JPH09232190A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPH09232190A
JPH09232190A JP8034023A JP3402396A JPH09232190A JP H09232190 A JPH09232190 A JP H09232190A JP 8034023 A JP8034023 A JP 8034023A JP 3402396 A JP3402396 A JP 3402396A JP H09232190 A JPH09232190 A JP H09232190A
Authority
JP
Japan
Prior art keywords
stainless steel
electrode
double layer
layer capacitor
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8034023A
Other languages
Japanese (ja)
Inventor
Manabu Kazuhara
学 数原
Takeshi Morimoto
剛 森本
Kazuya Hiratsuka
和也 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8034023A priority Critical patent/JPH09232190A/en
Publication of JPH09232190A publication Critical patent/JPH09232190A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide an electric double layer capacitor which has high working voltage, quick chargeability and dischargeability, resistance to charge and discharge cycle and high energy density. SOLUTION: A positive electrode 1 is made of a mixture of polarizing electrode material and collector of stainless steel fibers. A negative electrode 5 is made of a combination of carbon material in which lithium ions are absorbed and metallic collector. An element is made of the pair of electrodes sandwiching a separator 8 and is impregnated with non aqueous electrolytic solution 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はエネルギ密度が大き
く、急速充放電でき、耐充放電サイクル性に優れた電気
二重層キャパシタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor having a large energy density, capable of rapid charge / discharge, and excellent in charge / discharge cycle resistance.

【0002】[0002]

【従来の技術】従来の電気二重層キャパシタは、例えば
板状又は箔状の金属集電体に活性炭粉末を主体とする膜
状の分極性電極材料を担持してなる対向する一対の分極
性電極の間、又はシート状に形成された活性炭繊維から
なる対向する一対の分極性電極の間にセパレータを配置
して素子とし、又は一対のシート状分極性電極の間にセ
パレータを挟んだ状態で巻回して素子とし、これらの素
子に電解液を含浸した状態で容器中に収容し、この容器
の開口部から電解液が蒸発しないように開口部を封口部
材等で封じて構成している。
2. Description of the Related Art A conventional electric double layer capacitor is, for example, a pair of opposing polarizable electrodes each having a plate-like or foil-like metal current collector carrying a film-like polarizable electrode material mainly containing activated carbon powder. Between or a pair of opposing polarizable electrodes made of sheet-shaped activated carbon fibers to form an element, or wound with a separator sandwiched between a pair of sheet-like polarizable electrodes. It is configured to be turned into elements, and these elements are housed in a container in a state of being impregnated with an electrolytic solution, and the opening is sealed with a sealing member or the like so that the electrolytic solution does not evaporate from the opening of the container.

【0003】また、米国特許5096663号、米国特
許5080963号及び米国特許5102745号に
は、ステンレス鋼繊維と活性炭繊維及びセルロース繊維
からなる混合物をステンレス鋼箔上に配置し、ステンレ
ス鋼繊維を加熱焼結せしめてステンレス鋼繊維、活性炭
繊維及びステンレス鋼箔からなる複合分極性電極とし、
この分極性電極に水系電解液又は有機溶媒系(非水系)
電解液を含浸させた電気二重層キャパシタが提案されて
いる。活性炭繊維はある程度導電性がよいが必ずしも充
分でなく、電極の密度を大きくできないため単位体積当
たりの容量を大きくできないという欠点がある。
In US Pat. No. 5,096,663, US Pat. No. 5,080,963 and US Pat. No. 5,102,745, a mixture of stainless steel fibers, activated carbon fibers and cellulose fibers is placed on a stainless steel foil, and the stainless steel fibers are heated and sintered. At the very least, a composite polarizable electrode consisting of stainless steel fiber, activated carbon fiber and stainless steel foil,
An aqueous electrolyte solution or organic solvent system (non-aqueous system) is used for this polarizable electrode
An electric double layer capacitor impregnated with an electrolytic solution has been proposed. Activated carbon fibers have good conductivity to some extent, but they are not always sufficient, and there is a drawback that the capacity per unit volume cannot be increased because the density of the electrodes cannot be increased.

【0004】特開昭60−161610号には、活性炭
粉末の粒子より細かい気孔を有するステンレス鋼繊維の
マットに、活性炭粉末を含む層を積層した複合分極性電
極が提案されている。しかしこの複合分極性電極は、粉
末粒子間の結合強度が弱く、内部抵抗が大きいという欠
点がある。また、特開昭61−36920号及び特開昭
61−59716号には、活性炭繊維と金属短繊維から
なる複合分極性電極が提案されている。特開平2−16
710号及び特開平2−16711号には、シート状に
成形された活性炭層と金属の集電板の中間にステンレス
鋼繊維のフェルトを配置した複合分極性電極が提案され
ている。
JP-A-60-161610 proposes a composite polarizable electrode in which a layer containing activated carbon powder is laminated on a mat of stainless steel fibers having finer pores than the particles of activated carbon powder. However, this composite polarizable electrode has the drawback that the bonding strength between the powder particles is weak and the internal resistance is large. Further, JP-A-61-36920 and JP-A-61-59716 propose composite polarizable electrodes composed of activated carbon fibers and short metal fibers. JP-A-2-16
No. 710 and Japanese Patent Application Laid-Open No. 2-16711 propose a composite polarizable electrode in which a felt of stainless steel fiber is arranged between a sheet-shaped activated carbon layer and a metal current collector plate.

【0005】さらに、特開平4−154106号には、
大電流大容量化を目的としてシート状の分極性電極とセ
パレータを多数積層した素子が組み込まれた電気二重層
キャパシタが提案されている。この素子は、例えば矩形
に成形されたシート状分極性電極の間にセパレータを配
置して交互に多数積み重ねたものからなり、その正極と
負極の端部に正極リード部材及び負極リード部材をかし
めて接続した素子を容器中に収納し、電解液を含浸して
蓋で密閉している。
Further, in Japanese Patent Laid-Open No. 4-154106,
An electric double layer capacitor in which an element in which a large number of sheet-shaped polarizable electrodes and separators are stacked is incorporated has been proposed for the purpose of increasing the capacity of large current. This element is composed of, for example, a plurality of sheet-shaped polarizable electrodes, which are formed in a rectangular shape, and separators are placed between the electrodes, and a large number of sheets are alternately stacked. The positive electrode lead member and the negative electrode lead member are caulked at the ends of the positive electrode and the negative electrode. The connected element is housed in a container, impregnated with an electrolytic solution, and sealed with a lid.

【0006】これらの電気二重層キャパシタの電極は、
正極と負極の両方が大きな比表面積を有する活性炭を主
体とする分極性電極で構成されている。また、内部抵抗
を小さくして大きな放電電流が得られるように、特開平
6−236829号には活性炭粉末を主体とする分極性
電極の集電体に多孔質ニッケルを用いたものが提案され
ている。また、電気二重層キャパシタの容量を大きくす
るため、比表面積の大きな活性炭を用いているが、活性
炭の比表面積は通常3000m2 /g程度が最大であ
り、大比表面積の活性炭粉末は気孔率が大きく(嵩高
く)なることから、大比表面積の活性炭粉末を用いて得
られる電気二重層キャパシタの単位重量当たりの容量も
ほぼ限界に達している。
The electrodes of these electric double layer capacitors are
Both the positive electrode and the negative electrode are composed of polarizable electrodes mainly composed of activated carbon having a large specific surface area. Further, in order to reduce the internal resistance and obtain a large discharge current, JP-A-6-236829 proposes a collector using polar nickel as a collector of a polarizable electrode mainly composed of activated carbon powder. There is. Further, in order to increase the capacity of the electric double layer capacitor, activated carbon having a large specific surface area is used. However, the activated carbon powder having a large specific surface area usually has a maximum specific surface area of about 3000 m 2 / g. Since it becomes large (bulky), the capacity per unit weight of the electric double layer capacitor obtained by using the activated carbon powder having a large specific surface area has almost reached the limit.

【0007】[0007]

【発明が解決しようとする課題】10A以上の大電流で
充放電しうるエネルギ密度の大きい電気二重層キャパシ
タは、電気自動車の電源や、自動車の回生制動エネルギ
の貯蔵等に有望とされている。本発明は、これらの目的
に使用できる、高い使用電圧と大きいエネルギ密度を有
するとともに、急速充放電が可能な低い内部抵抗を備
え、耐充放電サイクル性に優れた電気二重層キャパシタ
の提供を目的とする。
An electric double layer capacitor having a large energy density capable of being charged and discharged with a large current of 10 A or more is promising for the power supply of electric vehicles and the storage of regenerative braking energy of vehicles. An object of the present invention is to provide an electric double layer capacitor which can be used for these purposes and which has a high working voltage and a large energy density, has a low internal resistance capable of rapid charge and discharge, and is excellent in charge and discharge cycle resistance. And

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を達成
すべくなされたものであり、本発明による第1の電気二
重層キャパシタは、活性炭粉末、導電材粉末及び結合剤
を含む分極性電極材料にステンレス鋼繊維の集電体が混
在状態で組み合わされて正極とされ、活性炭粉末、導電
材粉末及び結合剤を含む分極性電極材料に金属の集電体
が組み合わされて負極とされ、正極と負極の間にセパレ
ータが配置され、正極、負極及びセパレータに非水系電
解液が含浸されていることを特徴とする。
The present invention has been made to achieve the above object, and a first electric double layer capacitor according to the present invention is a polarizable electrode containing activated carbon powder, conductive material powder and a binder. The material is combined with a stainless steel fiber current collector in a mixed state to form a positive electrode, and the polarizable electrode material containing activated carbon powder, conductive material powder and binder is combined with a metal current collector to form a negative electrode. A separator is disposed between the negative electrode and the negative electrode, and the positive electrode, the negative electrode, and the separator are impregnated with a non-aqueous electrolyte solution.

【0009】活性炭粉末は、分極性電極の主要構成材料
であり、活性炭粉末が保有する大きな表面と接する電解
液中に電気二重層を形成して大きい電荷を貯める働きを
する。活性炭としては、やしがら系活性炭、フェノール
樹脂系活性炭、石油コークス系活性炭等がある。大きな
容量を得られる点でフェノール樹脂系活性炭粉末、石油
コークス系活性炭粉末の使用が好ましい。活性炭の賦活
処理法には、水蒸気賦活処理法、溶融KOH賦活処理等
がある。より大きな容量を得られる点で溶融KOH賦活
処理法による活性炭粉末が好ましい。活性炭粉末は、比
表面積が大きい方が好ましいが、余り大きいと嵩高くな
るため1000〜2500m2 /gのものを選ぶのが好
ましい。また、活性炭粉末の粒子が大きすぎると粒子が
ステンレス鋼繊維の狭い隙間に入り込みにくく、活性炭
粉末が分極性電極中に均等に分布しにくい。しかし、活
性炭粉末を細かくするにはそれなりのコストと手間が必
要で、細かすぎると粉末が扱いにくくなるため、活性炭
粉末の粒径は1〜30μmとするのが好ましい。
The activated carbon powder is a main constituent material of the polarizable electrode, and has a function of forming an electric double layer in an electrolytic solution in contact with a large surface of the activated carbon powder to store a large electric charge. Examples of the activated carbon include coconut husk activated carbon, phenol resin activated carbon, and petroleum coke activated carbon. Phenol resin-based activated carbon powder and petroleum coke-based activated carbon powder are preferably used because a large capacity can be obtained. Examples of the activated carbon activation treatment method include a steam activation treatment method and a molten KOH activation treatment. Activated carbon powder obtained by the molten KOH activation treatment method is preferable in that a larger capacity can be obtained. The activated carbon powder preferably has a large specific surface area, but if it is too large, it becomes bulky, and therefore it is preferable to select one having a specific surface area of 1000 to 2500 m 2 / g. Further, if the particles of the activated carbon powder are too large, it is difficult for the particles to enter the narrow gaps of the stainless steel fiber, and it is difficult for the activated carbon powder to be evenly distributed in the polarizable electrode. However, it requires a certain cost and labor to make the activated carbon powder fine, and if it is too fine, the powder becomes difficult to handle. Therefore, the particle size of the activated carbon powder is preferably 1 to 30 μm.

