JPH09232428A - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device

Info

Publication number
JPH09232428A
JPH09232428A JP4094196A JP4094196A JPH09232428A JP H09232428 A JPH09232428 A JP H09232428A JP 4094196 A JP4094196 A JP 4094196A JP 4094196 A JP4094196 A JP 4094196A JP H09232428 A JPH09232428 A JP H09232428A
Authority
JP
Japan
Prior art keywords
silicon
organic resin
containing polymer
polymer layer
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4094196A
Other languages
Japanese (ja)
Inventor
Hiroshi Shiraishi
洋 白石
Hiroshi Morisawa
拓 森澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4094196A priority Critical patent/JPH09232428A/en
Publication of JPH09232428A publication Critical patent/JPH09232428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which simplifies such a complex process as the one where, relating to a wiring groove or a via hole for forming buried- wiring in an insulation film comprising an organic resin by chemical-mechanical grinding method, a mask is formed using photo-resist and it is transferred to an insulation layer. SOLUTION: Relating to a method wherein a buried-wiring is formed on an organic resin insulation layer by a chemical and mechanical grinding method, an organic resin insulation layer 21 which is to be a buried-wiring part is worked as follows. Firstly, a silicon-containing polymer layer 3 is formed on an organic resin insulation layer 2, and the silicon-containing polymer layer 3 is irradiated with an active chemical ray 4 in a specified pattern, so that a latent image 5 is formed in the silicon-containing polymer layer. Then, the mask pattern of a specified pattern is formed on the silicon-containing polymer layer 3 by development. Then, by reactive ion etching of oxygen, the mask pattern is transferred onto the organic resin insulation layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に係わり,特に,ポリイミド等有機樹脂を層間絶縁膜
に用いた埋め込み配線技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a buried wiring technique using an organic resin such as polyimide for an interlayer insulating film.

【0002】[0002]

【従来の技術】ポリイミドのような有機樹脂からなる層
間絶縁膜に,化学的-機械的研磨法を用いて埋め込み配
線を形成する技術としては,米国特許第5,397,741号に
あるように,有機樹脂絶縁層の上にポリシルセスキオキ
サン等のシリコン含有ポリマー層を形成し,このシリコ
ン含有ポリマー層を,フォトレジストを用いたフォトリ
ソグラフィによって所定パタン状に加工し,さらにその
パタンをマスクに酸素の反応性イオンエッチングにより
シリコン含有ポリマー層開口部にある当該有機樹脂絶縁
層をエッチング除去して,埋め込み配線部となる溝ある
いはビアホールを形成した。上記公知例で挙げられた特
定のシリコン含有ポリマー層は,その下層の有機樹脂を
エッチング加工する際のマスクになるばかりでなく,化
学的-機械的研磨法を用いて配線金属をエッチング除去
する際のエッチングストップ層の役割も果たす。
2. Description of the Related Art A technique for forming a buried wiring in an interlayer insulating film made of an organic resin such as polyimide by using a chemical-mechanical polishing method is disclosed in US Pat. No. 5,397,741. A silicon-containing polymer layer such as polysilsesquioxane is formed on the layer, and the silicon-containing polymer layer is processed into a predetermined pattern by photolithography using a photoresist, and the reaction of oxygen with the pattern as a mask. The organic resin insulating layer in the opening of the silicon-containing polymer layer was etched and removed by reactive ion etching to form a groove or via hole to be a buried wiring portion. The specific silicon-containing polymer layer mentioned in the above-mentioned known example not only serves as a mask when etching the organic resin thereunder, but also when the wiring metal is removed by etching using the chemical-mechanical polishing method. Also plays the role of an etching stop layer.

