JPH09232606A - Forming method of solar cell device - Google Patents

Forming method of solar cell device

Info

Publication number
JPH09232606A
JPH09232606A JP8038466A JP3846696A JPH09232606A JP H09232606 A JPH09232606 A JP H09232606A JP 8038466 A JP8038466 A JP 8038466A JP 3846696 A JP3846696 A JP 3846696A JP H09232606 A JPH09232606 A JP H09232606A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
layer
solar cell
forming
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8038466A
Other languages
Japanese (ja)
Other versions
JP3170445B2 (en
Inventor
Yuko Fukawa
祐子 府川
Kenji Fukui
健次 福井
Katsuhiko Shirasawa
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP03846696A priority Critical patent/JP3170445B2/en
Publication of JPH09232606A publication Critical patent/JPH09232606A/en
Application granted granted Critical
Publication of JP3170445B2 publication Critical patent/JP3170445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a semiconductor substrate from being warped so as not to decrease a solar cell device in manufacturing yield and to restrain a process for manufacturing a solar cell device from becoming complicated. SOLUTION: A P<+> layer 1a is formed on the one primary surface of a semiconductor substrate 1 which contains P-type impurities, an N layer 1b is formed on the other primary surface of the substrate 1, and an electrode is provided on each of the primary surfaces of the semiconductor substrate 1 for the formation of a solar cell device, wherein the P<+> layer 1a is formed as a boron silicate glass layer 5 is formed on the primary surface of the semiconductor substrate 1, then the boron silicate glass layer 5 and the P<+> layer 1a are removed from the semiconductor substrate 1 except from the one primary surface. Phosphorus is diffused into the semiconductor substrate 1 using the boron silicate glass layer 5 as a mask, a region of the side of the semiconductor substrate 1 where phosphorus is diffused is removed, and the N layer 1b is formed on the other primary surface of the semiconductor substrate 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池素子の形成
方法の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement in a method for forming a solar cell element.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来の
太陽電池素子の形成方法を図2(a)〜(g)に基づい
て説明する。まず、同図(a)に示すように、0.2〜
1.0mm程度の厚みを有する半導体基板11を用意す
る。この半導体基板11は、例えばボロン(B)等のP
型不純物を含有し、CZ法、FZ法、EFG法、或いは
鋳造法などで形成された単結晶又は多結晶のシリコンの
インゴットをスライスして形成される。半導体基板11
の表面側に例えばリン(P)などを熱拡散させたN層1
1bを設ける。
2. Description of the Related Art A conventional method of forming a solar cell element will be described with reference to FIGS. First, as shown in FIG.
A semiconductor substrate 11 having a thickness of about 1.0 mm is prepared. The semiconductor substrate 11 is made of P such as boron (B).
It is formed by slicing a single crystal or polycrystalline silicon ingot containing a mold impurity and formed by the CZ method, the FZ method, the EFG method, the casting method, or the like. Semiconductor substrate 11
N layer 1 in which, for example, phosphorus (P) is thermally diffused on the surface side of the
1b is provided.

【0003】次に、同図(b)に示すように、N層11
bのうち他の主面側のN層11bのみを残して他の部分
を除去する。すなわち、他の主面側のみにエッチングの
レジスト膜を塗布してフッ酸(HF)と硝酸(NO3
の混合液に浸漬することにより、他の主面側以外のN層
11bを除去する。
Next, as shown in FIG.
Other portions of b are removed while leaving only the N layer 11b on the other main surface side. That is, by applying an etching resist film only on the other main surface side, hydrofluoric acid (HF) and nitric acid (NO 3 ) are applied.
The N layer 11b other than the other main surface side is removed by immersing in the mixed solution of.

【0004】次に、同図(c)に示すように、半導体基
板11の他の主面側に反射防止膜12を形成する。この
反射防止膜12は半導体基板11に入射される光を効率
よく吸収するための膜であり、例えばシランとアンモニ
アとの混合ガスをプラズマ化して析出させた窒化シリコ
ン膜などで形成される。
Next, as shown in FIG. 1C, an antireflection film 12 is formed on the other main surface side of the semiconductor substrate 11. The antireflection film 12 is a film for efficiently absorbing the light incident on the semiconductor substrate 11, and is formed of, for example, a silicon nitride film or the like deposited by converting a mixed gas of silane and ammonia into plasma.