【0010】導電材は分極性電極の導電性を高めて内部
抵抗を下げる目的で配合されるもので、活性炭粉末と比
べて桁違いに(2桁以上)高い導電性を示す粉末材料で
ある。導電材には、カーボンブラック、天然黒鉛、人造
黒鉛、酸化チタン、酸化ルテニウム等の粉末がある。こ
れらのうち、少量でも導電性を向上させる効果が大きい
ことから、カーボンブラックの1種であるケッチェンブ
ラック又はアセチレンブラックを使用するのが好まし
い。分極性電極中のカーボンブラック等の導電材の配合
量は、導電性を向上させられるように、活性炭粉末との
合量中5重量%以上、特には10重量%以上配合するの
が好ましく、活性炭粉末の配合割合が減ると分極性電極
の容量が減るため分極性電極中の導電材の配合量は40
重量%以下、特には30重量%以下とするのが好まし
い。
The conductive material is blended for the purpose of increasing the conductivity of the polarizable electrode and lowering the internal resistance, and is a powder material exhibiting an order of magnitude higher (two digits or more) conductivity than activated carbon powder. Examples of the conductive material include powders of carbon black, natural graphite, artificial graphite, titanium oxide, ruthenium oxide and the like. Among these, it is preferable to use Ketjen black or acetylene black, which is one kind of carbon black, because the effect of improving conductivity is large even with a small amount. The content of the conductive material such as carbon black in the polarizable electrode is preferably 5% by weight or more, more preferably 10% by weight or more in the total amount with the activated carbon powder so that the conductivity can be improved. Since the capacity of the polarizable electrode decreases as the powder blending ratio decreases, the conductive material content in the polarizable electrode is 40%.
It is preferably not more than 30% by weight, particularly preferably not more than 30% by weight.

【0011】本発明の電気二重層キャパシタでは、分極
性電極である正極の内部抵抗をさらに小さくするため、
分極性電極中にステンレス鋼繊維を混在せしめてある。
ステンレス鋼繊維は、正極側の使用条件下で安定した集
電体として機能し、正極側の分極性電極をある程度厚く
しても、ステンレス鋼繊維が電極内部に混在していれば
内部抵抗の小さい分極性電極が得られ、分極性電極を厚
くすれば容量の大きい分極性電極が得られる。ステンレ
ス鋼繊維は電極に組み合わされるたときに電気化学的、
化学的に耐食性がある。
In the electric double layer capacitor of the present invention, in order to further reduce the internal resistance of the positive electrode which is the polarizable electrode,
Stainless steel fibers are mixed in the polarizable electrode.
Stainless steel fibers function as a stable current collector under the conditions of use on the positive electrode side, and even if the polarizable electrode on the positive electrode side is made thick to some extent, the internal resistance is small if stainless steel fibers are mixed inside the electrode. A polarizable electrode can be obtained, and if the polarizable electrode is thickened, a polarizable electrode having a large capacity can be obtained. Stainless steel fibers are electrochemical when assembled into electrodes,
Chemically resistant to corrosion.

【0012】ステンレス鋼繊維は、細い繊維の方が内部
抵抗を小さくできるが、繊維径1μm以下の細いものは
製造が難しく、繊維の隙間が狭くなって繊維の隙間に活
性炭粉末を入り込ませにくくなる。また、繊維径が50
μm以上であると分極性電極全体から均等に集電するこ
とが難しくなる。ステンレス鋼繊維は、粉末が入り込め
る適度の大きさの隙間を形成でき、良好な集電性能が得
られるように、繊維径1〜50μm、長さが1mm以上
のものを使用するのが好ましい。ステンレス鋼繊維の材
質は、市販品が入手できることもあり、ステンレス30
4又はステンレス316Lとするのが特に好ましい。ま
た、耐食性と安定性が高いので正極に組み合わせるステ
ンレス鋼繊維はステンレス316とするのが好ましく、
負極にはより安価なステンレス304の繊維を組み合わ
せるのが好ましい。ステンレス鋼繊維は、あらかじめ焼
結して繊維の接点が結合した状態であるものを使用する
と、分極性電極の内部抵抗がさらに減少する。この種の
ステンレス鋼繊維は、例えば日本精線社(商品名ナスロ
ン)や米国チャコール・クロス社から入手できる。ステ
ンレス鋼繊維の繊維径は特に好ましくは1〜15μmで
ある。
Thin stainless steel fibers can reduce the internal resistance, but thin fibers having a fiber diameter of 1 μm or less are difficult to manufacture, and the gaps between the fibers are narrowed, so that it becomes difficult for the activated carbon powder to enter the gaps between the fibers. . The fiber diameter is 50
When it is at least μm, it becomes difficult to collect current evenly from the entire polarizable electrode. It is preferable to use a stainless steel fiber having a fiber diameter of 1 to 50 μm and a length of 1 mm or more so that an appropriately sized gap into which powder can enter can be formed and good current collecting performance can be obtained. As for the material of stainless steel fiber, commercially available products may be available.
4 or stainless steel 316L is particularly preferable. Further, the stainless steel fiber to be combined with the positive electrode is preferably stainless steel 316 because of its high corrosion resistance and stability,
It is preferable to combine cheaper stainless steel 304 fibers for the negative electrode. The use of stainless steel fibers pre-sintered to bond the fiber contacts further reduces the internal resistance of the polarizable electrode. This type of stainless steel fiber is available from, for example, Nippon Seisen Co., Ltd. (trade name: Naslon) and Charcoal Cross Co., USA. The fiber diameter of the stainless steel fiber is particularly preferably 1 to 15 μm.

【0013】正極の集電体とするステンレス鋼繊維のマ
ットは、好ましくは金属の集電板と接合して電気的に接
続される。ステンレス鋼繊維のマット又はウエブは、例
えば、1000℃以上の不活性ガス雰囲気中、又は還元
性ガス雰囲気中で加熱することによって焼結させること
ができ、焼結によって繊維相互の交点が結合するとステ
ンレス鋼繊維からなる集電体の強度が向上し、分極性電
極の電気抵抗を低減できる。ステンレス鋼繊維マット又
はウエブそれ自体の電気抵抗が大きい場合は、金属の集
電板を併用するのが好ましい。金属の集電板は、ステン
レス鋼繊維と電気的に接合できるものであればよく、
箔、エキスパンドメタル、パンチングした箔等を使用で
きる。
The stainless steel fiber mat used as the current collector of the positive electrode is preferably joined to and electrically connected to the metal current collector plate. The mat or web of stainless steel fibers can be sintered, for example, by heating in an inert gas atmosphere at 1000 ° C. or higher, or in a reducing gas atmosphere. The strength of the current collector made of steel fiber is improved, and the electric resistance of the polarizable electrode can be reduced. When the electric resistance of the stainless steel fiber mat or the web itself is large, it is preferable to use a metal current collector plate together. The metal current collector may be anything that can be electrically joined to the stainless steel fiber,
Foil, expanded metal, punched foil, etc. can be used.

【0014】ステンレス鋼繊維と金属の集電板は、電気
溶接、コールドウエルド、超音波溶接、又はステンレス
鋼繊維のマットを金属の集電板上に置いた状態で金属の
融点近くまで還元雰囲気下で加熱してステンレス鋼繊維
を集電板に接合したり、ステンレス鋼繊維のマットを導
電性接着剤で集電板と接合して電気的に接続したりす
る。ステンレス鋼繊維のマットと金属の集電板を接合し
た後、活性炭粉末を主体とする分極性電極材料を担持し
てもよいが、あらかじめ分極性電極材料をステンレス鋼
繊維と複合した複合体を金属の集電板に電気溶接等で電
気的に接合してもよい。
The current collector plate made of stainless steel fiber and metal may be subjected to electric welding, cold welding, ultrasonic welding, or a stainless steel fiber mat placed on the metal current collector plate in a reducing atmosphere up to the melting point of the metal. And the stainless steel fibers are joined to the current collector plate by heating at, or the mat of the stainless steel fibers is joined to the current collector plate with a conductive adhesive to be electrically connected. After the stainless steel fiber mat and the metal current collector plate are joined together, a polarizable electrode material mainly composed of activated carbon powder may be supported. It may be electrically joined to the current collector plate by electric welding or the like.

【0015】結合剤は、分極性電極中の活性炭粉末と導
電材を一体に保つための結合成分であり、結合剤には、
例えばPTFE、ポリフッ化ビニリデン、フルオロオレ
フィン共重合体架橋ポリマー、フルオロオレフィン/ビ
ニルエーテル共重合体架橋ポリマー、カルボキシメチル
セルロ−ス、ポリビニルピロリドン、ポリビニルアルコ
ール及びポリアクリル酸、ポリイミド等が使用できる。
分極性電極中の結合剤の含有量は、少ないと有効な結合
強度を発現できず、充放電時に結合が緩んで内部抵抗が
増加する傾向を示し、多すぎると分極性電極の内部抵抗
が大きくなるので、1〜20重量%とするのが好まし
い。
The binder is a binding component for keeping the activated carbon powder and the conductive material in the polarizable electrode together, and the binder is
For example, PTFE, polyvinylidene fluoride, fluoroolefin copolymer crosslinked polymer, fluoroolefin / vinyl ether copolymer crosslinked polymer, carboxymethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol and polyacrylic acid, polyimide and the like can be used.
When the content of the binder in the polarizable electrode is small, effective bond strength cannot be expressed, and the bond tends to loosen during charging / discharging to increase the internal resistance. When the content is too large, the internal resistance of the polarizable electrode becomes large. Therefore, the amount is preferably 1 to 20% by weight.

【0016】分極性電極の厚さは、薄いと単位面積当た
りの容量を大きくできず、厚すぎると均質で高密度の電
極とするのが難しく、内部抵抗が高くなるので0.1〜
3mm以下、特には0.2〜2mmとするのが好まし
い。また、分極性電極の空隙率は、電解液が分極性電極
の内部に浸透して内部の分極性電極の表面がすべて電荷
の蓄積に寄与しうるように10%以上とするのが好まし
い。しかし、分極性電極の空隙率があまり大きいと分極
性電極の容量が小さくなるので、空隙率は60%以下と
するのが好ましい。負極の分極性電極についてもステン
レス鋼繊維の集電体を分極性電極材料の粉末と混在状態
で組み合わせて正極と同じ構成とするのが好ましいが、
多孔質ニッケル等の多孔質金属の集電体を分極性電極の
粉末との混在状態で組み合わた負極も同様に好ましい。
If the thickness of the polarizable electrode is too thin, the capacitance per unit area cannot be increased. If it is too thick, it is difficult to obtain a homogeneous and high-density electrode, and the internal resistance becomes high.
It is preferably 3 mm or less, particularly 0.2 to 2 mm. In addition, the porosity of the polarizable electrode is preferably 10% or more so that the electrolytic solution can penetrate into the polarizable electrode and the entire surface of the polarizable electrode inside can contribute to the accumulation of charges. However, if the porosity of the polarizable electrode is too large, the capacity of the polarizable electrode becomes small, so the porosity is preferably 60% or less. Also for the polarizable electrode of the negative electrode, it is preferable to combine the collector of the stainless steel fiber with the powder of the polarizable electrode material in a mixed state to have the same configuration as the positive electrode,
A negative electrode in which a collector of a porous metal such as porous nickel is combined in a mixed state with the powder of the polarizable electrode is also preferable.

