図10】図9のX −X 線矢視図である。10 is a view taken along line XX of FIG.

【図11】支承装置を設置する設置空間を挟み込むよう
に柱連結装置を配設した状態を示す図である。
FIG. 11 is a view showing a state in which the column connecting device is arranged so as to sandwich an installation space in which the support device is installed.

【図12】柱連結装置の具体的構造を示す図である。FIG. 12 is a diagram showing a specific structure of a column connecting device.

【図13】図12のXIII−XIII線矢視図である。FIG. 13 is a view taken along line XIII-XIII in FIG. 12;

【符号の説明】[Explanation of symbols]

10 既存建物 14 地盤 18a 地下1階の外壁(壁) 26a 外柱(柱) 28a 内柱(柱) 29a 地下1階の内壁(壁) 32 ピット擁壁 34 アイソレータ(支承装置) 35 開口部 36 設置空間 37 縦筋 37a 予備ダンパ 37b 鋼棒ダンパ 38 鋼管 39 帯鋼(変形防止部材) 40 柱連結装置 42a、42b 上部固定部材 44a、44b 下部固定部材 46 連結部材 46a 長孔形状の挿通孔 10 existing building 14 ground 18a outer wall (wall) of the first basement floor 26a outer pillar (pillar) 28a inner pillar (pillar) 29a inner wall (wall) of the first basement floor 32 pit retaining wall 34 isolator (supporting device) 35 opening 36 installation Space 37 Vertical line 37a Preliminary damper 37b Steel rod damper 38 Steel pipe 39 Band steel (deformation preventing member) 40 Column connecting device 42a, 42b Upper fixing member 44a, 44b Lower fixing member 46 Connecting member 46a Long hole insertion hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中低層の既存建物に、免震装置を新たに
設置する工法であって、 特定の下層階の柱の途中に、支承装置を設置する設置空
間を形成し、前記柱が負担していた前記既存建物の鉛直
荷重を、前記特定の下層階の鉄筋コンクリート製の壁に
受け持たせる工程と、 前記設置空間に、水平方向に弾性変形可能な前記支承装
置を設置する工程と、 前記特定下層階の前記壁のコンクリートを破砕して水平
方向にスリット状に開口する開口部を形成し、この開口
部内に、前記コンクリート内部に定着されていた複数本
の縦筋をむき出し状態として鉛直方向に延在させる工程
と、 前記複数本の縦筋の全てを下部側で切断して前記支承装
置に前記既存建物の鉛直荷重を導入するとともに、所定
本数の縦筋の切断端部を前記開口部の下面に固定した複
数の鋼管内部に挿入し、これら鋼管内部に挿入した縦筋
を、地震発生時の水平方向の入力によって塑性変形する
鋼棒ダンパとし、残りの縦筋を予備ダンパとする工程
と、を備えたことを特徴とする既存建物の免震化工法。
1. A method for newly installing a seismic isolation device in an existing building of middle- and low-rise building, wherein an installation space for installing a support device is formed in the middle of a pillar on a specific lower floor, and the pillar bears the burden. The step of causing the vertical load of the existing building to be carried by the reinforced concrete wall of the specific lower floor, and the step of installing the supporting device that is elastically deformable in the horizontal direction in the installation space, The concrete of the wall of the specific lower floor is crushed to form an opening that opens in a slit shape in the horizontal direction, and in this opening, a plurality of vertical lines that have been fixed inside the concrete are exposed in the vertical direction. And a step of extending all of the plurality of vertical bars on the lower side to introduce a vertical load of the existing building into the supporting device, and a cutting end portion of a predetermined number of vertical bars is provided in the opening. Fixed on the underside of A number of steel pipes, the vertical bars inserted into these steel pipes are used as steel rod dampers that are plastically deformed by horizontal input when an earthquake occurs, and the remaining vertical bars are used as preliminary dampers. A seismic isolation method for existing buildings, which is characterized by that.
【請求項2】 地下階を備えた中低層の既存建物に免震
装置を新たに設置する工法であって、 地下1階の周囲の地盤を掘削して掘削空間にピット擁壁
を構築する工程と、 前記地下1階の柱の途中に、支承装置を設置する設置空
間を形成し、前記柱が負担していた前記既存建物の鉛直
荷重を、前記地下1階の鉄筋コンクリート製の壁に受け
持たせる工程と、 前記設置空間に、水平方向に弾性変形可能な前記支承装
置を設置する工程と、 前記地下1階の前記壁のコンクリートを破砕して水平方
向にスリット状に開口する開口部を形成し、この開口部
内に、前記コンクリート内部に定着されていた複数本の
縦筋をむき出し状態として鉛直方向に延在させる工程
と、 前記複数本の縦筋の全てを下部側で切断して前記支承装
置に前記既存建物の鉛直荷重を導入するとともに、所定
本数の縦筋の切断端部を前記開口部の下面に固定した複
数の鋼管内部に挿入し、これら鋼管内部に挿入した縦筋
を、地震発生時の水平方向の入力によって塑性変形する
鋼棒ダンパとし、残りの縦筋を予備ダンパとする工程
と、を備えたことを特徴とする既存建物の免震化工法。
2. A method of newly installing a seismic isolation device in an existing building of a low-middle class having a basement floor, which is a process of excavating the ground around the first basement floor and constructing a pit retaining wall in the excavation space. And, in the middle of the pillar on the first basement floor, an installation space for installing a support device is formed, and the vertical load of the existing building, which was borne by the pillar, is carried by the reinforced concrete wall on the first basement floor. And a step of installing the supporting device that is elastically deformable in the horizontal direction in the installation space, and crushing the concrete of the wall of the first basement floor to form an opening that opens in a slit shape in the horizontal direction. Then, in this opening, a step of vertically extending a plurality of vertical streaks fixed inside the concrete in an exposed state, and cutting all of the plurality of vertical streaks on the lower side to support the support. Vertical load of the existing building to the device In addition to the above, the cutting ends of a predetermined number of vertical bars are inserted into multiple steel pipes fixed to the lower surface of the opening, and the vertical bars inserted into these steel pipes are input by horizontal input when an earthquake occurs. A method for seismic isolation of an existing building, characterized in that a steel rod damper that plastically deforms and a process that uses the remaining vertical bars as a preliminary damper are provided.
【請求項3】 前記開口部内で鉛直方向に延在している
前記複数本の鋼棒ダンパの上部側を、鉛直方向の幅を所
定値に設定した帯状の変形防止部材で固定する工程を備
えたことを特徴とする請求項1又は2記載の既存建物の
免震化工法。
3. A step of fixing an upper side of the plurality of steel rod dampers extending in the vertical direction in the opening with a belt-shaped deformation preventing member having a vertical width set to a predetermined value. The method for seismic isolation of an existing building according to claim 1 or 2, characterized in that.
【請求項4】 前記特定の下層階の柱、又は前記地下1
階の柱の途中に前記設置空間を形成する工程の前段階の
工程として、前記設置空間が形成される位置を間にした
前記柱の上部位置と下部位置とを、前記既存建物の鉛直
荷重を伝達することが可能な柱連結装置で連結する工程
を備えたことを特徴とする請求項1乃至3の何れかに記
載の既存建物の免震化工法。
4. The pillar of the specific lower floor or the basement 1
As a step in the preceding step of the step of forming the installation space in the middle of the pillar of the floor, the upper position and the lower position of the pillar with the position where the installation space is formed, the vertical load of the existing building The seismic isolation method for an existing building according to any one of claims 1 to 3, further comprising a step of connecting with a pillar connecting device capable of transmitting.
JP4318996A 1996-02-29 1996-02-29 Base isolation construction method of existing building Pending JPH09235889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4318996A JPH09235889A (en) 1996-02-29 1996-02-29 Base isolation construction method of existing building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4318996A JPH09235889A (en) 1996-02-29 1996-02-29 Base isolation construction method of existing building