【0003】この方法では,有機樹脂絶縁層に配線溝を
形成するまでに,フォトレジストの形成工程,所定パタ
ンの露光・現像工程,レジストパタンを有機樹脂絶縁層
上のシリコン含有ポリマー層に転写するエッチング工
程,更に該シリコン含有ポリマー層のパタンをマスクに
酸素の反応性イオンエッチング等で当該有機樹脂絶縁層
をエッチングする工程が必要である。半導体集積回路の
高集積化が進み,配線の微細加工精度も高いことが求め
られる。また,高性能化のため配線層は二層,三層から
更に多層化する傾向にある。配線の多層化が進めば,全
体の工程数は出来るだけ少ない方がコストの点で有利で
ある。
In this method, a photoresist forming step, a predetermined pattern exposure / developing step, and a resist pattern are transferred to a silicon-containing polymer layer on the organic resin insulating layer before forming a wiring groove in the organic resin insulating layer. An etching step and a step of etching the organic resin insulating layer by oxygen reactive ion etching or the like using the pattern of the silicon-containing polymer layer as a mask are required. As semiconductor integrated circuits become highly integrated, it is required that the precision of fine wiring processing be high. In addition, the wiring layers tend to be multilayered from two layers to three layers for higher performance. As the number of wiring layers increases, it is advantageous in terms of cost to reduce the total number of steps as much as possible.

【0004】[0004]

【発明が解決しようとする課題】有機樹脂絶縁層をその
上層に形成された薄膜のシリコン含有ポリマー層のパタ
ンをマスクに酸素の反応性イオンエッチング等で加工す
ることは知られている。ポリシロキサンやポリシルセス
キオキサン等のシリコン含有ポリマーは容易に薄膜層を
形成でき,酸素プラズマに曝されることで有機分を失い
二酸化シリコンに変性する。変性して出来た二酸化シリ
コンのパタンは有機樹脂絶縁層を加工するに充分なマス
クとなる。有機ポリマーを主成分とする通常のフォトレ
ジストでポリシロキサンやポリシルセスキオキサン等の
シリコン含有ポリマーをドライエッチング加工する場
合,完全に二酸化シリコン化していればフッ素プラズマ
で加工できるが,上記シリコン含有ポリマー層は有機成
分を含むので,酸素とフッ素のプラズマの精緻なバラン
スを条件に加工することが要求される。フッ素と共に酸
素も含むプラズマでは,有機樹脂からなるフォトレジス
トのパタンは,エッチング中に酸素プラズマによって影
響を受け,微細加工精度を高くする上で問題がある。
It is known that an organic resin insulating layer is processed by reactive ion etching of oxygen or the like using a pattern of a thin film of a silicon-containing polymer layer formed thereon as a mask. Silicon-containing polymers such as polysiloxane and polysilsesquioxane can easily form a thin film layer, and lose their organic components and become silicon dioxide when exposed to oxygen plasma. The modified silicon dioxide pattern serves as a mask sufficient for processing the organic resin insulating layer. When a silicon-containing polymer such as polysiloxane or polysilsesquioxane is dry-etched with an ordinary photoresist whose main component is an organic polymer, it can be processed with fluorine plasma if it is completely converted to silicon dioxide. Since the polymer layer contains an organic component, it is required to process under the condition that the oxygen and fluorine plasmas are precisely balanced. In the case of a plasma containing oxygen as well as fluorine, the pattern of the photoresist made of an organic resin is affected by the oxygen plasma during etching, and there is a problem in increasing the fine processing accuracy.

【0005】本発明の課題は,有機樹脂からなる層間絶
縁膜に,化学的-機械的研磨法を用いて埋め込み配線を
形成するための配線溝あるいはビアホールを高い精度で
形成することである。
An object of the present invention is to form a wiring groove or a via hole for forming a buried wiring with high accuracy in an interlayer insulating film made of an organic resin by using a chemical-mechanical polishing method.