【0017】非水系電解液は、R4+ 、R4+ (た
だし、Rはアルキル基)等の第4級オニウムカチオンと
BF4 -、N(CF3 SO22 -、PF6 -、ClO4 -等の
アニオンとを組み合わせた塩を有機溶媒に溶解させた低
水分の非水系電解液を使用するのが好ましい。特に、4
個のアルキル基の全てが同じでない、非対称第4級オニ
ウムカチオン例えば(C253 (CH3 )N+
(C253 (CH3)P+ の塩は、塩の溶媒中への
溶解度が高いため電解液の電気伝導度を高くできるので
好ましい。
The non-aqueous electrolyte solution contains quaternary onium cations such as R 4 N + and R 4 P + (where R is an alkyl group) and BF 4 , N (CF 3 SO 2 ) 2 and PF 6 -, ClO 4 - is preferable to use such non-aqueous electrolyte solution of low water combined with salt and anion dissolved in an organic solvent. In particular, 4
Asymmetric quaternary onium cations in which all of the alkyl groups are not the same, eg (C 2 H 5 ) 3 (CH 3 ) N + ,
A salt of (C 2 H 5 ) 3 (CH 3 ) P + is preferable because the solubility of the salt in a solvent is high and the electric conductivity of the electrolytic solution can be increased.

【0018】本発明による第2の電気二重層キャパシタ
は、活性炭粉末、導電材粉末及び結合剤を含む分極性電
極材料にステンレス鋼繊維の集電体が混在状態で組み合
わされて正極とされ、リチウムイオンを吸蔵、脱離しう
る炭素材料に化学的方法及び/又は電気化学的方法であ
らかじめリチウムイオンを吸蔵させた炭素質材料に多孔
質金属又は繊維状金属の集電体が組み合わされて負極と
され、正極と負極の間にセパレータが配置され、正極、
負極及びセパレータにリチウム塩を含む非水系電解液が
含浸されていることを特徴とする。
In the second electric double layer capacitor according to the present invention, a polarizable electrode material containing activated carbon powder, conductive material powder and a binder is combined with a collector of stainless steel fibers in a mixed state to form a positive electrode. A negative electrode is formed by combining a carbonaceous material capable of occluding and desorbing ions with a carbonaceous material in which lithium ions have been previously occluded by a chemical method and / or an electrochemical method and a collector of a porous metal or a fibrous metal. , A separator is arranged between the positive electrode and the negative electrode, the positive electrode,
It is characterized in that the negative electrode and the separator are impregnated with a non-aqueous electrolytic solution containing a lithium salt.

【0019】この第2の電気二重層キャパシタでは正極
が分極性電極であるのに対し、負極は非分極性電極であ
り、この構成では使用電圧を高くできるという特徴があ
る。この電気二重層キャパシタでは、電解液の電解質は
カチオンがリチウムイオンであるリチウム塩に限られ
る。使用できるリチウム塩としては、LiClO4 、L
iCF3 SO3 、LiBF4 、LiPF6 、LiAsF
6 、LiSbF6 、LiCF3 CO2 及びLiN(CF
3 SO22 がある。これらのうち、LiClO4 、L
iN(CF3 SO22 、LiBF4 及びLiPF6
安定性と電気伝導度の点で特に好ましいリチウム塩であ
る。
In this second electric double layer capacitor, the positive electrode is a polarizable electrode, whereas the negative electrode is a non-polarizable electrode, and this construction is characterized in that the working voltage can be increased. In this electric double layer capacitor, the electrolyte of the electrolytic solution is limited to a lithium salt whose cation is lithium ion. Examples of lithium salts that can be used include LiClO 4 , L
iCF 3 SO 3 , LiBF 4 , LiPF 6 , LiAsF
6 , LiSbF 6 , LiCF 3 CO 2 and LiN (CF
3 SO 2 ) 2 . Of these, LiClO 4 , L
iN (CF 3 SO 2 ) 2 , LiBF 4 and LiPF 6 are particularly preferable lithium salts in terms of stability and electric conductivity.

【0020】本発明の電気二重層キャパシタに使用でき
る非水系電解液の有機溶媒には、いずれの構成の電気二
重層キャパシタについても、プロピレンカーボネート、
エチレンカーボネート、ブチレンカーボネート、γ−ブ
チロラクトン、ジメチルスルホキシド、スルホラン、ホ
ルムアミド、ジメチルホルムアミド、ジオキソラン、リ
ン酸トリエステル、無水マレイン酸、無水コハク酸、無
水フタル酸、1,3−プロパンスルトン、プロピレンカ
ーボネート誘導体、エチレンカーボネート誘導体、4,
5−ジヒドロピラン誘導体、ラクトン誘導体、スルホラ
ン誘導体、ニトロベンゼン、1,3−ジオキサン、1,
4−ジオキサン、3−メチル−2−オキサゾリジノン、
1,2−ジメトキシエタン、テトラヒドロフラン、テト
ラヒドロフラン誘導体、シドノン化合物、2−メチルテ
トラヒドロフラン、ジメチルカーボネート、ジエチルカ
ーボネート、アセトニトリル、ニトロメタン、アルコキ
シエタン及びジメチルアセトアミドから選ばれる1種以
上からなる有機溶媒を好ましく使用できる。
As the organic solvent of the non-aqueous electrolyte solution which can be used in the electric double layer capacitor of the present invention, propylene carbonate,
Ethylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl sulfoxide, sulfolane, formamide, dimethylformamide, dioxolane, phosphoric acid triester, maleic anhydride, succinic anhydride, phthalic anhydride, 1,3-propane sultone, propylene carbonate derivative, Ethylene carbonate derivative, 4,
5-dihydropyran derivative, lactone derivative, sulfolane derivative, nitrobenzene, 1,3-dioxane, 1,
4-dioxane, 3-methyl-2-oxazolidinone,
An organic solvent composed of one or more selected from 1,2-dimethoxyethane, tetrahydrofuran, tetrahydrofuran derivative, sydnone compound, 2-methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate, acetonitrile, nitromethane, alkoxyethane and dimethylacetamide can be preferably used.

【0021】これらの有機溶媒のうち、プロピレンカー
ボネート、エチレンカーボネート、ジエチルカーボネー
ト、ジメトキシエタン、ブチレンカーボネート、スルホ
ラン、メチルスルホラン、ジメチルカーボネート及びエ
チルメチルカーボネートから選ばれる1種以上からなる
有機溶媒が、化学的及び電気化学的な安定性、電気伝導
度及び低温特性の点で特に好ましい有機溶媒である。
Among these organic solvents, an organic solvent composed of one or more selected from propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, butylene carbonate, sulfolane, methylsulfolane, dimethyl carbonate and ethylmethyl carbonate is chemically selected. In addition, it is a particularly preferable organic solvent in terms of electrochemical stability, electric conductivity and low temperature characteristics.

【0022】本発明の第2の電気二重層キャパシタの正
極は、本発明の第1の電気二重層キャパシタの正極と同
じ構成である。この種の分極性電極は、例えば以下のよ
うにして形成できる。活性炭粉末、カーボンブラック及
び結合剤に溶媒を混合して分極性電極材料のスラリーと
し、ステンレス鋼繊維のマット又はステンレス鋼繊維の
マットと金属の集電板の接合体にこのスラリーを塗布又
は含浸し、乾燥後必要に応じて圧密化し、分極性電極材
料とステンレス鋼繊維が混在して集電体と分極性電極材
料とが一体化した複合電極とする。分極性電極の正極
は、導電性接着剤を介して、又は電気溶接等によって電
気的に端子又は金属容器と接合される。
The positive electrode of the second electric double layer capacitor of the present invention has the same structure as the positive electrode of the first electric double layer capacitor of the present invention. This type of polarizable electrode can be formed, for example, as follows. A solvent is mixed with activated carbon powder, carbon black and a binder to form a polarizable electrode material slurry, and the slurry is applied or impregnated on a stainless steel fiber mat or a joined body of a stainless steel fiber mat and a metal current collector. After drying, the composite electrode is consolidated if necessary, and the polarizable electrode material and the stainless steel fiber are mixed to form a composite electrode in which the current collector and the polarizable electrode material are integrated. The positive electrode of the polarizable electrode is electrically joined to the terminal or the metal container via a conductive adhesive or by electric welding or the like.

【0023】ステンレス鋼繊維のマット又はウエブに活
性炭粉末、導電材及び結合剤に溶媒を混合したスラリー
を注入し、乾燥後圧縮して圧密化すれば、分極性電極の
空隙率を調整できる。圧密化して電極の空隙率を好まし
い値に調節すれば、電気二重層キャパシタの性能を向上
させられる。分極性電極の空隙率は、好ましくは10〜
80%とされる。空隙率が10%未満であると、電解液
が電極内部に浸透し難くて電極内部の分極性電極材料の
一部が有効に働かない。また、空隙率が80%を超える
と、分極性電極が嵩高くなってエネルギ密度が小さくな
る。分極性電極の空隙率は、特に好ましくは15〜60
%とされる。また分極性電極の厚みは0.1〜3mm、
特には0.2〜2.0mmとするのが好ましい。
The porosity of the polarizable electrode can be adjusted by injecting a slurry in which a solvent is mixed with activated carbon powder, a conductive material and a binder into a mat or web of stainless steel fibers, drying and compressing the mixture to consolidate it. The performance of the electric double layer capacitor can be improved by consolidating and adjusting the porosity of the electrode to a preferable value. The porosity of the polarizable electrode is preferably 10 to 10.
80%. If the porosity is less than 10%, the electrolytic solution is difficult to penetrate into the electrode, and a part of the polarizable electrode material inside the electrode does not work effectively. When the porosity exceeds 80%, the polarizable electrode becomes bulky and the energy density becomes small. The porosity of the polarizable electrode is particularly preferably 15 to 60.
%. The thickness of the polarizable electrode is 0.1 to 3 mm,
In particular, it is preferably 0.2 to 2.0 mm.

【0024】ステンレス鋼繊維のマット又はウエブと金
属の集電板の接合体に分極性電極材料を混在させるもう
1つの方法としては、例えば、活性炭粉末、導電材粉末
及び結合剤であらかじめシートを形成し、アルコール等
の溶媒で固さを調節して該シートをロールプレス等によ
りステンレス鋼繊維のマットに圧入すると複合電極が得
られる。
As another method of mixing the polarizable electrode material in the joined body of the stainless steel fiber mat or web and the metal current collector plate, for example, a sheet is previously formed from activated carbon powder, conductive material powder and binder. Then, the composite electrode is obtained by adjusting the hardness with a solvent such as alcohol and pressing the sheet into a mat of stainless steel fibers by a roll press or the like.

【0025】第2の電気二重層キャパシタの負極の集電
体に使用する多孔質金属は、電気化学的、化学的に耐食
性のある金属であればよい。多孔質金属は、その気孔率
が80〜99.5%の多孔質ニッケルが好ましく使用で
きる。また、その厚さは、0.3〜5mmのシート状の
ものを使用するのが好ましい。特には、その気孔率が8
5〜99%で、長さ1cm当たりの平均孔数(多孔質金
属を貫く長さ1cmの直線が横切る平均の孔数をいう)
が5以上の多孔質ニッケルを用いるのが好ましい。
The porous metal used for the current collector of the negative electrode of the second electric double layer capacitor may be any metal that is electrochemically and chemically resistant to corrosion. As the porous metal, porous nickel having a porosity of 80 to 99.5% can be preferably used. Further, it is preferable to use a sheet-shaped material having a thickness of 0.3 to 5 mm. Especially, the porosity is 8
5 to 99%, the average number of pores per 1 cm in length (means the average number of pores crossed by a 1 cm long straight line that penetrates a porous metal)
It is preferable to use porous nickel having a ratio of 5 or more.