【0005】次に、同図(d)に示すように、半導体基
板11の一主面側に、アルミニウムペースト15をスク
リーン印刷法などで塗布して加熱焼成することにより、
半導体基板11の一主面側にアルミニウム元素を拡散さ
せて半導体基板11の一主面側にP+ 領域11aを形成
する。
Next, as shown in FIG. 1D, the aluminum paste 15 is applied to one main surface side of the semiconductor substrate 11 by a screen printing method or the like, and is baked by heating.
Aluminum element is diffused on the one main surface side of the semiconductor substrate 11 to form the P + region 11a on the one main surface side of the semiconductor substrate 11.

【0006】次に、同図(e)に示すように、半導体基
板11の他の主面側に形成した反射防止膜12を表面電
極の形状に応じて除去する。すなわち、表面電極のパタ
ーンと逆パターンを形づくるように反射防止膜12を除
去する。
Next, as shown in FIG. 1E, the antireflection film 12 formed on the other main surface side of the semiconductor substrate 11 is removed according to the shape of the surface electrode. That is, the antireflection film 12 is removed so as to form a pattern opposite to the pattern of the surface electrode.

【0007】次に、同図(f)に示すように、半導体基
板11の他の主面側の反射防止膜12の除去部分に表面
電極13及び裏面電極14を形成する。表面電極13及
び裏面電極14は、銀粉末を主成分とするペーストを半
導体基板11の表裏面に厚膜手法で塗布して加熱焼成す
ることにより焼き付けて形成する。
Next, as shown in FIG. 1F, a front surface electrode 13 and a back surface electrode 14 are formed on the removed portion of the antireflection film 12 on the other main surface side of the semiconductor substrate 11. The front surface electrode 13 and the back surface electrode 14 are formed by applying a paste containing silver powder as a main component on the front and back surfaces of the semiconductor substrate 11 by a thick film method and baking by heating and baking.

【0008】この表面電極13および裏面電極14上に
は、必要に応じて半田層(不図示)などが形成される。
なお、表面電極13および裏面電極14は、メッキ法や
真空蒸着法を用いて形成してもよい。
A solder layer (not shown) or the like is formed on the front surface electrode 13 and the rear surface electrode 14 if necessary.
The front surface electrode 13 and the back surface electrode 14 may be formed by using a plating method or a vacuum evaporation method.

【0009】ところが、この従来の太陽電池素子の形成
方法では、図2(d)に示す工程で、半導体基板11の
裏面側にP+ 層11aを形成する場合、半導体基板11
の裏面側全面にアルミニウムペースト15を塗布して加
熱焼成することから、半導体基板11とアルミニウム1
4の熱膨張係数の相違に起因して、半導体基板11にソ
リを生じ、製造歩留り低下の原因になるという問題があ
った。
However, in this conventional method for forming a solar cell element, when the P + layer 11a is formed on the back surface side of the semiconductor substrate 11 in the step shown in FIG.
Since the aluminum paste 15 is applied to the entire back surface of the substrate and heated and baked, the semiconductor substrate 11 and the aluminum 1
There is a problem in that the semiconductor substrate 11 is warped due to the difference in the thermal expansion coefficient of No. 4, which causes a reduction in manufacturing yield.