【0006】[0006]

【課題を解決するための手段】上記課題は,酸素の反応
性イオンエッチングによってエッチング可能な有機樹脂
絶縁層に化学的-機械的研磨法を用いて埋め込み配線を
形成する方法において,埋め込み配線部となるべき当該
有機樹脂絶縁層の加工工程が,(1) 当該有機樹脂絶縁層
上にシリコン含有ポリマー層を形成する工程,(2) 活性
化学線を所定パタン状に当該シリコン含有ポリマー層に
照射することで当該シリコン含有ポリマー層中に潜像を
形成する工程,(3) 現像によって当該シリコン含有ポリ
マー層に当該所定パタン状のマスクパタンを形成する工
程,(4) 酸素の反応性イオンエッチングによって当該マ
スクパタンを当該有機樹脂絶縁層に転写する工程,から
なる方法を採用することで達成される。
[Means for Solving the Problems] The above-mentioned problem is to provide a buried wiring portion in a method of forming a buried wiring using a chemical-mechanical polishing method in an organic resin insulating layer that can be etched by reactive ion etching of oxygen. The processing step of the organic resin insulating layer to be performed is (1) a step of forming a silicon-containing polymer layer on the organic resin insulating layer, (2) irradiating the silicon-containing polymer layer with an active actinic ray in a predetermined pattern. The step of forming a latent image in the silicon-containing polymer layer, (3) the step of forming the mask pattern in the predetermined pattern on the silicon-containing polymer layer by development, (4) the step of reactive ion etching of oxygen. This is achieved by adopting a method including a step of transferring a mask pattern to the organic resin insulating layer.

【0007】本発明で用いられるシリコン含有ポリマー
としては,活性化学線の露光及び現像によって微細パタ
ンの形成が出来るシリコン含有レジスト材料がそのまま
使用できる。側鎖にフェニル核を有するポリシロキサン
またはポリシルセスキオキサン類は,薄膜で良好な塗膜
を形成できる。これらをArFエキシマレーザ光のような
活性化学線でパタン露光すれば,露光部が変性し,現像
によって直接微細パタンを形成できる。
As the silicon-containing polymer used in the present invention, a silicon-containing resist material capable of forming a fine pattern by exposure to active actinic radiation and development can be used as it is. Polysiloxane or polysilsesquioxane having a phenyl nucleus in the side chain can form a good coating film in a thin film. If these are exposed to a pattern of active actinic radiation such as ArF excimer laser light, the exposed areas are modified and a fine pattern can be directly formed by development.

【0008】本発明で用いられる有機樹脂絶縁層材料と
してはポリイミド等の耐熱性の大きな材料の他,フッ素
変性ポリイミドや高密度ポリエチレン,ポリキノリン等
低誘電率材料が使用できる。
As the organic resin insulating layer material used in the present invention, a material having a large heat resistance such as polyimide, or a low dielectric constant material such as fluorine-modified polyimide, high density polyethylene or polyquinoline can be used.

【0009】化学的-機械的研磨法を用いた埋め込み配
線の形成方法は,酸化シリコン系の絶縁材料をエッチス
トップ層として用いる公知の方法が使用できる。
As a method of forming the buried wiring using the chemical-mechanical polishing method, a known method using a silicon oxide type insulating material as an etch stop layer can be used.

【0010】[0010]