【0026】多孔質ニッケル等の多孔質金属のシート中
に、炭素材料粉末と結合剤に溶媒を混合したスラリーを
注入し、乾燥後プレスして圧密化し、電極の空隙率を調
整する。この圧密化によって電極の空隙率を適量に調節
することが電気二重層キャパシタの性能を高めるために
重要である。この負極の空隙率は、好ましくは10〜8
0%とされる。空隙率が10%未満であると、電解液が
電極内部に侵入しにくくなって内部の電極材料の一部が
有効に働かない。また、空隙率が80%超であると、容
量の割りに電極が嵩高くなって負極の単位体積当たりの
容量が小さくなる。電極の空隙率は、特に好ましくは1
5〜60%とされる。負極の厚さは0.1〜3mm、特
には0.2〜2.0mmとするのが好ましい。
A slurry in which a carbon material powder and a binder are mixed with a solvent is poured into a sheet of porous metal such as porous nickel, dried and pressed to be consolidated to adjust the porosity of the electrode. It is important to adjust the porosity of the electrode to an appropriate amount by this consolidation so as to improve the performance of the electric double layer capacitor. The porosity of this negative electrode is preferably 10-8.
It is set to 0%. When the porosity is less than 10%, the electrolytic solution is less likely to enter the electrode, and a part of the electrode material inside does not work effectively. Further, when the porosity is more than 80%, the electrode becomes bulky relative to the capacity, and the capacity per unit volume of the negative electrode becomes small. The porosity of the electrode is particularly preferably 1
It is set to 5 to 60%. The thickness of the negative electrode is preferably 0.1 to 3 mm, particularly 0.2 to 2.0 mm.

【0027】コイン型の電気二重層キャパシタとするに
は、例えば、ステンレス鋼繊維の集電体を混在状態で組
み合わせた分極性電極である正極を導電性接着剤又は溶
接等でステンレス鋼、アルミニウム等からなる容器の蓋
又はケースに電気的に接続する。次に正極と同じ構成の
ステンレス鋼繊維の集電体を混在状態で組み合わせた分
極性電極を、ステンレス鋼、ニッケル等からなる容器の
ケース又は蓋に電気的に接続して負極とする。又は、リ
チウムを吸蔵、脱離しうる炭素材料及び結合剤からなる
負極材料をステンレス鋼、ニッケル等からなる容器のケ
ース又は蓋に電気的に接続して負極とする。このように
して得られた正極と負極の間にセパレータを配置し、正
極、負極及びセパレータに電解液を含浸して容器中に収
容すれば電気二重層キャパシタを形成できる。
In order to make a coin type electric double layer capacitor, for example, a positive electrode which is a polarizable electrode in which current collectors of stainless steel fibers are combined in a mixed state is used by a conductive adhesive or welding to make stainless steel, aluminum or the like. It is electrically connected to the lid or case of the container. Next, a polarizable electrode, which is a combination of stainless steel fiber current collectors having the same structure as the positive electrode in a mixed state, is electrically connected to a case or lid of a container made of stainless steel, nickel or the like to form a negative electrode. Alternatively, a negative electrode material composed of a carbon material capable of inserting and extracting lithium and a binder is electrically connected to a case or a lid of a container made of stainless steel, nickel or the like to form a negative electrode. An electric double layer capacitor can be formed by disposing a separator between the positive electrode and the negative electrode thus obtained, and impregnating the positive electrode, the negative electrode and the separator with an electrolytic solution and housing them in a container.

【0028】分極性電極材料又は負極材料のスラリーを
使用して分極性電極材料又は負極を製造するときの結合
剤には、ポリフッ化ビニリデン、フルオロオレフィン共
重合体架橋ポリマー、フルオロオレフィン/ビニルエー
テル共重合体架橋ポリマー、カルボキシメチルセルロ−
ス、ポリビニルピロリドン、ポリビニルアルコール、ポ
リアクリル酸又はポリイミドを用いるのが好ましい。
The binder used when producing the polarizable electrode material or the negative electrode using the slurry of the polarizable electrode material or the negative electrode material is polyvinylidene fluoride, fluoroolefin copolymer crosslinked polymer, fluoroolefin / vinyl ether copolymer. Combined cross-linked polymer, carboxymethyl cellulose
Preference is given to using polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl alcohol, polyacrylic acid or polyimide.

【0029】スラリーの溶媒は、これらの結合剤を溶解
するものが好ましく、N−メチルピロリドン、水、ジメ
チルホルムアミド、トルエン、キシレン、メチルエチル
ケトン、酢酸エチル、酢酸メチル、フタル酸ジメチル、
エタノール、メタノール、ブタノール又は水が選択され
る。また、上記架橋ポリマーの架橋剤には、アミン類、
ポリアミン類、ポリイソシアネート類、ビスフェノール
類、パーオキシド類を好ましく使用できる。
The solvent of the slurry is preferably one which dissolves these binders, and N-methylpyrrolidone, water, dimethylformamide, toluene, xylene, methyl ethyl ketone, ethyl acetate, methyl acetate, dimethyl phthalate,
Ethanol, methanol, butanol or water are selected. Further, the cross-linking agent of the cross-linked polymer, amines,
Polyamines, polyisocyanates, bisphenols and peroxides can be preferably used.

【0030】本発明の電気二重層キャパシタに使用する
好ましい活性炭粉末としては、やしがら系活性炭、フェ
ノール樹脂系活性炭、石油コークス系活性炭の粉末があ
る。これらの活性炭粉末のうち、大容量を得られる点で
フェノール樹脂系活性炭粉末又は石油コークス系活性炭
粉末を使用するのが特に好ましい。また、活性炭の賦活
処理法としては、水蒸気賦活処理法、溶融KOH賦活処
理等がある。より大きな容量を得られる点で溶融KOH
賦活処理法によるものが特に好ましい。また、分極性電
極中のカーボンブラック等の導電材粉末の配合量は、内
部抵抗を小さくする効果が得られるように、活性炭粉末
との合量中5重量%以上とするのが好ましく、活性炭粉
末の配合量が少ないと製品の容量が減るため40重量%
以下とするのが好ましい。導電材粉末の配合量は、10
〜30重量%とするのが特に好ましい。
Preferable activated carbon powder used in the electric double layer capacitor of the present invention includes coconut shell type activated carbon, phenol resin type activated carbon and petroleum coke type activated carbon powder. Among these activated carbon powders, it is particularly preferable to use a phenol resin-based activated carbon powder or a petroleum coke-based activated carbon powder because a large capacity can be obtained. Examples of the activation method of activated carbon include a steam activation method and a molten KOH activation method. Molten KOH in that a larger capacity can be obtained
The activation treatment method is particularly preferable. Further, the content of the conductive material powder such as carbon black in the polarizable electrode is preferably 5% by weight or more in the total amount with the activated carbon powder so that the effect of reducing the internal resistance can be obtained. 40% by weight because the product volume decreases when the compounding amount of
It is preferable to set the following. The compounding amount of the conductive material powder is 10
It is particularly preferable that the content be ˜30% by weight.

【0031】分極性電極に使用する活性炭粉末は、平均
粒径が30μm以下で比表面積が1000〜3000m
2 /gのものを使用すると電気二重層キャパシタの容量
を大きくでき、かつ内部抵抗を低くできるので好まし
い。
The activated carbon powder used for the polarizable electrode has an average particle size of 30 μm or less and a specific surface area of 1000 to 3000 m.
The use of 2 / g is preferable because the capacity of the electric double layer capacitor can be increased and the internal resistance can be lowered.

【0032】負極の主材料であるリチウムイオンを吸
蔵、脱離しうる炭素材料としては、天然黒鉛、人造黒
鉛、黒鉛化メソカーボン小球体、易黒鉛化性炭素材料、
黒鉛化ウィスカ、気相成長炭素繊維、フェノール樹脂の
焼成品、フルフリルアルコール樹脂の焼成品又はノボラ
ック樹脂の焼成品を使用できる。これらのうち、リチウ
ムイオンの吸蔵、脱離容量が大きいことから、天然黒
鉛、人造黒鉛、黒鉛化メソカーボン小球体又は易黒鉛化
性炭素材料(樹脂の焼成品)を使用するのが好ましい。
The carbon material capable of inserting and extracting lithium ions, which is the main material of the negative electrode, includes natural graphite, artificial graphite, graphitized mesocarbon microspheres, graphitizable carbon material,
Graphitized whiskers, vapor grown carbon fibers, fired products of phenol resin, furfuryl alcohol resin, or novolac resin can be used. Among these, it is preferable to use natural graphite, artificial graphite, graphitized mesocarbon small spheres or graphitizable carbon material (baked product of resin) because it has a large capacity for occluding and desorbing lithium ions.

【0033】天然黒鉛は、結晶構造が発達した、不純物
の少ないものを使用するのが好ましい。ここで、結晶構
造の発達した天然黒鉛とは、X線回折により測定される
面間隔d002 が0.336nm未満であり、結晶子サイ
ズLC が150nm以上であるものをいう。結晶構造が
発達した炭素材料はリチウムイオンの吸蔵、脱離能力が
大きく、不純物の少ないものを使用すれば、優れた耐充
放電サイクル性を付与できる。
As the natural graphite, it is preferable to use one having a developed crystal structure and few impurities. Here, the natural graphite having a developed crystal structure means that the interplanar spacing d 002 measured by X-ray diffraction is less than 0.336 nm, and the crystallite size L C is 150 nm or more. A carbon material having a developed crystal structure has a large capacity for absorbing and desorbing lithium ions, and if a carbon material with few impurities is used, excellent charge / discharge cycle resistance can be imparted.

【0034】天然黒鉛中の不純物を減らすには、通常硝
酸、硫酸、フッ酸等の酸による洗浄を行うが、灰分を効
果的に取り除けることから、最終的にフッ酸処理を行っ
た炭素の純度が99重量%以上の天然黒鉛を使用するの
が好ましい。
In order to reduce impurities in natural graphite, washing with an acid such as nitric acid, sulfuric acid or hydrofluoric acid is usually carried out. However, since ash can be effectively removed, the purity of carbon finally treated with hydrofluoric acid. Is preferably 99% by weight or more of natural graphite.

【0035】人造黒鉛としては、結晶構造が発達した、
不純物の少ないものを使用するのが好ましい。ここで結
晶構造が発達したものとは、前記d002 が0.3365
nm以下であり、前記LC が50nm以上のものをい
う。人造黒鉛は出発物質を選択すれば高純度のものがあ
るので、炭素の純度が99.5重量%以上のものを使用
するのが好ましい。
As artificial graphite, a crystal structure has been developed,
It is preferable to use one having a small amount of impurities. Here, a crystal structure has been developed means that the above-mentioned d 002 is 0.3365.
nm or less and the L C is 50 nm or more. Since artificial graphite may have a high purity if starting materials are selected, it is preferable to use carbon having a carbon purity of 99.5% by weight or more.

【0036】黒鉛化メソカーボン小球体としては、25
00℃以上の高温で熱処理された黒鉛の結晶構造が発達
した、不純物の少ないものを使用するのが好ましい。こ
こで結晶構造の発達したものとは、前記d002 が0.3
37nm以下であり、前記LC が20nm以上のものを
いう。
As the graphitized mesocarbon microspheres, 25
It is preferable to use a graphite having a crystal structure developed with heat treatment at a high temperature of 00 ° C. or higher and having a small amount of impurities. Here, a crystal structure has been developed means that the d 002 is 0.3.
It is 37 nm or less and the L C is 20 nm or more.