【0010】また、半導体基板11にソリなどを生じさ
せない太陽電池素子の形成方法として、BBr3 などを
用いた熱拡散方法によってP+ 層11aを形成すること
も考えられる(例えば"HIGH-EFFICIENCY SOLAR CELLS F
ROM FZ, CZ, AND MC SILICONMATERIAL", 0-7 803-1220-
1/93, 1993, IEEE, P271-P276)。この太陽電池素子の
形成方法では、まず図3(a)に示すように、半導体基
板11を1000℃程度の酸化雰囲気中で加熱して80
nm程度の厚みを有する酸化膜16を形成する。次に、
同図(b)に示すように、酸化膜16のうち、半導体基
板11の他の主面側の酸化膜16を除去し、この酸化膜
16をマスクとしてBBr3 などを用いてボロン(B)
を熱拡散させて、P+ 層11aを形成する。次に、同図
(c)に示すように、半導体基板11の表面部に再度酸
化シリコン膜16を形成して一主面側の酸化シリコン膜
を除去し、この半導体基板11の一主面側に酸化膜16
をマスクとしてPOCl3 などを用いてリン(P)を熱
拡散する。なお、反射防止膜、表面電極及び裏面電極の
形成方法は、図2(c)(e)(f)に示す形成工程と
同一である。
Further, as a method of forming a solar cell element which does not cause warping or the like on the semiconductor substrate 11, it is conceivable to form the P + layer 11a by a thermal diffusion method using BBr 3 or the like (for example, "HIGH-EFFICIENCY SOLAR"). CELLS F
ROM FZ, CZ, AND MC SILICONMATERIAL ", 0-7 803-1220-
1/93, 1993, IEEE, P271-P276). In this method of forming a solar cell element, first, as shown in FIG. 3A, the semiconductor substrate 11 is heated in an oxidizing atmosphere at about 1000 ° C. and heated to 80 ° C.
An oxide film 16 having a thickness of about nm is formed. next,
As shown in FIG. 3B, the oxide film 16 on the other main surface side of the semiconductor substrate 11 is removed from the oxide film 16, and boron (B) is used by using BBr 3 or the like with the oxide film 16 as a mask.
Is thermally diffused to form the P + layer 11a. Next, as shown in FIG. 3C, the silicon oxide film 16 is formed again on the surface of the semiconductor substrate 11 to remove the silicon oxide film on the one main surface side, and the one main surface side of the semiconductor substrate 11 is removed. Oxide film 16
The phosphorus (P) is thermally diffused by using POCl 3 or the like with the mask used as a mask. The method for forming the antireflection film, the front surface electrode, and the back surface electrode is the same as the forming process shown in FIGS. 2C, 2E, and 2F.

【0011】ところが、このような太陽電池素子の形成
方法では、2回の酸化膜形成工程と2回のフォトリソ工
程があり、形成工程が煩雑になると共に、図3(c)の
工程では、ボロンの拡散層11aの上に酸化膜16をつ
けるため、半導体基板11中に拡散したボロンが酸化膜
16中に取り込まれ、P+ 層のボロンの拡散濃度の制御
が困難であるという問題がある。
However, in such a method for forming a solar cell element, there are two oxide film forming steps and two photolithography steps, which complicates the forming step, and in the step of FIG. 3C, boron is used. Since the oxide film 16 is formed on the diffusion layer 11a, the boron diffused in the semiconductor substrate 11 is taken into the oxide film 16 and it is difficult to control the diffusion concentration of boron in the P + layer.

【0012】本発明は、このような従来技術の問題点に
鑑みて発明されたものであり、太陽電池素子の製造工程
において、半導体基板にソリが発生して製造歩留りが低
下することを解消すると共に、太陽電池素子の製造工程
の煩雑化を解消することを目的とする。
The present invention has been invented in view of the above problems of the prior art, and solves the problem that the semiconductor substrate is warped and the manufacturing yield is lowered in the manufacturing process of the solar cell element. At the same time, it is an object to eliminate the complexity of the manufacturing process of the solar cell element.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る太陽電池素子の形成方法では、P型不
純物を含有する半導体基板の一主面側にP+ 層を形成す
ると共に他の主面側にN層を形成して、この半導体基板
の両主面に電極を形成する太陽電池素子の形成方法にお
いて、前記半導体基板の表面部にボロンシリケートガラ
ス層を形成しながらP+ 層を形成し、この半導体基板表
面部のボロンシリケートガラス層とP+層を前記半導体
基板の一主面側を除いて除去し、この半導体基板に前記
ボロンシリケートガラス層をマスクとしてリンを拡散さ
せ、この半導体基板側面部のリンが拡散した領域を除去
して、この半導体基板の他の主面側に前記N層を形成す
る。
In order to achieve the above object, in the method for forming a solar cell element according to the present invention, a P + layer is formed on one main surface side of a semiconductor substrate containing a P-type impurity. In a method of forming a solar cell element in which an N layer is formed on the other main surface side and electrodes are formed on both main surfaces of the semiconductor substrate, P + while forming a boron silicate glass layer on the surface portion of the semiconductor substrate. A layer is formed, the boron silicate glass layer and the P + layer on the surface of the semiconductor substrate are removed except for the one main surface side of the semiconductor substrate, and phosphorus is diffused in the semiconductor substrate using the boron silicate glass layer as a mask. Then, the phosphorus-diffused region on the side surface of the semiconductor substrate is removed, and the N layer is formed on the other main surface side of the semiconductor substrate.