【発明の実施の形態】以下,本発明の実施の形態を図面
を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】(実施例1)図1は実施例1を示す工程図
であり,本発明により有機樹脂層間絶縁膜中に配線溝を
形成する方法である。図1(a)に示すように半導体基板
1上にポリイミドからなる有機樹脂絶縁膜2を0.3ミク
ロンの厚さに形成する。この場合,ポリイミド層は加熱
処理によって充分にキュアしておく。その上にArFエキ
シマレーザ光に感光性を有するシリコン含有ポリマー層
3としてポリメチルフェニルシルセスキオキサンを90ナ
ノメータの厚さに形成する。このシリコン含有ポリマー
は,側鎖にメチル基とフェニル基を有するラダーシリコ
ン樹脂でメチル基とフェニル基の比率はおよそ4対1で
あった。図1(b)は,有機樹脂絶縁膜2上に形成された
感光性のシリコン含有ポリマー層3にArFエキシマレー
ザ光を所定の配線溝に対応してパタン露光4をおこな
い,露光潜像部5を形成した構造の断面図である。この
シリコン含有ポリマーはArFエキシマレーザ光の波長の
光を選択的に吸収するフェニル核を有するので,露光潜
像部は極めて効果的に変性し,光誘起酸化が充分進んで
いる。そのため,露光部は通常の二酸化シリコン膜と同
様,四フッ化炭素ガスプラズマでエッチング除去でき
る。しかし,未露光部は有機成分が残留しており,エッ
チングされない。図1(c)は,露光潜像部5を除去する
現像工程として,上記基板を四フッ化炭素ガスプラズマ
に曝し,所定の配線溝に対応する開口部6をシリコン含
有ポリマー層に形成した断面図である。図1(d)は,四
フッ化炭素ガスプラズマ処理によって開口部6を形成し
た基板を,さらに酸素の反応性イオンエッチング処理す
ることで,有機樹脂絶縁膜2中に上記開口部に対応する
配線溝7を形成した断面図である。この酸素の反応性イ
オンエッチング処理は,有機樹脂絶縁膜をエッチング除
去するだけでなく,開口部以外に残留していたシリコン
含有ポリマー層を,ほとんど通常の酸化シリコン膜に変
性させる。そのため,これは化学的-機械的研磨法を用
いて埋め込み配線を形成する方法において,効果的なエ
ッチストップ層となる。
(Embodiment 1) FIG. 1 is a process diagram showing Embodiment 1, which is a method of forming a wiring groove in an organic resin interlayer insulating film according to the present invention. As shown in FIG. 1A, an organic resin insulating film 2 made of polyimide is formed on a semiconductor substrate 1 to a thickness of 0.3 μm. In this case, the polyimide layer is sufficiently cured by heat treatment. Polymethylphenylsilsesquioxane is formed thereon as a silicon-containing polymer layer 3 having photosensitivity to ArF excimer laser light to a thickness of 90 nanometers. This silicon-containing polymer was a ladder silicone resin having a methyl group and a phenyl group in the side chain, and the ratio of the methyl group and the phenyl group was about 4: 1. In FIG. 1 (b), the photosensitive silicon-containing polymer layer 3 formed on the organic resin insulating film 2 is subjected to pattern exposure 4 by ArF excimer laser light corresponding to a predetermined wiring groove, and an exposure latent image portion 5 is formed. It is sectional drawing of the structure which formed. Since this silicon-containing polymer has a phenyl nucleus that selectively absorbs light of the wavelength of ArF excimer laser light, the exposed latent image area is extremely effectively modified and photoinduced oxidation is sufficiently advanced. Therefore, the exposed portion can be removed by etching with carbon tetrafluoride gas plasma, like a normal silicon dioxide film. However, the organic component remains in the unexposed portion and is not etched. FIG. 1 (c) is a cross-sectional view in which the substrate is exposed to carbon tetrafluoride gas plasma as a developing process for removing the exposed latent image portion 5 and an opening 6 corresponding to a predetermined wiring groove is formed in the silicon-containing polymer layer. It is a figure. FIG. 1 (d) shows a wiring corresponding to the opening in the organic resin insulating film 2 by further subjecting the substrate having the opening 6 formed by the carbon tetrafluoride gas plasma treatment to reactive ion etching of oxygen. It is sectional drawing which formed the groove | channel 7. This reactive ion etching treatment of oxygen not only removes the organic resin insulating film by etching, but also denatures the silicon-containing polymer layer remaining outside the opening into an almost normal silicon oxide film. Therefore, it becomes an effective etch stop layer in the method of forming the buried wiring by using the chemical-mechanical polishing method.