【0037】黒鉛化ウィスカとしては、結晶構造が発達
した不純物の少ないものを使用するのが好ましい。ここ
で結晶構造が発達したものとは、前記d002 が0.33
65nm以下であり、前記LC が10nm以上であるも
のをいう。
As the graphitized whisker, it is preferable to use one having few impurities with a developed crystal structure. Here, the crystal structure has been developed means that the d 002 is 0.33.
It is 65 nm or less and the L C is 10 nm or more.

【0038】黒鉛化炭素繊維としては、アクリロニトリ
ル樹脂繊維等を2500℃以上の温度で熱処理した黒鉛
の結晶構造が発達した、不純物の少ないものを使用する
のが好ましい。ここで結晶構造の発達したものとは、前
記d002 が0.3365nm以下であり、前記LC が1
0nm以上であるものをいう。
As the graphitized carbon fiber, it is preferable to use one in which the crystal structure of graphite, which is obtained by heat-treating acrylonitrile resin fiber or the like at a temperature of 2500 ° C. or more, has been developed and which has few impurities. Here, the one having a developed crystal structure means that the d 002 is 0.3365 nm or less and the L C is 1
It means that it is 0 nm or more.

【0039】フルフリルアルコール樹脂焼成品として
は、フルフリルアルコール樹脂を1000〜1500℃
で熱処理した不純物の少ないものを使用するのが好まし
い。好ましくはこの熱処理によって前記d002 を0.3
75〜0.39nmとしたものを使用する。
As the furfuryl alcohol resin baked product, furfuryl alcohol resin is 1000 to 1500 ° C.
It is preferable to use the one which is heat-treated in step 1 with a small amount of impurities. Preferably, the heat treatment makes the d 002 0.3.
The thickness used is 75 to 0.39 nm.

【0040】ノボラック樹脂焼成品としては、ノボラッ
ク樹脂を700℃以下の温度で熱処理したH/C原子比
が0.25〜0.28の炭素材料を使用するのが好まし
い。この焼成品は、前記d002 が0.38nm以上のも
のが好ましい。
As the novolac resin fired product, it is preferable to use a carbon material having an H / C atomic ratio of 0.25 to 0.28 obtained by heat-treating the novolac resin at a temperature of 700 ° C. or lower. This fired product preferably has d 002 of 0.38 nm or more.

【0041】負極に使用するリチウムイオンを吸蔵、脱
離しうる炭素材料の粉末は、電気二重層キャパシタの容
量を大きくでき、その内部抵抗を小さくできるので、平
均粒径が30μm以下のものを使用するのが好ましい。
また電極に含まれる結合剤の量は、結合剤が1重量%未
満であると電極の結合強度が小さく、20重量%超であ
ると電気二重層キャパシタの電気抵抗が増大するととも
に容量が減少するので、炭素材料との合量中1〜20重
量%とするのが好ましい。容量と強度のバランスを考慮
すると、より好ましい結合剤の配合量は1.5〜10重
量%である。また、負極は、結合剤入りの厚膜状、シー
ト状、板状のいずれでもよく、好ましくは集電体と電極
材料が混在した複合体とする。
The carbon material powder used for the negative electrode is capable of occluding and desorbing lithium ions, because the capacity of the electric double layer capacitor can be increased and the internal resistance thereof can be decreased, so that the average particle size is 30 μm or less is used. Is preferred.
Regarding the amount of the binder contained in the electrode, if the binder is less than 1% by weight, the bonding strength of the electrode is small, and if it exceeds 20% by weight, the electric resistance of the electric double layer capacitor increases and the capacity decreases. Therefore, it is preferably 1 to 20% by weight in the total amount with the carbon material. Considering the balance between capacity and strength, a more preferable compounding amount of the binder is 1.5 to 10% by weight. The negative electrode may be in the form of a thick film containing a binder, a sheet, or a plate, and is preferably a composite in which a current collector and an electrode material are mixed.

【0042】また、リチウムイオンを吸蔵、離脱しうる
炭素材料にあらかじめリチウムイオンを吸蔵させる方法
には、あらかじめ粉末状のリチウムをリチウムイオンを
吸蔵、離脱しうる炭素材料の粉末に混ぜておいたり、リ
チウムイオンを吸蔵、脱離しうる炭素材料と結合剤の成
形体に箔状のリチウムを電気的に接触させた状態で電解
液中に浸漬することによりリチウムをイオン化させ、リ
チウムイオンを吸蔵、脱離しうる炭素材料中に取り込ま
せる化学的方法、リチウム塩を電解質とする非水(有
機)溶媒の電解液中の、一方にリチウムイオンを吸蔵、
離脱しうる炭素材料と結合剤により形成された電極を置
き、他方にリチウム金属の電極を置いて電流を印加し、
炭素材料中にリチウムイオンを吸蔵させる電気化学的方
法がある。
Further, in the method of preliminarily occluding lithium ions in the carbon material capable of occluding and desorbing lithium ions, powdery lithium is previously mixed with powder of the carbon material capable of occluding and desorbing lithium ions, or Lithium ions are occluded and desorbed by immersing the foil-shaped lithium in a state in which foil-shaped lithium is electrically contacted with a molded body of a carbon material and a binder capable of occluding and desorbing lithium ions to ionize the lithium and absorb and desorb lithium ions. Chemical method of incorporating into a carbonaceous material, in a nonaqueous (organic) solvent electrolyte containing a lithium salt as an electrolyte, one side stores lithium ions,
An electrode formed by a detachable carbon material and a binder is placed, and a lithium metal electrode is placed on the other side to apply a current,
There is an electrochemical method of occluding lithium ions in a carbon material.

【0043】これらの方法のうち、工程が簡易であるこ
とからリチウムイオンを吸蔵、脱離しうる炭素材料と結
合剤も成形体に箔状のリチウムを電気的に接触させた状
態で電解液中に浸漬することによりリチウムをイオン化
させ、炭素材料中に取り込ませる方法を採用するのが好
ましい。
Among these methods, since the steps are simple, the carbon material capable of absorbing and desorbing lithium ions and the binder are also placed in the electrolytic solution in a state where the foil-shaped lithium is electrically contacted with the molded body. It is preferable to adopt a method in which lithium is ionized by immersion and incorporated in the carbon material.

【0044】正極の単極容量をb(ファラッド)とし、
この正極と対向せしめた負極が脱離しうるリチウムイオ
ン量をd(ミリアンペア時)とし、降下電圧をv(ボル
ト)としたときの比率bv/3.6dの値は、電気二重
層キャパシタの急速充放電特性と充放電サイクル耐久性
に影響するので、この比率を所定の範囲の値に設定する
のが好ましい。ここで、正極の単極容量bは、一対の正
極と同じ構成の電極をセパレータを挟んで対向させて電
解液中で直流電圧を印加したのち定電流放電させたとき
の電圧低下勾配から求められる。
Let the single pole capacity of the positive electrode be b (farad),
When the amount of lithium ions that can be desorbed from the negative electrode facing the positive electrode is d (milliampere) and the drop voltage is v (volt), the ratio bv / 3.6d is the value of the rapid charging of the electric double layer capacitor. Since this affects discharge characteristics and charge / discharge cycle durability, it is preferable to set this ratio within a predetermined range. Here, the unipolar capacity b of the positive electrode is obtained from a voltage decrease gradient when a pair of positive electrodes are opposed to each other with a separator in between and a direct current voltage is applied in the electrolytic solution followed by constant current discharge. .

【0045】本発明において、負極にリチウムイオンを
吸蔵・脱離しうる炭素材料を用いた場合の電気二重層キ
ャパシタの作動電圧は、例えば2.0〜3.3V、2.
0〜4.0V、3.3V〜4.5Vに設定できる。
In the present invention, the operating voltage of the electric double layer capacitor when a carbon material capable of inserting and extracting lithium ions is used for the negative electrode is, for example, 2.0 to 3.3 V, 2.
It can be set to 0-4.0V, 3.3V-4.5V.

【0046】また、負極が脱離しうるリチウムイオン量
dは、リチウムイオンを化学的方法又は電気化学的方法
で吸蔵させた負極をLi+ /Li電極基準の電位で+
1.0Vまで1mA/cm2 の電流密度で放電、すなわ
ち離脱させたときの積算電気量(mAh)に相当する。
したがって、比率bv/3.6dは電気二重層キャパシ
タの構成が同一であっても、キャパシタの作動電圧範囲
により異なる。
The amount d of lithium ions that can be desorbed from the negative electrode is such that the negative electrode in which lithium ions are occluded by a chemical method or an electrochemical method is + at a potential based on the Li + / Li electrode standard.
It corresponds to an integrated amount of electricity (mAh) when discharged up to 1.0 V at a current density of 1 mA / cm 2 , that is, when released.
Therefore, the ratio bv / 3.6d varies depending on the operating voltage range of the capacitor even if the electric double layer capacitor has the same configuration.

【0047】比率bv/3.6dは、好ましくは0.0
5〜0.90の範囲とされる。比率bv/3.6dが
0.05未満であると電気二重層キャパシタのエネルギ
密度が減少するので好ましくない。一方、比率bv/
3.6dが0.90超であると初期エネルギ密度は高く
なるが急速充放電が困難となり、充放電サイクル耐久性
が低下する。エネルギ密度及び急速充放電特性及び充放
電サイクル耐久性の見地から、比率bv/3.6dは
0.1〜0.8とするのが特に好ましい。
The ratio bv / 3.6d is preferably 0.0
The range is 5 to 0.90. If the ratio bv / 3.6d is less than 0.05, the energy density of the electric double layer capacitor decreases, which is not preferable. On the other hand, the ratio bv /
If 3.6d is more than 0.90, the initial energy density increases, but rapid charge / discharge becomes difficult, and charge / discharge cycle durability decreases. From the viewpoint of energy density, rapid charge / discharge characteristics, and charge / discharge cycle durability, the ratio bv / 3.6d is particularly preferably 0.1 to 0.8.

【0048】[0048]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれらによって限定されない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

【0049】[例1]フェノール樹脂系の溶融KOH賦
活処理された活性炭粉末(比表面積2000m2 /g、
平均粒径5μm)76重量%、ケッチェンブラックEC
(三菱化学社製品)14重量%及びポリフッ化ビニリデ
ン10重量%にN−メチルピロリドンを混合して分極性
電極材料のスラリーとした。厚さ約2mmのステンレス
316L繊維のマット(目付量500g/ m2 、平均繊
維径約12μm、平均繊維長さ10mm以上)を4cm
×4cmに切り取り、このマットを厚さ50μm、幅4
cm、長さ7cmのステンレス316Lの箔に1cm2
当たり20カ所電気溶接したものを集電体とし、この集
電体に前記スラリーを含浸後、200℃で30分間乾燥
して溶媒を除去した。次いで乾燥後のシートをロールプ
レスで厚さ0.87mmに圧密化し、分極性電極材料に
ステンレス316L繊維の集電体が混在状態で組み合わ
された分極性電極を得た。この分極性電極は、寸法が
4. 3cm×4. 3cmに拡大しており、空隙率は35
%であった。一対の分極性電極の間にガラス繊維のセパ
レータを挟んで対向させ、有効電極面積が4. 3cm×
4. 3cmの素子を得た。
Example 1 Phenolic resin-based molten KOH activated activated carbon powder (specific surface area 2000 m 2 / g,
Average particle size 5 μm) 76% by weight, Ketjen Black EC
(Mitsubishi Chemical Corporation product) 14% by weight and polyvinylidene fluoride 10% by weight were mixed with N-methylpyrrolidone to obtain a slurry of a polarizable electrode material. 4 cm of stainless 316L fiber mat with a thickness of about 2 mm (weight per unit area 500 g / m 2 , average fiber diameter about 12 μm, average fiber length 10 mm or more)
Cut to 4 cm, and this mat is 50 μm thick and width 4
cm, 7 cm long stainless steel 316L foil 1 cm 2
A current collector was obtained by electrowelding at 20 locations, and the current collector was impregnated with the slurry and dried at 200 ° C. for 30 minutes to remove the solvent. Then, the dried sheet was compacted by a roll press to a thickness of 0.87 mm to obtain a polarizable electrode in which a polarizable electrode material and a current collector of stainless 316L fiber were combined in a mixed state. This polarizable electrode has an expanded size of 4.3 cm × 4.3 cm and a porosity of 35 cm.
%Met. A glass fiber separator is sandwiched between a pair of polarizable electrodes to face each other, and the effective electrode area is 4.3 cm ×
A device having a size of 4.3 cm was obtained.