【0014】[0014]

【発明の実施の形態】以下、本発明の実施形態を添付図
面に基づき詳細に説明する。図1(a)〜(g)は本発
明に係る太陽電池素子の形成方法の一実施形態を示す図
であり、1は半導体基板、1aはP+ 層、1bはN層、
2は反射防止膜、3は表面電極、4は裏面電極である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. 1A to 1G are views showing an embodiment of a method for forming a solar cell element according to the present invention, in which 1 is a semiconductor substrate, 1a is a P + layer, 1b is an N layer,
Reference numeral 2 is an antireflection film, 3 is a front surface electrode, and 4 is a back surface electrode.

【0015】まず、同図(a)に示すように、0.2〜
1mm程度の厚みを有する半導体基板1を用意する。こ
の半導体基板1は、CZ法、FZ法、EFG法、あるい
は鋳造法などで形成された単結晶又は多結晶のシリコン
インゴットなどをスライスして形成され、例えばボロン
(B)などのP型不純物を1×1016〜1×1018cm
-3程度含有する。BBr3 を窒素ガスや酸素ガスなどで
バブリングしながら、半導体基板1が搬入された石英チ
ューブに導入して、半導体基板1の表面部に、ボロンを
熱拡散し、P+ 層1aを形成する。この場合、バブリン
グガスまたはキャリアガスとして用いられる酸素がシリ
コンと反応して半導体基板1の表面に、ボロンシリケー
トガラス層5が形成される。このP+ 層1aはボロンを
1×1019〜1×1022cm-3程度含有するように、
0.5μm〜5μm程度の深さに形成される。このよう
に、半導体基板1の表面部近傍にBBr3 を熱拡散し
て、P+ 層1aを形成すると、従来のようにアルミニウ
ムペーストを用いることなく、P+ 層1aを形成するこ
とができる。もって、本発明の太陽電池の形成方法で
は、P+ 層1aの形成工程で半導体基板1にソリなどを
生じることがない。
First, as shown in FIG.
A semiconductor substrate 1 having a thickness of about 1 mm is prepared. The semiconductor substrate 1 is formed by slicing a single crystal or polycrystal silicon ingot formed by a CZ method, an FZ method, an EFG method, a casting method, or the like, for example, a P-type impurity such as boron (B). 1 x 10 16 to 1 x 10 18 cm
Contains about -3 . While bubbling BBr 3 with nitrogen gas or oxygen gas, the semiconductor substrate 1 is introduced into a quartz tube into which the semiconductor substrate 1 has been introduced, and boron is thermally diffused on the surface portion of the semiconductor substrate 1 to form a P + layer 1a. In this case, oxygen used as a bubbling gas or a carrier gas reacts with silicon to form the boron silicate glass layer 5 on the surface of the semiconductor substrate 1. The P + layer 1a contains boron in an amount of about 1 × 10 19 to 1 × 10 22 cm −3 .
It is formed to a depth of about 0.5 μm to 5 μm. Thus, the BBr 3 in the surface vicinity of the semiconductor substrate 1 is thermally diffused to form a P + layer 1a, without using a conventional aluminum paste as it is possible to form the P + layer 1a. Therefore, according to the method for forming a solar cell of the present invention, warpage or the like does not occur in the semiconductor substrate 1 in the step of forming the P + layer 1a.

【0016】次に、同図(b)に示すように、一主面側
のP+ 層1aとボロンシリケートガラス5のみを残して
他の部分を除去する。すなわち、一主面側のみにエッチ
ングのレジスト膜を塗布してフッ酸(HF)と硝酸(N
3 )の混合液に浸漬し、一主面側のP+ 層1aとボロ
ンシリケートガラス層5以外のP+ 層1aとボロンリケ
ートガラス層5を除去する。その後、レジスト膜を除去
して半導体基板1を純水で洗浄する。
Next, as shown in FIG. 2B, only the P + layer 1a on the one main surface side and the boron silicate glass 5 are left and the other portions are removed. That is, a resist film for etching is applied only on one main surface side to form hydrofluoric acid (HF) and nitric acid (N
It is immersed in a mixed solution of O 3 ) to remove the P + layer 1a and the boron silicate glass layer 5 other than the P + layer 1a and the boron silicate glass layer 5 on the one main surface side. Then, the resist film is removed and the semiconductor substrate 1 is washed with pure water.