【0012】(実施例2)図2は,本発明を適用して,
化学的-機械的研磨法を用いて配線層間の接続と埋め込
み配線を同時に形成するための配線溝及び配線層間の接
続ホールを形成する工程図である。図2(a)は,実施例
1における図1(c)までの工程と同様にして,接続ホー
ルを形成すべき有機樹脂絶縁膜9上に形成されたシリコ
ン含有ポリマー層3に接続ホール部に対応する開口部8
を形成した構造の断面図である。図2(b)は,上記基板
上に埋め込み配線を形成すべき有機樹脂絶縁膜2を形成
した後,その上にArFエキシマレーザ光に感光性を有す
るシリコン含有ポリマー層3を形成した構造の断面図で
ある。シリコン含有ポリマー層3は,実施例1と同様約
90nmの厚さであり,その上部に埋め込み配線を形成すべ
き有機樹脂絶縁層2の厚さ約0.3ミクロンに比べ充分薄
いので,四フッ化炭素ガスプラズマによる現像によって
開口部8を形成しても,有機樹脂絶縁層2の平坦性は損
なわれることがない。図2(c)は,やはり実施例1と同
様にして,ArFエキシマレーザ光を所定の配線溝に対応
してパタン露光をおこない,さらに,四フッ化炭素ガス
プラズマで露光潜像形成部をエッチング除去することで
配線溝に対応する開口部6を形成した構造の断面図であ
る。このとき配線溝に対応する開口部6は,必ず,いく
つかの接続ホールに対応する前記開口部8を覆うことに
なる。図2(d)は,上記基板を酸素の反応性イオンエッ
チング処理することで,配線溝を形成すべき有機樹脂絶
縁層2中に配線溝7を形成すると共に,この配線溝に接
続するホールを形成すべき有機樹脂絶縁層9中に接続ホ
ール10を形成した構造の断面図である。
(Embodiment 2) FIG. 2 is a diagram showing the application of the present invention.
FIG. 6 is a process diagram of forming a wiring groove and a connection hole between wiring layers for simultaneously forming a connection between wiring layers and a buried wiring by using a chemical-mechanical polishing method. 2A shows the silicon-containing polymer layer 3 formed on the organic resin insulating film 9 in which the connection hole is to be formed, and the connection hole portion is formed in the same manner as the process up to FIG. Corresponding opening 8
It is sectional drawing of the structure which formed. FIG. 2 (b) is a cross section of a structure in which an organic resin insulating film 2 for forming a buried wiring is formed on the substrate, and a silicon-containing polymer layer 3 having photosensitivity to ArF excimer laser light is formed on the organic resin insulating film 2. It is a figure. The silicon-containing polymer layer 3 has the same thickness as in Example 1.
Since the thickness is 90 nm, which is sufficiently smaller than the thickness of the organic resin insulating layer 2 on which the embedded wiring is to be formed, which is about 0.3 μm, even if the opening 8 is formed by the development with the carbon tetrafluoride gas plasma. The flatness of the organic resin insulating layer 2 is not impaired. In FIG. 2 (c), pattern exposure is performed in the same manner as in Example 1 using ArF excimer laser light corresponding to predetermined wiring trenches, and the exposed latent image forming portion is etched with carbon tetrafluoride gas plasma. It is sectional drawing of the structure which formed the opening part 6 corresponding to a wiring groove by removing. At this time, the opening 6 corresponding to the wiring groove necessarily covers the opening 8 corresponding to some connection holes. FIG. 2 (d) shows that the substrate is subjected to reactive ion etching of oxygen to form a wiring groove 7 in the organic resin insulating layer 2 in which the wiring groove is to be formed, and a hole to be connected to this wiring groove is formed. It is sectional drawing of the structure which formed the connection hole 10 in the organic resin insulating layer 9 which should be formed.

【0013】[0013]

【発明の効果】本発明によれば,有機樹脂絶縁層に化学
的-機械的研磨法を用いて埋め込み配線を形成するため
の配線溝あるいはビアホールを,工程数を増加させるこ
となく,高い精度で形成することができる。
According to the present invention, a wiring groove or a via hole for forming an embedded wiring in an organic resin insulating layer by using a chemical-mechanical polishing method can be formed with high accuracy without increasing the number of steps. Can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により有機樹脂層間絶縁膜中に配線溝を
形成する方法の工程図。
FIG. 1 is a process drawing of a method for forming a wiring groove in an organic resin interlayer insulating film according to the present invention.