【0050】この素子を200℃の減圧下で3時間乾燥
し、素子をポリプロピレンの容器中に入れ、1.4mo
l/lの(C253 (CH3 )NBF4 を溶かした
水分含有量10ppmのプロピレンカーボネートを溶媒
とする非水系電解液を含浸した。この電気二重層キャパ
シタを2. 8Vで充電し、10mAで定電流放電させ
て、電気二重層キャパシタの初期容量と内部抵抗を求め
た。得られた電気二重層キャパシタの初期容量は27.
5F、内部抵抗は1. 1Ωであった。
This device was dried under reduced pressure at 200 ° C. for 3 hours, placed in a polypropylene container, and added with 1.4 mo.
A non-aqueous electrolyte solution containing 1 / l of (C 2 H 5 ) 3 (CH 3 ) NBF 4 dissolved in propylene carbonate having a water content of 10 ppm as a solvent was impregnated. This electric double layer capacitor was charged at 2.8 V and discharged at a constant current of 10 mA to obtain the initial capacity and internal resistance of the electric double layer capacitor. The initial capacity of the obtained electric double layer capacitor is 27.
5F, internal resistance was 1.1Ω.

【0051】[例2]例1で使用したステンレス316
L繊維のマットを円形に打ち抜き、これに例1で使用し
た分極性電極材料のスラリーを含浸し、乾燥後プレスで
圧密化して直径12. 5mmφ、厚さ0. 65mm、空
隙率35%の分極性電極を得た。この分極性電極を、内
側にアルミニウムをクラッドしたコイン型容器のステン
レス304からなるケースの内側に黒鉛系導電性接着材
で接着した。次に、厚さ2mm、気孔率97%、直線1
cm当たりの平均気孔数25の多孔質ニッケルのシート
を集電体とし、この集電体に例1で用いた分極性電極材
料のスラリーを含浸し、乾燥後プレスで圧密化して直径
12.5mm、厚さ0.65mm、空隙率30%の負極
とする分極性電極を得た。
[Example 2] Stainless steel 316 used in Example 1
A mat of L fibers was punched into a circle, impregnated with the slurry of the polarizable electrode material used in Example 1, dried, and then consolidated by pressing to have a diameter of 12.5 mmφ, a thickness of 0.65 mm and a porosity of 35%. A polar electrode was obtained. This polarizable electrode was adhered to the inside of a case made of stainless steel 304 of a coin-shaped container in which aluminum was clad with a graphite-based conductive adhesive material. Next, thickness 2 mm, porosity 97%, straight line 1
A sheet of porous nickel having an average number of pores per cm of 25 was used as a current collector, the current collector was impregnated with the slurry of the polarizable electrode material used in Example 1, dried and then compacted by pressing to have a diameter of 12.5 mm. A polarizable electrode having a thickness of 0.65 mm and a porosity of 30% was obtained as a negative electrode.

【0052】この分極性電極をコイン型容器のステンレ
ス304からなる蓋の内側に電気溶接し、両電極の間に
ポリプロピレン製セパレータを挟み、容器中に1. 5m
ol/lの(C253 (CH3 )PBF4 をプロピ
レンカーボネートに溶解した電解液を注入してコイン型
電気二重層キャパシタを組み立てた。2.8Vで充電し
て10mAで定電流放電して電気二重層キャパシタの初
期容量と内部抵抗を測定したところ、初期容量は2.2
F、内部抵抗は3.3Ωであった。また、このコイン型
電気二重層キャパシタを70℃の高温槽に入れ、2.8
Vの電圧を1000時間印加した後の容量は1. 8F、
内部抵抗は9Ωであった。図1は、このコイン型電気二
重層キャパシタの縦断面図であり、図において、1は正
極、2は導電性接着剤、3はコイン型容器の蓋、4はコ
イン型容器のケース、5は負極、7は電解液、8はセパ
レータ、9は絶縁ガスケットである。
This polarizable electrode was electrically welded to the inside of a stainless steel 304 lid of a coin type container, a polypropylene separator was sandwiched between both electrodes, and 1.5 m was placed in the container.
A coin-type electric double layer capacitor was assembled by injecting an electrolytic solution obtained by dissolving ol / l of (C 2 H 5 ) 3 (CH 3 ) PBF 4 in propylene carbonate. When the initial capacity and internal resistance of the electric double layer capacitor were measured by charging at 2.8 V and discharging at a constant current of 10 mA, the initial capacity was 2.2.
F, the internal resistance was 3.3Ω. Also, this coin type electric double layer capacitor was placed in a high temperature bath at 70 ° C. for 2.8
The capacity after applying the voltage of V for 1000 hours is 1.8F,
The internal resistance was 9Ω. FIG. 1 is a vertical cross-sectional view of this coin type electric double layer capacitor. In the figure, 1 is a positive electrode, 2 is a conductive adhesive, 3 is a lid of a coin type container, 4 is a case of the coin type container, and 5 is a case. A negative electrode, 7 is an electrolytic solution, 8 is a separator, and 9 is an insulating gasket.

【0053】[例3]例2において、電解液に1mol
/lの(C253 (CH3 )PBF4 をスルホラン
とメチルエチルカーボネートの混合溶媒(容積比4:
1)に溶解したものを用いた他は例2と同様にしてコイ
ン型電気二重層キャパシタを組み立てた.この電気二重
層キャパシタの使用電圧は3.3V、2mAで定電流放
電したときの初期容量は2.2F、内部抵抗は4.1Ω
であった。このコイン型電気二重層キャパシタを70℃
の恒温槽に入れ、3.3Vの電圧を1000時間した後
の容量は1.9F、内部抵抗は10Ωであった。
[Example 3] In Example 2, 1 mol was added to the electrolytic solution.
/ L of (C 2 H 5 ) 3 (CH 3 ) PBF 4 in a mixed solvent of sulfolane and methyl ethyl carbonate (volume ratio 4:
A coin type electric double layer capacitor was assembled in the same manner as in Example 2 except that the one dissolved in 1) was used. The operating voltage of this electric double layer capacitor is 3.3V, the initial capacity is 2.2F, and the internal resistance is 4.1Ω when discharged at a constant current of 2 mA.
Met. This coin type electric double layer capacitor is 70 ℃
After being placed in a constant temperature bath of No. 3, and after a voltage of 3.3 V for 1000 hours, the capacity was 1.9 F and the internal resistance was 10Ω.

【0054】[例4]例1において分極性電極材料のス
ラリーの含浸条件と圧密化条件を変え、分極性電極の空
隙率を5%とした以外は例1と同様にして4. 3cm×
4.3cmの素子を組み立て、ポリプロピレン容器に入
れたこの素子に例1と同じ電解液を含浸した。この電気
二重層キャパシタを2.8Vで充電し、10mA/cm
2 で放電したときの初期容量は25. 5F、内部抵抗は
1. 8Ωであった。
Example 4 4.3 cm × in the same manner as in Example 1 except that the impregnation condition and the compaction condition of the slurry of the polarizable electrode material were changed to change the porosity of the polarizable electrode to 5%.
A 4.3 cm device was assembled and impregnated with the same electrolyte as in Example 1 in a polypropylene container. This electric double layer capacitor is charged at 2.8 V, 10 mA / cm
The initial capacity when discharged at 2 was 25.5 F and the internal resistance was 1.8 Ω.

【0055】[例5]繊維径約8μm、平均長さ10m
m以上のステンレス316L繊維(目付量500g/m
2 )のウエブ(繊維が縮れて互いに絡まっている)を焼
結し、厚さ1mm、幅4cm、長さ6cmの板状の焼結
体を2枚得た。この焼結体の片端部2cmを圧縮してリ
ード端子とし、残りの4cm×4cmの部分に例1で使
用した分極性電極材料のスラリーを含浸し、180℃で
乾燥後ロールプレスで圧密化して厚さ0. 54mm、空
隙率25%の分極性電極を得た。ガラス繊維のセパレー
タを一対の分極性電極の間に挟んで対向させ、200℃
の減圧下で3時間乾燥して素子を得た。この素子をポリ
プロピレンの容器中に入れ、1.4mol/lの(C2
53 (CH3 )NBF4 を溶かしたプロピレンカー
ボネートを溶媒とする電解液を注入して電気二重層キャ
パシタを組み立てた。この電気二重層キャパシタの使用
電圧は2.8V、初期容量は21. 4F、内部抵抗は
1. 0Ωであった。
Example 5 Fiber diameter of about 8 μm, average length of 10 m
316L fiber of stainless steel of m or more (Basis weight is 500g / m
The web ( 2 ) (fibers are shrunk and entangled with each other) was sintered to obtain two plate-shaped sintered bodies having a thickness of 1 mm, a width of 4 cm and a length of 6 cm. 2 cm of one end of this sintered body was compressed to form a lead terminal, and the remaining 4 cm × 4 cm portion was impregnated with the slurry of the polarizable electrode material used in Example 1, dried at 180 ° C. and then consolidated by a roll press. A polarizable electrode having a thickness of 0.54 mm and a porosity of 25% was obtained. A glass fiber separator is sandwiched between a pair of polarizable electrodes to face each other, and the temperature is 200 ° C.
A device was obtained by drying under reduced pressure for 3 hours. This device was placed in a polypropylene container and 1.4 mol / l (C 2
An electric double layer capacitor was assembled by injecting an electrolyte solution using propylene carbonate in which H 5 ) 3 (CH 3 ) NBF 4 was dissolved as a solvent. The electric double layer capacitor had a working voltage of 2.8 V, an initial capacity of 21.4 F and an internal resistance of 1.0 Ω.

【0056】[例6]正極に例5と同じ構成の分極性電
極を使用し、負極は次のようにして調製した。天然黒鉛
の粉末(純度99.3%、前記d002 =0.3355n
m、前記LC=200nm以上、平均粒径10μm)9
0重量%とポリフッ化ビニリデン10重量%にN−メチ
ルピロリドンを重量比で3倍量加え、超音波を与えつつ
撹拌混合し、ポリフッ化ビニリデンがN−メチルピロリ
ドンに溶解した負極材料のスラリーを得た。
Example 6 A polarizable electrode having the same structure as in Example 5 was used as the positive electrode, and the negative electrode was prepared as follows. Natural graphite powder (purity 99.3%, d 002 = 0.3355n)
m, said L C = 200 nm or more, average particle size 10 μm) 9
N-methylpyrrolidone was added to 0% by weight and 10% by weight of polyvinylidene fluoride in a weight ratio of 3 times, and the mixture was stirred while applying ultrasonic waves to obtain a slurry of a negative electrode material in which polyvinylidene fluoride was dissolved in N-methylpyrrolidone. It was

【0057】この負極材料のスラリーを、寸法4cm×
4cm、厚さ2.0mm、気孔率97%、目付け量55
0g/m2 、直線1cm当たりの平均孔数25の多孔質
ニッケルに含浸し、200℃の減圧下で30分間乾燥後
ロールプレスで圧密化したところ、厚さ0.5mm、空
隙率35%、天然黒鉛の担持量36mg/cm2 の負極
を得た。この負極の端部に厚さ20μm、幅4cm、長
さ3cmのニッケル箔を電気溶接して端子とした。
This negative electrode material slurry was measured to have a size of 4 cm ×
4 cm, thickness 2.0 mm, porosity 97%, basis weight 55
0 g / m 2 , impregnated with porous nickel having an average pore number of 25 per 1 cm of a straight line, dried under reduced pressure at 200 ° C. for 30 minutes and then consolidated by a roll press, thickness 0.5 mm, porosity 35%, A negative electrode having a supported amount of natural graphite of 36 mg / cm 2 was obtained. A nickel foil having a thickness of 20 μm, a width of 4 cm and a length of 3 cm was electrically welded to the end of the negative electrode to form a terminal.