【0017】次に、同図(c)に示すように、半導体基
板1の表面にN層1bを設ける。このN層1bは、リン
を含むを気体例えばオキシ塩化リン(POCl3 )など
のバブリングガスを流しながら、半導体基板1を850
〜900℃の温度に加熱してリンを半導体基板1に拡散
させることによって形成する。このN層1bを形成する
ことによって、半導体基板1内にPN接合部が形成され
る。このN層1bはリンなどを1×1016〜1×1018
cm-3程度含有するように形成され、2000Å〜1μ
m程度の深さに形成される。このN層1bは、半導体基
板1の一主面側のボロンシリケートガラス層5を露出さ
せたままで形成する。この場合、リンはシリコンに対す
る拡散係数よりボロンシリケートガラスに対する拡散係
数が小さいため、ボロンシリケートガラス層5をリン拡
散のマスク層として半導体基板1にリンを拡散させるこ
とができる。このように、ボロンシリケトガラス層5を
残したままN層1bを形成すると、従来のようにマスク
としての酸化膜などを新たに形成する必要がなく、太陽
電池素子の形成工程を簡略化できる。
Next, as shown in FIG. 1C, an N layer 1b is provided on the surface of the semiconductor substrate 1. The N layer 1b is formed on the semiconductor substrate 1 by 850 while flowing a gas containing phosphorus, for example, a bubbling gas such as phosphorus oxychloride (POCl 3 ).
It is formed by heating to a temperature of up to 900 ° C. and diffusing phosphorus into the semiconductor substrate 1. By forming this N layer 1b, a PN junction is formed in the semiconductor substrate 1. The N layer 1b contains phosphorus or the like from 1 × 10 16 to 1 × 10 18.
It is formed to contain about cm -3 , 2000Å ~ 1μ
It is formed to a depth of about m. The N layer 1b is formed while leaving the boron silicate glass layer 5 on the one main surface side of the semiconductor substrate 1 exposed. In this case, since phosphorus has a smaller diffusion coefficient for boron silicate glass than that for silicon, phosphorus can be diffused into the semiconductor substrate 1 using the boron silicate glass layer 5 as a phosphorus diffusion mask layer. Thus, when the N layer 1b is formed while leaving the boron silicate glass layer 5, there is no need to newly form an oxide film or the like as a mask as in the conventional case, and the process of forming a solar cell element can be simplified. .

【0018】次に、同図(d)に示すように、半導体基
板1の周辺側部のN層1bをエッチング除去する。すな
わち、半導体基板1の両主面側にエチングのレジスト膜
を塗布し、フッ酸(HF)と硝酸(NO3 )の混合液に
浸漬して、半導体基板1の周辺側部のN層1bを除去す
る。半導体基板1周辺側部のN層1aを除去した後にレ
ジスト膜を除去し、半導体基板1を純水で洗浄する。
Next, as shown in FIG. 3D, the N layer 1b on the peripheral side of the semiconductor substrate 1 is removed by etching. That is, an etching resist film is applied to both main surface sides of the semiconductor substrate 1 and immersed in a mixed solution of hydrofluoric acid (HF) and nitric acid (NO 3 ) to remove the N layer 1b on the peripheral side portion of the semiconductor substrate 1. Remove. After removing the N layer 1a on the peripheral side of the semiconductor substrate 1, the resist film is removed and the semiconductor substrate 1 is washed with pure water.

【0019】次に、同図(e)に示すように、半導体基
板1の主面側に反射防止膜2を形成する。この反射防止
膜2は、半導体基板1に入射される光を効率よく吸収す
るための膜であり、その厚みが500〜1000Å、屈
折率が1.90〜2.30程度になるように形成され
る。例えばシラン(SiH4 )とアンモニア(NH3
との混合ガスをプラズマ化して析出させた窒化シリコン
膜等で形成される。具体的には、プラズマCVD装置内
で半導体基板1を150〜400℃にまで加熱し、シラ
ンとアンモニアとキャリアガスとしての水素(H2 )の
ガス圧を0.2〜2.0Torrに維持しながら、高周
波電圧を印加する。この反射防止膜2の材料としては窒
化シリコン膜の他に、一酸化シリコン(SiO)、二酸
化シリコン(SiO2 )、二酸化チタン(TiO2 )な
どを用いてもよい。
Next, as shown in FIG. 1E, an antireflection film 2 is formed on the main surface side of the semiconductor substrate 1. The antireflection film 2 is a film for efficiently absorbing the light incident on the semiconductor substrate 1, and is formed so as to have a thickness of 500 to 1000Å and a refractive index of about 1.90 to 2.30. It For example, silane (SiH 4 ) and ammonia (NH 3 )
It is formed of a silicon nitride film or the like deposited by converting a mixed gas of the plasma into plasma. Specifically, the semiconductor substrate 1 is heated to 150 to 400 ° C. in the plasma CVD apparatus, and the gas pressure of silane, ammonia, and hydrogen (H 2 ) as a carrier gas is maintained at 0.2 to 2.0 Torr. Meanwhile, a high frequency voltage is applied. As the material of the antireflection film 2, other than the silicon nitride film, silicon monoxide (SiO), silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ) or the like may be used.