【図2】本発明により有機樹脂層間絶縁膜中に配線溝及
び配線層間の接続ホールを形成する工程図。
FIG. 2 is a process drawing of forming a wiring groove and a connection hole between wiring layers in an organic resin interlayer insulating film according to the present invention.

【符号の説明】[Explanation of symbols]

1:半導体基板 2:埋め込み配線を形成すべき有機樹脂絶縁層 3:感光性を有するシリコン含有ポリマー層 4:パタン露光 5:露光潜像部 6:配線溝に対応する開口部 7:配線溝 8:接続ホール部に対応する開口部 9:接続ホールを形成すべき有機樹脂絶縁層 10:接続ホール。 1: Semiconductor substrate 2: Organic resin insulating layer in which embedded wiring is to be formed 3: Photosensitive silicon-containing polymer layer 4: Pattern exposure 5: Exposure latent image part 6: Opening corresponding to wiring groove 7: Wiring groove 8 : Opening corresponding to connection hole 9: Organic resin insulating layer in which connection hole should be formed 10: Connection hole

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】酸素の反応性イオンエッチングによってエ
ッチング可能な有機樹脂絶縁層に化学的-機械的研磨法
を用いて埋め込み配線を形成する方法において,埋め込
み配線部となるべき当該有機樹脂絶縁層の加工工程が,
(1) 当該有機樹脂絶縁層上にシリコン含有ポリマー層を
形成する工程,(2) 活性化学線を所定パタン状に当該シ
リコン含有ポリマー層に照射することで当該シリコン含
有ポリマー層中に潜像を形成する工程,(3) 現像によっ
て当該シリコン含有ポリマー層に当該所定パタン状のマ
スクパタンを形成する工程,(4) 酸素の反応性イオンエ
ッチングによって当該マスクパタンを当該有機樹脂絶縁
層に転写する工程,からなることを特徴とする半導体装
置の製造方法。
1. A method of forming embedded wiring in an organic resin insulating layer that can be etched by reactive ion etching of oxygen using a chemical-mechanical polishing method, wherein the organic resin insulating layer to be the embedded wiring portion is formed. The machining process is
(1) A step of forming a silicon-containing polymer layer on the organic resin insulating layer, (2) A latent image is formed in the silicon-containing polymer layer by irradiating the silicon-containing polymer layer with an actinic ray in a predetermined pattern. Forming step, (3) forming the predetermined pattern-shaped mask pattern on the silicon-containing polymer layer by development, (4) transferring the mask pattern to the organic resin insulating layer by reactive ion etching of oxygen A method of manufacturing a semiconductor device, comprising:
【請求項2】請求項1記載の半導体装置の製造方法であ
って,当該シリコン含有ポリマーが,フェニル核を側鎖
に有するポリシロキサンまたはポリシルセスキオキサン
からなることを特徴とする半導体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the silicon-containing polymer is made of polysiloxane or polysilsesquioxane having a phenyl nucleus in a side chain. Production method.
【請求項3】請求項1あるいは2記載の半導体装置の製
造方法であって,当該活性化学線が波長200nm以下のエ
キシマレーザ光であることを特徴とする半導体装置の製
造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the active actinic radiation is excimer laser light having a wavelength of 200 nm or less.
JP4094196A 1996-02-28 1996-02-28 Manufacturing method for semiconductor device Pending JPH09232428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4094196A JPH09232428A (en) 1996-02-28 1996-02-28 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4094196A JPH09232428A (en) 1996-02-28 1996-02-28 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JPH09232428A true JPH09232428A (en) 1997-09-05