Publications (1)

Publication Number Publication Date
JPH09235889A true JPH09235889A (en) 1997-09-09

Family

ID=12656982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4318996A Pending JPH09235889A (en) 1996-02-29 1996-02-29 Base isolation construction method of existing building

Country Status (1)

Country Link
JP (1) JPH09235889A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009477A (en) * 2004-06-28 2006-01-12 Taisei Corp Intermediate base isolating structure of existing building
JP2011137309A (en) * 2009-12-28 2011-07-14 Taisei Corp Base isolation repair structure
JP2015063802A (en) * 2013-09-24 2015-04-09 鹿島建設株式会社 Base isolation structuring method of existing structure
JP2018131879A (en) * 2017-02-17 2018-08-23 株式会社竹中工務店 Seismic isolation method for existing buildings
NL2021114B1 (en) * 2018-06-13 2019-12-19 De Ridder Consult B V Base-isolation for existing building using existing walls

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009477A (en) * 2004-06-28 2006-01-12 Taisei Corp Intermediate base isolating structure of existing building
JP2011137309A (en) * 2009-12-28 2011-07-14 Taisei Corp Base isolation repair structure
JP2015063802A (en) * 2013-09-24 2015-04-09 鹿島建設株式会社 Base isolation structuring method of existing structure
JP2018131879A (en) * 2017-02-17 2018-08-23 株式会社竹中工務店 Seismic isolation method for existing buildings
NL2021114B1 (en) * 2018-06-13 2019-12-19 De Ridder Consult B V Base-isolation for existing building using existing walls

Similar Documents

Publication Publication Date Title
US6536181B1 (en) Composite retaining wall and construction method for underground structure
KR101058520B1 (en) Earth retaining wall using phc pile and construction method of the same
KR100915099B1 (en) Structure for supporting retaining wall of earth with arch material and method constructing the arch structure
CN102720201A (en) Support change construction building method implemented by using main structure of building
KR20170005991A (en) soil retaining wall using PHC pile and its construction method
KR101241566B1 (en) Method for Constructing Cap Beam Combined Wale For Retaining Wall
KR20060092552A (en) The non-strut down framework construction method of having used cast in place concrete pile
JP2009007745A (en) Axial-force transmission structure for permanent sub-substructural column and foundation pile, and construction method for permanent sub-substructural column
KR20140013497A (en) Method for constructing block type reinforced retaining wall in cut site
KR102201159B1 (en) Seismic retrofit structure using cap unit and reinforcing column and construction method thereof
JPH09235889A (en) Base isolation construction method of existing building
JP2000352296A (en) Method o constructing passage just under underground structure
CN105274997B (en) Muscle formula bracket and the method for pushing up road steel pipe support and top board using bracket construction
JP3692805B2 (en) Seismic isolation method for existing buildings
KR100808939B1 (en) wire-reinforced structure for underground pre-scaffolding system
JP4067688B2 (en) Construction method of seismic isolation structure
JP2001271497A (en) Temporary bearing construction method for existing building
KR20190142546A (en) Construction method of subsurface structure using outer shell suspension
KR101958768B1 (en) Structure for Constructing the Lagging Board using Strut Beam having Reinforcement Bar
JPH11141140A (en) Rebuilding method of building
JPH09170340A (en) Base isolation method of existing building and base isolation device therefor
JP3322259B2 (en) Earthquake countermeasures during construction during seismic isolation construction
JPH07158085A (en) Simplified underground construction method
JP2001271499A (en) Temporary bearing construction method for existing building by steel batter brace member
JP3353166B2 (en) Method of rebuilding building structure and basic structure used for it