【0020】次に、同図(f)に示すように、半導体基
板1の表面側に形成した反射防止膜2を表面電極5の形
状に応じて除去する。すなわち、表面電極5のパターン
と逆パターンで反射防止膜2を除去する。
Next, as shown in FIG. 1F, the antireflection film 2 formed on the surface side of the semiconductor substrate 1 is removed according to the shape of the surface electrode 5. That is, the antireflection film 2 is removed in a pattern opposite to the pattern of the surface electrode 5.

【0021】次に、同図(g)に示すように、半導体基
板1の一主面側の反射防止膜2の除去部分に表面電極3
を形成すると共に、半導体基板1の裏面側に裏面電極4
を形成する。表面電極3および裏面電極4は、銀粉末を
主成分とするペーストを半導体基板1の表裏面に厚膜手
法などで印刷塗布して焼き付けることにより形成する。
Next, as shown in FIG. 1G, the surface electrode 3 is formed on the removed portion of the antireflection film 2 on the one main surface side of the semiconductor substrate 1.
And the backside electrode 4 is formed on the backside of the semiconductor substrate 1.
To form The front surface electrode 3 and the back surface electrode 4 are formed by printing and applying a paste containing silver powder as a main component to the front and back surfaces of the semiconductor substrate 1 by a thick film method or the like and baking it.

【0022】この表面電極3および裏面電極4上には、
必要に応じて半田層(不図示)などが形成される。な
お、表面電極3および裏面電極4は、メッキ法や真空蒸
着法を用いて形成してもよい。
On the front surface electrode 3 and the back surface electrode 4,
A solder layer (not shown) or the like is formed as needed. The front surface electrode 3 and the back surface electrode 4 may be formed by using a plating method or a vacuum evaporation method.

【0023】[0023]

【発明の効果】以上のように、本発明に係る太陽電池素
子の形成方法によれば、半導体基板の表面部にボロンシ
リケートガラス層を形成しながらP+ 層を形成し、この
半導体基板表面部のボロンシリケートガラス層とP+
を前記半導体基板の一主面側を除いて除去し、この半導
体基板に前記ボロンシリケートガラス層をマスクとして
リンを拡散させ、この半導体基板側面部のリンが拡散し
た領域を除去して、この半導体基板の他の主面側に前記
N層を形成することから、従来のような酸化膜形成工程
や酸化膜除去工程がなく、太陽電池素子の形成工程を簡
素化できる。
As described above, according to the method for forming a solar cell element of the present invention, the P + layer is formed while forming the boron silicate glass layer on the surface portion of the semiconductor substrate, and the surface portion of the semiconductor substrate is formed. Of the boron silicate glass layer and the P + layer except the one main surface side of the semiconductor substrate, phosphorus is diffused in the semiconductor substrate using the boron silicate glass layer as a mask, and the phosphorus on the side surface of the semiconductor substrate is diffused. Since the N layer is formed on the other main surface side of the semiconductor substrate by removing the formed region, there is no oxide film forming step or oxide film removing step as in the past, and the solar cell element forming step is simplified. Can be converted.

【0024】また、半導体基板にP+ 層を形成する際に
従来のようなアルミニウムペーストを使用しないことか
ら、半導体基板にソリなどを発生することがなく、製造
歩留りの低下を防止できる。
Further, since the conventional aluminum paste is not used when forming the P + layer on the semiconductor substrate, warping or the like does not occur on the semiconductor substrate, and a decrease in manufacturing yield can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る太陽電池素子の形成方法の一実施
形態を示す図である。
FIG. 1 is a diagram showing an embodiment of a method for forming a solar cell element according to the present invention.

【図2】従来の太陽電池素子の形成方法を示す図であ
る。
FIG. 2 is a diagram showing a conventional method for forming a solar cell element.

【図3】従来の他の太陽電池素子の形成方法を示す図で
ある。
FIG. 3 is a diagram showing another conventional method for forming a solar cell element.