Family

ID=12594537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4094196A Pending JPH09232428A (en) 1996-02-28 1996-02-28 Manufacturing method for semiconductor device

Country Status (1)

Country Link
JP (1) JPH09232428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232237B1 (en) 1997-12-12 2001-05-15 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device
WO2002021587A1 (en) * 2000-09-06 2002-03-14 Hitachi, Ltd. Semiconductor device and method of manufacturing the semiconductor device
US6605542B2 (en) 1999-03-12 2003-08-12 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor devices by using dry etching technology
US6849923B2 (en) 1999-03-12 2005-02-01 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of the same
JP2007503730A (en) * 2003-05-12 2007-02-22 マイクロン・テクノロジー・インコーポレーテッド Use of spin-on photopatternable interlayer dielectric materials and intermediate semiconductor device structures utilizing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232237B1 (en) 1997-12-12 2001-05-15 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device
US6605542B2 (en) 1999-03-12 2003-08-12 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor devices by using dry etching technology
KR100401040B1 (en) * 1999-03-12 2003-10-10 가부시끼가이샤 도시바 Manufacturing method of semiconductor devices by using dry etching technology
US6849923B2 (en) 1999-03-12 2005-02-01 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of the same
US7169697B2 (en) 1999-03-12 2007-01-30 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method of the same
WO2002021587A1 (en) * 2000-09-06 2002-03-14 Hitachi, Ltd. Semiconductor device and method of manufacturing the semiconductor device
US6967407B2 (en) 2000-09-06 2005-11-22 Renesas Technology Corp. Semiconductor device and method of manufacturing the semiconductor device
JP2007503730A (en) * 2003-05-12 2007-02-22 マイクロン・テクノロジー・インコーポレーテッド Use of spin-on photopatternable interlayer dielectric materials and intermediate semiconductor device structures utilizing the same
US7678460B2 (en) 2003-05-12 2010-03-16 Micron Technology, Inc. Intermediate semiconductor device structures using photopatternable, dielectric materials
US7855154B2 (en) 2003-05-12 2010-12-21 Micron Technology, Inc. Methods of forming intermediate semiconductor device structures using spin-on, photopatternable, interlayer dielectric materials
US8486612B2 (en) 2003-05-12 2013-07-16 Micron Technology, Inc. Methods of forming intermediate semiconductor device structures using spin-on, photopatternable, interlayer dielectric materials

Similar Documents

Publication Publication Date Title
KR0170253B1 (en) Method for etching using sylilation
US8241838B2 (en) Method of manufacturing semiconductor device
US8268535B2 (en) Pattern formation method
JP2004152997A (en) Method of manufacturing semiconductor device
KR20050094438A (en) Semiconductor fabrication method for making small features
US5922516A (en) Bi-layer silylation process
US5770350A (en) Method for forming pattern using multilayer resist
JPH09232428A (en) Manufacturing method for semiconductor device
US5322764A (en) Method for forming a patterned resist
US6551938B1 (en) N2/H2 chemistry for dry development in top surface imaging technology
KR0135165B1 (en) Method for forming a pattern using multilayer resist
JP3553897B2 (en) Method of forming fine resist pattern and method of manufacturing semiconductor device
US20060147846A1 (en) Method of forming photoresist pattern and semiconductor device employing the same
US5866302A (en) Pattern formation method
US8138059B2 (en) Semiconductor device manufacturing method
JP4480424B2 (en) Pattern formation method
JP2001093977A (en) Method for manufacturing semiconductor device
US6548384B2 (en) Method for performing lithographic process to a multi-layered photoresist layer
JPH07226356A (en) Pattern forming method using multilayer resistance
KR100369866B1 (en) Method for forming fine contact hole in semiconductor device
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
JP2001092152A (en) Method for manufacturing semiconductor device
KR19980084300A (en) Device isolation film formation method using a reflection suppression film
KR100347246B1 (en) Fabricating method of semiconductor device
KR970004428B1 (en) A method for manufacturing semiconductor devices