【0058】190℃の減圧下で1時間乾燥したこの電
極を、ポリプロピレン製のセパレータを隔てて寸法4.
5cm×4. 5cm、厚さ0.5mmの金属リチウム板
と対向させ、1mol/lのLiN(CF3 SO22
をエチレンカーボネートとエチルメチルカーボネートの
4:1混合溶媒に溶かした電解液に浸し、金属リチウム
極に0. 01Vの電圧を10時間印加して負極の炭素材
料にリチウムイオンを電気化学的に吸蔵させた。この吸
蔵させたリチウムイオン中、脱離しうるリチウムイオン
量は160mAhであった。
This electrode, which had been dried under reduced pressure at 190 ° C. for 1 hour, was separated by a polypropylene separator to give a dimension 4.
1 mol / l of LiN (CF 3 SO 2 ) 2 is made to face a metal lithium plate having a size of 5 cm × 4.5 cm and a thickness of 0.5 mm.
Is immersed in an electrolytic solution dissolved in a 4: 1 mixed solvent of ethylene carbonate and ethyl methyl carbonate, and a voltage of 0.01 V is applied to the metal lithium electrode for 10 hours to electrochemically occlude lithium ions in the carbon material of the negative electrode. It was The amount of desorbable lithium ions in the stored lithium ions was 160 mAh.

【0059】次いで、金属リチウム板を取り除き、前記
分極性電極の正極とリチウムイオンを吸蔵させた負極の
間に厚さ180μmのポリプロピレンのセパレータを挟
んで対向させ、リチウムイオンの吸蔵に用いたのと同組
成の電解液を入れたポリプロピレン容器中に電気二重層
キャパシタを組み立てた。この正極の単極容量bは43
Fであった。また、比率bv/3.6dは0.15であ
り、素子の体積、すなわち正極、セパレータ及び負極の
体積の合計は1. 952cm3 であった。この電気二重
層キャパシタを4Vで充電し、10mAで4Vから2V
まで定電流放電して、その容量と内部抵抗を求めた。得
られた電気二重層キャパシタの初期容量は38F、内部
抵抗は1. 7Ωであり、エネルギ密度は32Wh/リッ
トルと計算された。
Then, the metallic lithium plate was removed, and a polypropylene separator having a thickness of 180 μm was sandwiched between the positive electrode of the polarizable electrode and the negative electrode which occluded lithium ions, and the two were used for occluding lithium ions. An electric double layer capacitor was assembled in a polypropylene container containing an electrolytic solution of the same composition. The single pole capacity b of this positive electrode is 43
F. The ratio bv / 3.6d was 0.15, and the volume of the device, that is, the total volume of the positive electrode, the separator and the negative electrode was 1.952 cm 3 . This electric double layer capacitor is charged at 4V, and 10mA causes 4V to 2V
After constant current discharge, the capacity and internal resistance were obtained. The initial capacitance of the obtained electric double layer capacitor was 38 F, the internal resistance was 1.7 Ω, and the energy density was calculated to be 32 Wh / liter.

【0060】[例7]例6の負極に使用した炭素材料
に、前記面間隔d002 が0. 37nm、LC が100n
m、平均粒径7μmのフルフリルアルコール樹脂の焼成
品の粉末を用い、1 mol/lのLiBF4 をプロピレ
ンカーボネートの溶媒に溶かした電解液を用いた他は例
6と同様にして有効素子面積4cm×4cmの電気二重
層キャパシタをポリプロピレン容器中に組み立てた。こ
の正極の単極容量bは43Fであり、比率bv/3.6
dは0.13であった。この素子の体積は1. 952c
3 であり、電気二重層キャパシタを4Vで充電後4V
から2Vに10mAで定電流放電したときの初期容量は
39. 5F、内部抵抗は1. 7Ωであり、エネルギ密度
は33. 7Wh/リットルと計算された。
Example 7 The carbon material used for the negative electrode of Example 6 was prepared by adding the above-mentioned interplanar spacing d 002 of 0.37 nm and L C of 100 n.
m, an average particle size of 7 μm, a powder of a fired product of a furfuryl alcohol resin, and an effective element area in the same manner as in Example 6 except that an electrolyte solution obtained by dissolving 1 mol / l of LiBF 4 in a solvent of propylene carbonate was used. A 4 cm x 4 cm electric double layer capacitor was assembled in a polypropylene container. The positive electrode capacity b of this positive electrode is 43 F, and the ratio bv / 3.6.
d was 0.13. The volume of this element is 1.952c
m 3 and 4V after charging the electric double layer capacitor with 4V
Was calculated to have an initial capacity of 39.5 F, an internal resistance of 1.7Ω and an energy density of 33.7 Wh / liter.

【0070】[例8(比較例)]例1において、ステン
レス鋼繊維のマットの代わりに厚さ50μm、寸法4.
3cm×4. 3cmのステンレス316L箔を集電体に
用い、例1で用いた分極性電極材料のスラリーをステン
レス箔上に塗工し、180℃で乾燥後プレスして2枚の
分極性電極を得た。プレス後の塗工膜の厚さは70μ
m、空隙率は29%であった。この塗工膜は70μm以
上の厚さにするとステンレス箔から脱落する傾向を示し
た。得られた2枚の分極性電極の間にガラス繊維とポリ
プロピレン繊維を混抄したセパレータを挟んで対向させ
て素子とし、例1と同様にしてポリプロピレン容器中で
電気二重層キャパシタを組み立てた。得られた電気二重
層キャパシタを2.8Vで充電し、10mAで定電流放
電したときの初期容量は3. 1F、内部抵抗は1. 0Ω
であった。
Example 8 (Comparative Example) In Example 1, instead of the stainless steel fiber mat, the thickness is 50 μm and the dimension is 4.
Using a stainless steel 316L foil of 3 cm × 4.3 cm as a current collector, the slurry of the polarizable electrode material used in Example 1 was applied onto the stainless steel foil, dried at 180 ° C. and pressed to obtain two polarizable electrodes. Got The thickness of the coating film after pressing is 70μ
m, and the porosity was 29%. When this coating film had a thickness of 70 μm or more, it tended to fall off from the stainless steel foil. An electric double layer capacitor was assembled in a polypropylene container in the same manner as in Example 1 by sandwiching a separator made of a mixture of glass fiber and polypropylene fiber between the obtained two polarizable electrodes so as to face each other. The obtained electric double layer capacitor was charged at 2.8 V and discharged at a constant current of 10 mA, the initial capacity was 3.1 F and the internal resistance was 1.0 Ω.
Met.

【0071】[例9(比較例)]例6において、ステン
レス鋼繊維のマットの代わりに厚さ50μmのステンレ
ス316L箔を集電体に用い、例1で用いた分極性電極
のスラリーをステンレス316L箔上に塗工した。18
0℃で乾燥後プレスした塗工膜の厚さは70μmであ
り、空隙率は29%であった。この分極性電極を正極と
し、例6で負極に使用した多孔質ニッケルの代わりに厚
さ50μmのニッケル箔を用い、例6で用いた負極材料
のスラリーをニッケル箔上に塗工した。塗工膜を180
℃で乾燥後プレスしたところ、膜の厚さ約70μm、空
隙率29%となった。この膜厚を70μmより厚くする
と、塗工膜がニッケル箔から離脱する傾向を認めた。
Example 9 (Comparative Example) In Example 6, a stainless steel 316L foil having a thickness of 50 μm was used as a current collector instead of the stainless steel fiber mat, and the polarizable electrode slurry used in Example 1 was used as stainless steel 316L. Coated on the foil. 18
The thickness of the coating film pressed after drying at 0 ° C. was 70 μm, and the porosity was 29%. Using this polarizable electrode as a positive electrode, a nickel foil having a thickness of 50 μm was used instead of the porous nickel used in the negative electrode in Example 6, and the slurry of the negative electrode material used in Example 6 was coated on the nickel foil. 180 coating film
When the film was dried and then pressed, the film thickness was about 70 μm and the porosity was 29%. When this film thickness was made thicker than 70 μm, the coating film tended to separate from the nickel foil.

【0072】次いで、例6のときと同様にポリプロピレ
ンのセパレータを間に挟んでこの電極を金属リチウム板
と対向させ、負極にリチウムイオンを電気化学的に吸蔵
させた。天然黒鉛にリチウムイオンを吸蔵させた負極と
分極性電極の正極及びセパレータからなる素子をポリプ
ロピレン容器中に入れ、例6で使用した電解液を注入し
て電気二重層キャパシタを組み立てた。この正極の単極
容量bは5. 40Fであった。この電気二重層キャパシ
タを4Vで充電し、4Vから2Vまで10mAで定電流
放電させたときの容量は4. 7F、内部抵抗は1. 3Ω
であった。また、比率bv/3.6dは0.17であ
り、素子の体積は0.672ccであり、エネルギ密度
は7. 4Wh/リットルと計算された。
Then, in the same manner as in Example 6, this electrode was opposed to the metal lithium plate with the polypropylene separator interposed therebetween, and the negative electrode was allowed to electrochemically occlude lithium ions. An element consisting of a negative electrode in which lithium ions were occluded in natural graphite, a positive electrode of a polarizable electrode and a separator was placed in a polypropylene container, and the electrolytic solution used in Example 6 was injected to assemble an electric double layer capacitor. The single electrode capacity b of this positive electrode was 5.40F. When this electric double layer capacitor is charged at 4V and discharged at a constant current of 10mA from 4V to 2V, the capacity is 4.7F and the internal resistance is 1.3Ω.
Met. The ratio bv / 3.6d was 0.17, the volume of the device was 0.672 cc, and the energy density was calculated to be 7.4 Wh / liter.

【0073】例1、2、3、4を例8と較べることによ
り、また、例6、7を例9と比べることにより、初期容
量及び電圧印加時の耐久性、内部抵抗及びエネルギ密度
において本発明の電気二重層キャパシタが顕著に優れる
ことが分かる。
By comparing Examples 1, 2, 3 and 4 with Example 8 and comparing Examples 6 and 7 with Example 9, the initial capacity and durability under voltage application, internal resistance and energy density were confirmed. It can be seen that the electric double layer capacitor of the invention is remarkably excellent.