【符号の説明】[Explanation of symbols]

1・・・半導体基板、1a・・・P+ 層、1b・・・N
層、2・・・反射防止膜、3・・・表面電極、4・・・
裏面電極、5・・・ボロンシリケートガラス層
1 ... Semiconductor substrate, 1a ... P + layer, 1b ... N
Layer, 2 ... Antireflection film, 3 ... Surface electrode, 4 ...
Back electrode, 5 ... Boron silicate glass layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 P型不純物を含有する半導体基板の一主
面側にP+ 層を形成すると共に他の主面側にN層を形成
して、この半導体基板の両主面に電極を形成する太陽電
池素子の形成方法において、前記半導体基板の表面部に
ボロンシリケートガラス層を形成しながらP+ 層を形成
し、この半導体基板表面部のボロンシリケートガラス層
とP+ 層を前記半導体基板の一主面側を除いて除去し、
この半導体基板に前記ボロンシリケートガラス層をマス
クとしてリンを拡散させ、この半導体基板側面部のリン
が拡散した領域を除去して、この半導体基板の他の主面
側に前記N層を形成することを特徴とする太陽電池素子
の形成方法。
1. A P + layer is formed on one main surface side of a semiconductor substrate containing a P-type impurity, and an N layer is formed on the other main surface side, and electrodes are formed on both main surfaces of this semiconductor substrate. In the method for forming a solar cell element, the P + layer is formed while forming a boron silicate glass layer on the surface portion of the semiconductor substrate, and the boron silicate glass layer and the P + layer on the surface portion of the semiconductor substrate are formed on the semiconductor substrate. Except for one main surface side,
Phosphorus is diffused on the semiconductor substrate using the boron silicate glass layer as a mask, and a region of the side surface of the semiconductor substrate on which phosphorus is diffused is removed to form the N layer on the other main surface side of the semiconductor substrate. A method for forming a solar cell element, comprising:
JP03846696A 1996-02-26 1996-02-26 Method of forming solar cell element Expired - Lifetime JP3170445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03846696A JP3170445B2 (en) 1996-02-26 1996-02-26 Method of forming solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03846696A JP3170445B2 (en) 1996-02-26 1996-02-26 Method of forming solar cell element

Publications (2)

Publication Number Publication Date
JPH09232606A true JPH09232606A (en) 1997-09-05
JP3170445B2 JP3170445B2 (en) 2001-05-28

Family

ID=12526032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03846696A Expired - Lifetime JP3170445B2 (en) 1996-02-26 1996-02-26 Method of forming solar cell element

Country Status (1)

Country Link
JP (1) JP3170445B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067972A (en) * 2008-09-09 2010-03-25 Palo Alto Research Center Inc Interdigitated back contact solar cell and method of manufacturing the same
JP2011029553A (en) * 2009-07-29 2011-02-10 Sharp Corp Method of manufacturing semiconductor device
JP2011035252A (en) * 2009-08-04 2011-02-17 Sharp Corp Method of manufacturing semiconductor device
KR101352034B1 (en) * 2007-06-29 2014-01-17 주성엔지니어링(주) Crystalline silicon solar cell and manufacturing method and system thereof
WO2014123060A1 (en) 2013-02-06 2014-08-14 PVG Solutions株式会社 Method for forming boron diffusion layer and method for manufacturing solar battery cell
KR101492946B1 (en) * 2007-07-26 2015-02-13 주성엔지니어링(주) Crystalline silicon solar cell and manufacturing method and system thereof
US9150966B2 (en) 2008-11-14 2015-10-06 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
WO2018043523A1 (en) * 2016-08-31 2018-03-08 パナソニックプロダクションエンジニアリング株式会社 Method for forming boron diffusion layer and phosphorus diffusion layer
TWI649894B (en) * 2016-10-25 2019-02-01 日商信越化學工業股份有限公司 Solar cell with high photoelectric conversion efficiency and manufacturing method of solar cell with high photoelectric conversion efficiency

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437193B1 (en) 1997-07-15 2002-08-20 E. I. Du Pont De Nemours And Company Vapor phase oxidation of propylene to acrolein
CA2271397A1 (en) 1998-05-21 1999-11-21 Rohm And Haas Company A process for preparing a catalyst
US6281384B1 (en) 1998-06-26 2001-08-28 E. I. Du Pont Nemours And Company Vapor phase catalytic oxidation of propylene to acrylic acid
US6310240B1 (en) 1998-12-23 2001-10-30 E. I. Du Pont De Nemours And Company Vapor phase oxidation of acrolein to acrylic acid
US6337424B1 (en) 2000-04-28 2002-01-08 Saudi Basic Industries Corporation Catalysts oxidation of lower olefins to unsaturated aldehydes, methods of making and using the same
US8470289B2 (en) 2007-07-16 2013-06-25 Exxonmobil Chemical Patents Inc. Manganese oxides and their use in the oxidation of alkanes

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352034B1 (en) * 2007-06-29 2014-01-17 주성엔지니어링(주) Crystalline silicon solar cell and manufacturing method and system thereof
KR101492946B1 (en) * 2007-07-26 2015-02-13 주성엔지니어링(주) Crystalline silicon solar cell and manufacturing method and system thereof
US9054237B2 (en) 2008-09-09 2015-06-09 Palo Alto Research Center Incorporated Interdigitated back contact silicon solar cells fabrication using diffusion barriers
JP2010067972A (en) * 2008-09-09 2010-03-25 Palo Alto Research Center Inc Interdigitated back contact solar cell and method of manufacturing the same
US9150966B2 (en) 2008-11-14 2015-10-06 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
JP2011029553A (en) * 2009-07-29 2011-02-10 Sharp Corp Method of manufacturing semiconductor device
JP2011035252A (en) * 2009-08-04 2011-02-17 Sharp Corp Method of manufacturing semiconductor device
WO2014123060A1 (en) 2013-02-06 2014-08-14 PVG Solutions株式会社 Method for forming boron diffusion layer and method for manufacturing solar battery cell
JPWO2014123060A1 (en) * 2013-02-06 2017-02-02 PVG Solutions株式会社 Method for manufacturing solar battery cell
US9837575B2 (en) 2013-02-06 2017-12-05 Panasonic Production Engineering Co., Ltd. Method of manufacturing solar battery cell
WO2018043523A1 (en) * 2016-08-31 2018-03-08 パナソニックプロダクションエンジニアリング株式会社 Method for forming boron diffusion layer and phosphorus diffusion layer
JPWO2018043523A1 (en) * 2016-08-31 2019-06-24 パナソニックプロダクションエンジニアリング株式会社 Method of forming boron diffusion layer and phosphorus diffusion layer
TWI649894B (en) * 2016-10-25 2019-02-01 日商信越化學工業股份有限公司 Solar cell with high photoelectric conversion efficiency and manufacturing method of solar cell with high photoelectric conversion efficiency
TWI695518B (en) * 2016-10-25 2020-06-01 日商信越化學工業股份有限公司 Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency

Also Published As

Publication number Publication date
JP3170445B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
JP3170445B2 (en) Method of forming solar cell element
US4152824A (en) Manufacture of solar cells
JP3459947B2 (en) Solar cell manufacturing method
JP5940519B2 (en) Method for producing n + pp + type or p + nn + type structure on silicon wafer
US20120048369A1 (en) Solar cell element, segmented solar cell element, solar cell module, and electronic appliance
JP3578539B2 (en) Solar cell manufacturing method and solar cell structure
HUT63711A (en) Method for making semiconductor device, as well as solar element made from said semiconductor device
JPH07226528A (en) Manufacture of thin film solar cell and thin film solar cell
JP2000183379A (en) Method for manufacturing solar cell
US3746587A (en) Method of making semiconductor diodes
JP2006332510A (en) Manufacturing method for solar cell element
JP2001127317A (en) Method of manufacturing solar cell
JP3238003B2 (en) Method of manufacturing solar cell element
JP2008244282A (en) Photoelectric conversion element and manufacturing method therefor
JP2003101055A (en) Method for manufacturing solar battery
JP2692964B2 (en) Solar cell
JP2002261305A (en) Thin-film polycrystalline silicon solar cell and manufacturing method therefor
JP3368145B2 (en) Method of manufacturing solar cell
JP4467164B2 (en) Method for forming solar cell
JPH08274356A (en) Solar cell element
JP3786809B2 (en) Solar cell manufacturing method
JP2006024757A (en) Solar cell and method of manufacturing the same
JPH1070296A (en) Solar cell and fabrication thereof
JPH0945945A (en) Solar cell element and fabrication thereof
JPH07153980A (en) Manufacture of solar battery

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 13

EXPY Cancellation because of completion of term