【0074】[0074]

【発明の効果】本発明の構成による電気二重層キャパシ
タでは、使用電圧が高く、容量が大きく、内部抵抗が低
いのでエネルギ密度が大きく、急速充放電が可能な電気
二重層キャパシタを提供できる。本発明の電気二重層キ
ャパシタは、コイン型のような比較的小さなサイズのも
のにも有効であるが、静電容量が100〜10000フ
ァラッド、又は充放電電流が5〜1000アンペアの、
超大容量、大電流向けの電気二重層キャパシタに特に好
適である。したがって、本発明の電気二重層キャパシタ
を使用すればメモリーバックアップの他、今後有望とさ
れているエンジン/電気二重層キャパシタハイブリッド
自動車や電気自動車の動力性能を顕著に向上させられ、
ハイブリッド自動車や電気自動車の回生制動エネルギを
有効利用できるので、その産業上の利用価値は多大であ
る。
The electric double layer capacitor having the structure of the present invention has a high operating voltage, a large capacity, and a low internal resistance. Therefore, it is possible to provide an electric double layer capacitor which has a large energy density and can be rapidly charged and discharged. The electric double layer capacitor of the present invention is effective for a relatively small size such as a coin type, but has an electrostatic capacity of 100 to 10,000 farads or a charging / discharging current of 5 to 1000 amperes.
It is particularly suitable for an electric double layer capacitor for ultra large capacity and large current. Therefore, by using the electric double layer capacitor of the present invention, in addition to memory backup, the power performance of engine / electric double layer capacitor hybrid vehicles and electric vehicles, which are promising in the future, can be significantly improved.
Since the regenerative braking energy of a hybrid vehicle or an electric vehicle can be effectively used, its industrial utility value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるコイン型電気二重層キャパシタの
一例を示す断面図
FIG. 1 is a sectional view showing an example of a coin-type electric double layer capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1:正極 2:導電性接着剤(黒鉛系) 3:コイン型容器蓋 4:コイン型容器ケース 5:負極 7:電解液 8:セパレータ 9:絶縁ガスケット 1: Positive electrode 2: Conductive adhesive (graphite type) 3: Coin type container lid 4: Coin type container case 5: Negative electrode 7: Electrolyte solution 8: Separator 9: Insulation gasket

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】活性炭粉末、導電材粉末及び結合剤を含む
分極性電極材料にステンレス鋼繊維の集電体が混在状態
で組み合わされて正極とされ、活性炭粉末、導電性粉末
及び結合材を含む分極性電極材料に金属の集電体が組み
合わされて負極とされ、正極と負極の間にセパレータが
配置され、正極、負極及びセパレータに非水系電解液が
含浸されていることを特徴とする電気二重層キャパシ
タ。
1. A polarizable electrode material containing activated carbon powder, conductive material powder and a binder and a current collector of stainless steel fibers mixed together to form a positive electrode, which contains activated carbon powder, conductive powder and a binder. An electric current characterized by combining a polarizable electrode material with a metal current collector to form a negative electrode, arranging a separator between the positive electrode and the negative electrode, and impregnating the positive electrode, the negative electrode and the separator with a non-aqueous electrolyte solution. Double layer capacitor.
【請求項2】非水系電解液の溶質が、R4+ 又はR4
+ (ただし、Rはアルキル基)で表される第4級オニ
ウムカチオンと、BF4 -、N(CF3 SO22 -、PF
6 -及びClO4 -から選ばれる1種以上のアニオンの塩で
ある請求項1記載の電気二重層キャパシタ。
2. The solute of the non-aqueous electrolyte is R 4 N + or R 4
Quaternary onium cation represented by P + (where R is an alkyl group), BF 4 , N (CF 3 SO 2 ) 2 , PF
6 - and ClO 4 - 1 or more of the electric double layer capacitor according to claim 1, wherein the anion of the salt selected from.
【請求項3】活性炭粉末、導電材粉末及び結合剤を含む
分極性電極材料にステンレス鋼繊維の集電体が混在状態
で組み合わされて正極とされ、リチウムイオンを吸蔵、
脱離しうる炭素材料に化学的方法及び/又は電気化学的
方法であらかじめリチウムイオンを吸蔵させた炭素質材
料に多孔質金属又は繊維状金属の集電体が組み合わされ
て負極とされ、正極と負極の間にセパレータが配置さ
れ、正極、負極及びセパレータにリチウム塩を含む非水
系電解液が含浸されていることを特徴とする電気二重層
キャパシタ。
3. A polarizable electrode material containing an activated carbon powder, a conductive material powder and a binder and a current collector of stainless steel fibers mixed together in a mixed state to form a positive electrode, which absorbs lithium ions,
A carbonaceous material in which a desorbable carbon material has been occluded with lithium ions in advance by a chemical method and / or an electrochemical method is combined with a collector of a porous metal or a fibrous metal to form a negative electrode, and a positive electrode and a negative electrode. An electric double layer capacitor, characterized in that a separator is disposed between the separators, and the positive electrode, the negative electrode and the separator are impregnated with a non-aqueous electrolytic solution containing a lithium salt.
【請求項4】非水系電解液の溶質が、リチウムイオン
と、BF4 -、N(CF3 SO22 -、PF6 -及びClO
4 -から選ばれる1種以上のアニオンの塩である請求項3
記載の電気二重層キャパシタ。
4. The solute of the non-aqueous electrolyte solution is lithium ion, BF 4 , N (CF 3 SO 2 ) 2 , PF 6 and ClO.
4 - claim 3 is one or more anions of salts selected from
The electric double layer capacitor described.
【請求項5】正極の集電体として、ステンレス鋼繊維の
他にステンレス鋼板が組み合わされている請求項1〜4
のいずれか記載の電気二重層キャパシタ。
5. A stainless steel plate is combined with a stainless steel fiber as a current collector of the positive electrode.
5. The electric double layer capacitor according to any one of 1.
【請求項6】ステンレス鋼繊維の集電体が、焼結によっ
て繊維が相互に結合された状態の直径1〜50μm、長
さ1mm以上の繊維からなり、分極性電極が厚さ0.1
〜3mmで10〜60%の空隙率を有するものである請
求項1〜5のいずれか記載の電気二重層キャパシタ。
6. A stainless steel fiber current collector made of fibers having a diameter of 1 to 50 μm and a length of 1 mm or more in a state where the fibers are bonded to each other by sintering, and the polarizable electrode has a thickness of 0.1.
The electric double layer capacitor according to any one of claims 1 to 5, which has a porosity of 10 to 60% at -3 mm.
【請求項7】正極に組み合わされるステンレス鋼繊維が
ステンレス316Lからなるものである請求項1〜6の
いずれか記載の電気二重層キャパシタ。
7. The electric double layer capacitor according to claim 1, wherein the stainless steel fiber combined with the positive electrode is made of stainless steel 316L.
【請求項8】正極がステンレス鋼板又はアルミニウムと
ステンレス鋼の積層板からなるボタン型容器のケース側
又は蓋側に配置され、負極がステンレス鋼からなるボタ
ン型容器の蓋側又はケース側に配置され、正極と負極が
それぞれ蓋側又はケース側に導電性接着剤又は溶接によ
って接合されている請求項1〜7のいずれか記載の電気
二重層キャパシタ。
8. A positive electrode is arranged on the case side or lid side of a button type container made of a stainless steel plate or a laminated plate of aluminum and stainless steel, and a negative electrode is arranged on the lid side or case side of a button type container made of stainless steel. The electric double layer capacitor according to any one of claims 1 to 7, wherein the positive electrode and the negative electrode are respectively joined to the lid side or the case side by a conductive adhesive or welding.
JP8034023A 1996-02-21 1996-02-21 Electric double layer capacitor Pending JPH09232190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8034023A JPH09232190A (en) 1996-02-21 1996-02-21 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8034023A JPH09232190A (en) 1996-02-21 1996-02-21 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPH09232190A true JPH09232190A (en) 1997-09-05

Family

ID=12402788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8034023A Pending JPH09232190A (en) 1996-02-21 1996-02-21 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH09232190A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233608A (en) * 1996-02-28 1997-09-05 Jeol Ltd Hybrid electric car
WO2005031773A1 (en) * 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha Organic electrolytic capacitor
WO2007046382A1 (en) 2005-10-17 2007-04-26 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
WO2007055358A1 (en) 2005-11-14 2007-05-18 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
WO2007074639A1 (en) 2005-12-28 2007-07-05 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
US7548409B2 (en) 2004-03-31 2009-06-16 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using a mesopore carbon material as a negative electrode
JP2011159960A (en) * 2010-02-02 2011-08-18 Samsung Electro-Mechanics Co Ltd Electric double layer capacitor and method of manufacturing the same
JP2012049500A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Manufacturing method of lithium ion capacitor
US8142930B2 (en) 2005-04-26 2012-03-27 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
US8724292B2 (en) 2006-09-04 2014-05-13 Fuji Jukogyo Kabushiki Kaisha Lithium-ion capacitor
US8902566B2 (en) 2010-05-31 2014-12-02 Sumitomo Electric Industries, Ltd. Capacitor, and method for producing the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233608A (en) * 1996-02-28 1997-09-05 Jeol Ltd Hybrid electric car
WO2005031773A1 (en) * 2003-09-30 2005-04-07 Fuji Jukogyo Kabushiki Kaisha Organic electrolytic capacitor
JPWO2005031773A1 (en) * 2003-09-30 2006-12-07 富士重工業株式会社 Organic electrolyte capacitor
KR100863562B1 (en) * 2003-09-30 2008-10-15 후지 주코교 카부시키카이샤 Organic electrolytic capacitor
US7443651B2 (en) 2003-09-30 2008-10-28 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor
JP2011146734A (en) * 2003-09-30 2011-07-28 Fuji Heavy Ind Ltd Organic electrolyte capacitor
JP4751199B2 (en) * 2003-09-30 2011-08-17 富士重工業株式会社 Organic electrolyte capacitor
US7548409B2 (en) 2004-03-31 2009-06-16 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using a mesopore carbon material as a negative electrode
US8142930B2 (en) 2005-04-26 2012-03-27 Fuji Jukogyo Kabushiki Kaisha Negative electrode active material for charging device
US8098480B2 (en) 2005-10-17 2012-01-17 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
WO2007046382A1 (en) 2005-10-17 2007-04-26 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
WO2007055358A1 (en) 2005-11-14 2007-05-18 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
US8004823B2 (en) 2005-11-14 2011-08-23 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
WO2007074639A1 (en) 2005-12-28 2007-07-05 Fuji Jukogyo Kabushiki Kaisha Lithium ion capacitor
US8724292B2 (en) 2006-09-04 2014-05-13 Fuji Jukogyo Kabushiki Kaisha Lithium-ion capacitor
JP2011159960A (en) * 2010-02-02 2011-08-18 Samsung Electro-Mechanics Co Ltd Electric double layer capacitor and method of manufacturing the same
US8902566B2 (en) 2010-05-31 2014-12-02 Sumitomo Electric Industries, Ltd. Capacitor, and method for producing the same
JP2012049500A (en) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd Manufacturing method of lithium ion capacitor

Similar Documents

Publication Publication Date Title
JP3689948B2 (en) Electric double layer capacitor
US5953204A (en) Electric double layer capacitor
KR100863562B1 (en) Organic electrolytic capacitor
EP1895553B1 (en) Lithium-ion capacitor
EP1843362B1 (en) Lithium ion capacitor
JP4918418B2 (en) Lithium ion pre-doping method and method for producing lithium ion capacitor storage element
EP1865521A1 (en) Lithium ion capacitor
EP1865520A1 (en) Lithium ion capacitor
EP1930919A1 (en) Lithium ion capacitor
JPH08107048A (en) Electric double-layer capacitor
JPWO2004097867A1 (en) Organic electrolyte capacitor
US10002718B2 (en) Lithium ion capacitor
JP3591055B2 (en) Electric double layer capacitor, method of manufacturing the same, and method of manufacturing electrodes therefor
JPH10158005A (en) Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JP5681351B2 (en) Electrode current collector and method for producing the same, electrode and power storage device
JPH09232190A (en) Electric double layer capacitor
JPH1131637A (en) Electric double-layer capacitor, carbon material for it and electrode
JP4731974B2 (en) Lithium ion capacitor
JP5158839B2 (en) Non-aqueous electrolyte electrochemical device
JP2000036325A (en) Secondary power supply
JP2000124084A (en) Electric double-layer capacitor
JP2008047853A (en) Capacitor
JP4039071B2 (en) Secondary power supply
JP3325021B2 (en) Graphite particles for negative electrode of lithium secondary battery and graphite paste for negative electrode of lithium secondary battery
JPH09275041A (en) Double layer electric capacitor